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In this work, we proposed a computationally inexpensive Parametric Sensitivity Analysis
(PSA) approach, which, to evaluate the parameters’ sensitivity, substitutes design’s physical
quantities by the geometric ones, such as geometric moments and their invariants. Physical
quantities rely strongly on design’s geometry, and the evaluation of geometric properties is
computationally inexpensive; therefore, our approach utilises these quantities to aid users
in making informed decisions on parametric sensitivities. The feasibility of the proposed
method is tested on a ship hull parameterised with 27 parameters. The sensitives of these 27
parameters are assessed with a global variance-based PSA first with respect to wave resistance
coefficient (2F ), which is a crucial physical quantity for ship design, and then with respect
to the second-order geometric moment invariants (M2). The parametric sensitives obtained
with two quantities showed a good correlation, i.e., the four most sensitive parameters to 2F
are also sensitive to M2. Finally, two design spaces are constructed with only the sensitive
parameters evaluated from the two quantities and shape optimisation is performed in both
design spaