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The GCS problem



TITRE DE LA PARTIE

• Sketch figure (point, line, 
circle, BSpline, …) with 
implicit and explicit 
constraints (distance, angle, 
coincidence, …) in 2D and 3D.

• Solves the geometries with 
respect to constraints:
o Tells the under and over-

constrained geometries.
o Tells the linked constraints.

The GCS problem: CAD



TITRE DE LA PARTIE

• Sketch a figure:
o Molecular distance 

geometry.
o Tensegrities.

• Solve a position:
o Robotics.

• Automatic theorem proving

The GCS problem: others



The general problem



A graph 𝐺 = (𝑉, 𝐸)
𝑉 are geometries
𝐸 are constraints

An embedding map of V into a dimensional vector, affine, 
projective space, … : ℝ𝑑, ℙ𝑑 , ℂ𝑑

𝑉 ⟶ 𝑆
And elementary constraint functions:

𝑆 × 𝑆 ⟶ℝ or ℂ

𝑐 𝑣𝑖 , 𝑣𝑗 = 𝑐𝑖𝑗
One is looking for a realization, where the graph vertices are 
satisfying the elementary constraints, … or a function on the 
elementary constraints (in such a case, all geometries 
involved in the function are connected with an edge). 

The general problem



More precisely, consider the general problem of 𝑀 constraints 𝐹, 𝒞1 fonctions on the 𝑆𝑛

space, each geometry belonging to one 𝑆:

• Each copy 𝑆 is a manifold with base vector space ℝ𝑑 and coordinates maps 𝑥𝑖∈ 1,..,𝑑 . 
• The 𝑥𝑖∈ 1,..,𝑁=𝑛∗𝑑 are the DOF (degrees of freedom), and the 𝐹𝑗∈ 1,..,𝑀 are the constraints 

linking the geometries 𝑣𝐼∈ 1,..,𝑛 . 

• To each geometry 𝑣𝐼 , one can associate the set of constraints 𝐹𝐼 , that are dependant of a 

DOF relative to a geometry 𝐼 (
𝜕𝐹𝑗

𝜕𝑥𝑖
not identically null). One can form the “Jacobian”: 

𝜕𝐹𝑗

𝜕𝑥𝑖
. 

• The underlying graph, 𝐺 = (𝑉, 𝐸) is given by the 𝑛 𝑑-dimensional geometries as vertices, 
and two vertices 𝐼1, 𝐼2 are linked by an edge if there is a common constraint that varies 
with a geometry move, i.e. 𝐹𝐼1 ∩ 𝐹𝐼2 ≠ ∅.  

• Roughly, two geometries are linked by an edge, if there is a constraint involving the two 
geometries.

The general problem



Setting :

𝑋 = (𝑥𝑖)𝑖∈ 1,…,𝑁=𝑛∗𝑑

𝑌 = 𝐹𝑗 𝑥𝑖 − 𝑐𝑗 = F(X) ∈ ℝ𝑀

o We now have to solve 𝐹(𝑋) = 0 or a classical optimization problem 𝑀𝑖𝑛𝑋∈ℝ𝑁 𝐹(𝑋)
o 𝑋 ∶ 𝐹 𝑋 = 0 is itself a sub-manifold of ℝ𝑁, except in a singular locus, where 

Jacobian degenerates.

Indeed a classical engineer problem. Isn’t it?

However, we have to use this precious information:
• We are talking about geometries, each belonging to a d-dimensional space.
• The underlying graph 𝐺 = (𝑉, 𝐸) is a key information too!
• 𝑁 and 𝑀 are large, and the system is sparse.

The general problem



It is certainly worth taking into account that:

• Most of the sketches are constructible by ruler and compass, … even 
some are not.

• Geometry belongs to a metric space, and constraints are mainly 
distances and angles, the metric space invariants.

• Most of the sketches are sub (𝑀 < 𝑁) or over-constrained (𝑀 > 𝑁) :
• One is then looking for a natural close solution from an initial one 

proposed by the user. The solution should be independent of a 
coordinates choice (frame).

The general problem



Back to ruler and compass



Solvers have existed for ages:

Most sketches can be solved using 
the classical “triangle and circle 
geometry”. It was the old way used 
by the draftsman, in front of his 
drawing board. Quite challenging 
sometimes, and the draftsman’s 
brain was the solver!

Back to ruler and compass



Euclidian geometry and graph theory:
• Knowing 3 distances, two distances and an angle, one distance and 

two angles, the shape of a triangle is completely solved (the sketch 
is rigid).

• A 2D sub-graph is presumably rigid if : 𝐸 = 2 𝑉 − 3.

• A dD sub-graph is presumably rigid if : 𝐸 = 2 𝑉 − 𝑑(𝑑+1)

2
.

• Geiringer-Laman theorem (1927, 1970): a 2D bar-joint 𝐺 =
(𝑉, 𝐸) is generically rigid, if and only if 𝐸 = 2 𝑉 − 3 and for any 
sub-graph 𝐺’ = (𝑉’, 𝐸’), where 𝑉’ > 1, 𝐸′ < 2 𝑉′ − 3.

Back to ruler and compass



This gives birth to a first strategy for Geometric Constraint Solvers:
• Analyse the graph.
• Decomposition and recomposition plan (DR plan):
o Recognize, extract solvable sub-graph detecting dimensional 

coherence 𝑁’ −
𝑑(𝑑+1)

2
= 𝑀’ (isostatic) : patterns as new nodes for 

a new graph to be analysed and further decomposed (recursive 
process).

o Finally, recompose the patterns, in a constructive plan (assembly 
tree).

• Once the DR plan obtained, most of the irreducible components can be 
solved by ruler and compass method (quadratic equations). The non 
quadratic components are solved by a numerical method (back to the 
general problem), Newton or gradient like.

Back to ruler and compass



Benefits:
- A quadratic resolution scheme (QRS):

𝑁1, 𝑀1 ⇒ 𝑁2, 𝑀2 ⇒ ⋯ ⇒ 𝑁𝑘 , 𝑀𝑘 𝑤𝑖𝑡ℎ 𝑁𝑖 ≪ 𝑁 .
- Quadratic schemes support the chirality management: one can choose 

the solution chirality and display the possibly 2𝑘 solutions.
- Fast solving process.

Drawbacks:
- Not a continuous and fluid process. Analyse of two closed sketches can 

lead to two different DR plans.

Back to ruler and compass



Not all sketches admit quadratic resolution schemes (solvable by ruler and 
compass):
• Gauss-Wantzel theorem (1796 – 1837): a n-regular polygon is constructible 

by ruler and compass if and only if 𝑛 is a product of 2 power and Fermat 

numbers: p = 22
𝑘

+1. 

• Wantzel theorem (1837): every ruler and compass constructible number is 
algebraic over field ℚ, degree being 2𝐾(necessary condition).

A necessary and sufficient condition requires the Galois theory:
• Theorem: let 𝛼 ∈ ℝ , 𝑃(𝑋) its minimal polynom over ℚ, and 𝐾 the 𝑃

dislocation field. 𝛼 is constructible if and only if  [𝐾: ℚ] is a 2 power.

Back to ruler and compass



Modern geometry



Using the modern definition of a geometry:
The unknown geometries to be solved are belonging to a 
geometric space. Following Klein, and the Erlangen program, a 
geometry is characterized by points in an abstract space and an 
associated group of transformations. Geometries are equivalent 
iff the underlying groups are the same.
• In our industrial case, the space is an affine space, and the 

transformation group is the similarities group, an extension of 
the classical affine group (translation, rotation) with the 
dilatations.

• Distance, up to a scaling factor, and angles are the invariants of 
the transformation group.

Modern geometry



Modern geometry



Calling the theory of invariants and the Cayley bracket algebra:
• Instead of working with coordinates charts on varieties, one 

can use invariant quantities associated to the geometry group 
transformations.

• Typically the volume functions on vectors.
• From the affine space embedded within a projective space, 

with the structural group being 𝐺𝐿𝑛 ℝ , one can construct the 
Cayley bracket algebra, where product is invariant with respect 
to linear changes.

• Moreover, with an additional null quadric involved, one can 
derive all the metric spaces.

• This is much used in the field of automatic theorem proving.

Modern geometry



An automatic proof of Pascal theorem:

Modern geometry



Calling the theory of matroid (Whitney):
• The central algebra tool used is the matroid.
• It allows to model linear dependencies of rows and columns in 

a matrix.
• And can be strongly associated to graph theory and incidence 

matrix.
• One can use this too, to establish correspondences between 

the graph 𝐺 = 𝑉, 𝐸 and the local differential structure given 

by the  “Jacobian”: 
𝜕𝐹𝑗

𝜕𝑥𝑖
.

Modern geometry



Calling to Lie groups and Lie theory:
• One can then reformulate the general optimization problem:
o Starting form an initial position (𝑣1 0 ,… , 𝑣𝑛 0 ), one is looking 

for the transformations (𝑔1, … , 𝑔𝑛) such:

𝑣1 𝑡 , … , 𝑣𝑛 𝑡 = (𝑔1, … , 𝑔𝑛). (𝑣1 0 ,… , 𝑣𝑛 0 ) will satisfy the 

constraints.
o In this setting, the unknown are no longer the 𝑣𝑖, but the 

transformations acting on the 𝑣𝑖. These transformations belong 
to the variety ൗ𝐺 𝐼𝑠(𝑣), as the quotient of the structural group 

considered (similarities) by the isotropy group of 𝑣.
o Because the constraints are formulated as invariants of the 

transformation group, the “diagonal” transformation (𝑔, … , 𝑔) is 
a trivial solution too.

Modern geometry



Calling to Riemannian geometry:
• We are solving elements belonging to a product of Lie groups, 

modulo isotropy groups, and the diagonal group.
• The gradient flow is over a quotient of a Lie group.
• The Lie group is equipped with a bi-invariant metric (Killing metric).

Modern geometry



Pure distances GCS:
In the GCS theory related to Math, the problem intensively studied is the 
distance problem, where the 𝑣 are points embedded in an affine space, 
and constraints are distances between these points.
The central tool is the Cayley-Menger determinant, shaping the form. It 
captures some interesting results about these kind of GCS:

Modern geometry



From an industrial point of view, it is however too reductive, and we have at 
least to deal with points, lines, circles as geometries and distances, angles 
and radii as constraints.

Modern geometry



Spheres space:

There is however a space, the space of 
spheres, as a sub space of the space of 
quadratic forms, that allows to extend the 
problem, combining a pure math formulation 
and a broader industrial scope.

Modern geometry



Modern geometry



Modern geometry : spheres space

Geometries:

𝑆 = 𝑛𝑥 . 𝐻𝑥 + 𝑛𝑦. 𝐻𝑦 − 𝑛𝑧. 𝑆1 + v. 𝑆𝑖

𝑆 = 𝑛𝑥 . 𝐻𝑥 + 𝑛𝑦. 𝐻𝑦 + −𝑛𝑧 + 𝑣 .𝑂 +
−𝑛𝑧 − 𝑣

2
.∞

𝐻𝑥 𝑟𝑒𝑎𝑙 𝑦 𝑎𝑥𝑖𝑠 ∶ 𝑥 = 0
𝐻𝑦 𝑟𝑒𝑎𝑙 𝑥 𝑎𝑥𝑖𝑠 ∶ 𝑦 = 0

𝑆1 𝑟𝑒𝑎𝑙 𝑢𝑛𝑖𝑡 𝑠𝑝ℎ𝑒𝑟𝑒: −
1
2
𝑥2 + 𝑦2 − 1 = 0 ∶ 𝑆(𝑂, 1)

𝑆𝑖 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 "𝑢𝑛𝑖𝑡" 𝑠𝑝ℎ𝑒𝑟𝑒: −1
2
𝑥2 + 𝑦2 + 1 = 0: 𝑆(𝑂,−1)

𝑂 𝑜𝑟𝑖𝑔𝑖𝑛 𝑝𝑜𝑖𝑛𝑡 𝑠𝑜𝑢𝑡ℎ 𝑝𝑜𝑙𝑒 :−1
2
𝑥2 + 𝑦2 = 0 ∶ 𝑂 = 1

2
(𝑆1 + 𝑆𝑖)

∞ 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑝𝑜𝑖𝑛𝑡 𝑛𝑜𝑟𝑡ℎ 𝑝𝑜𝑙𝑒 : 1 = 0‼! ∶ ∞ = 𝑆1 − 𝑆𝑖

𝑞 𝑆 = 𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑦
2 − 𝑣2 = 𝑛. 𝑛 − 𝑣2: 𝐿𝑜𝑟𝑒𝑛𝑡𝑧 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑓𝑜𝑟𝑚

𝑏 𝑆, 𝑆′ = 𝑛𝑥 . 𝑛𝑥
′ + 𝑛𝑦. 𝑛𝑦

′ + 𝑛𝑧. 𝑛𝑧
′ − 𝑣. 𝑣′ = 𝑛. 𝑛′ − 𝑣. 𝑣′



Shape constraint :
Point P : 𝑞 𝑃 = 0
Line D: 𝑞 𝐷 = 1, 𝑏 𝐷,∞ = 0
Sphere S: 𝑞 𝑆 = 1, 𝑏 𝑆,∞ = −1

𝑟

Topological constraint:
𝑃 ∈ 𝑆 ⟺ 𝑏 𝑃 = 0

Distance constraint:

𝑏 𝑃, 𝑃′ = −1
2
𝑑2 𝑃, 𝑃′ , 𝑏 𝑃, 𝐷 = 𝑑 𝑃,𝐷 ,

𝑏 𝑃, 𝑆 = −
1

2
𝑑2 𝑃, 𝑃′ − 𝑟2

Angle constraint :

cos 𝑆, 𝑆′ = 𝑏(𝑆, 𝑆′)

Modern geometry : spheres space

Constraints:



One can combine these two “modern” geometrical points of view:
• Use a larger quadratic space of signature (𝑑 + 1, 1) , to deal with points, 

hyperplanes and spheres as vectors of a same vector space
• Solve transformations as member of a Lie group 𝑆𝑂(𝑑+1,1), instead of solving 

manifold coordinates

Finding a solution is a gradient flow descent on a Riemannian manifold as a 
product of Lie groups, the metric being given by the iso-constraints lines. The 
metric can degenerate in some points, as singular locus of the Riemannian metric. 
This is the solving method implemented inside TopSolid.GCS.

Modern geometry



Algebraic geometry now!



Always using the spheres space formulation, we can reformulate the 
question, with enough “industrial” perspective, as:

Find (𝑣1, … , 𝑣𝑛), with some constraints 𝑏 𝑣𝑖 , 𝑣𝑗 = 𝑐𝑖𝑗
Using a standard 2D basis, (𝐻𝑥, 𝐻𝑦 , 𝑆1, 𝑆𝑖), and coordinates 

(𝑥, 𝑦, 𝑧, 𝑡) we have to solve a set of quadratic + linear equations of the 
special “Lorentz-Minkowski” kind:

𝑥𝑖𝑥𝑗 + 𝑦𝑖𝑦𝑗 + 𝑧𝑖 𝑧𝑗 − 𝑣𝑖𝑣𝑗 = 𝑐𝑖𝑗
𝑥𝑘
2 + 𝑦𝑘

2 + 𝑧𝑘
2 − 𝑣𝑘

2 = 𝑐𝑘𝑘
𝑎𝑙𝑥𝑙 + 𝑏𝑙𝑦𝑙 + 𝑐𝑙𝑧𝑙 − 𝑑𝑙𝑣𝑙 = 𝑐𝑙𝑙

Algebraic geometry now!



𝑥𝑖𝑥𝑗 + 𝑦𝑖𝑦𝑗 + 𝑧𝑖 𝑧𝑗 − 𝑣𝑖𝑣𝑗 = 𝑐𝑖𝑗
𝑥𝑘
2 + 𝑦𝑘

2 + 𝑧𝑘
2 − 𝑣𝑘

2 = 𝑐𝑘𝑘
𝑎𝑙𝑥𝑙 + 𝑏𝑙𝑦𝑙 + 𝑐𝑙𝑧𝑙 − 𝑑𝑙𝑣𝑙 = 𝑐𝑙𝑙

An upper-bound 2𝐾for the number of solutions should be given by 
Bezout. A more precise bound should be given by the mixed volume of 
the associated Newton polytope, which should have strong relationship 
with the underlying 𝐺 = (𝑉, 𝐸) graph.

And maybe there is, or will be a good (fast, robust, complete) solver 
among the sparse polynomial solvers available or in the 
mathematician’s pocket !

Algebraic geometry now!



Bernstein theorem (1975):

Algebraic geometry now!



Determinantal variety:
Another approach can be obtained considering the symmetric shape 
matrix:

𝑀𝑆 =
𝑏(𝑠1, 𝑠1) ⋯ 𝑏(𝑠1, 𝑠𝑛)

⋮ ⋱ ⋮
𝑏(𝑠𝑛, 𝑠1) ⋯ 𝑏(𝑠𝑛, 𝑠𝑛)

This is a symmetric matrix, all minors (𝑚,𝑚) with 𝑚 > 𝑑 + 2 have 
null determinant. It can be considered as a determinantal variety. 
Constraints are sections of the determinantal variety. The number of 
solutions is then limited, given by the algebraic degree of the variety.

Algebraic geometry now!



According to Harris and Tu (1984), we have:

Algebraic geometry now!



Back to 3D geometry



A very open problem:
• Most of the publications are dealing with the 2D problem (plan 

sketch).  CAD modelling is indeed a 3D question, and the same 
problem has to be solved in 3D.

• The previous formulations are working in 3D too. 
• According to the literature, very few is known considering 𝐺 =

(𝑉, 𝐸) embedded in a 3D space and more.
• The spheres space is a quadratic space, which orthogonal group is 

𝑆𝑂(𝑑+1,1). 

o In 2D this is 𝑆𝑂(3,1) with strong isomorphisms. The 

transformations are the 2D Möbius transformations: 𝑧 ↦
𝑎𝑧+𝑏

𝑐𝑧+𝑑
.

o In 3D this is 𝑆𝑂(4,1), not so common.

Back to 3D geometry



Cauchy theorem (1813):

Back to 3D geometry : rigidity



One had to wait until recently :
• Connelly (1977!) was first to exhibit a non convex polytope with 

rigid faces  that was not rigid in the 3D space.
• This is only in 1974, that Gluck proved that the convex requirement 

is a non generic requirement:
• A non rigid polyhedral has singular dimensions, i.e. formulated as a 

GCS, it has a singular Jacobian. So difficult to manufacture a flexible 
polyhedron!

If the question of rigidity deals with order 0 and order 1, it has to be 
studied exploring the further orders:
• this is the question of tensegrities, which is strongly connected to 

the one of structural analysis (FEA). 

Back to 3D geometry



Flexible polyhedron:
- Steffen example
- Flexible and not generically

rigid: 
o special relationships 

between distances are 
required

o tensegrity existence

Back to 3D geometry: rigidity



Conclusion



GCS as Geometric Constraint Solver : 
• An important and practical algorithm, used daily by millions CAD 

users (and gamers !).
• It is a very competitive question with important economic 

implications.
• An appealing problem for mathematicians : a lot still to be 

discovered !
• Could be a very good challenge for advancing Maths, and 

establishing better connexions between Maths community and 
advanced Industrial Software development.

• Old and new geometry is back, as always!

Conclusion



Questions?
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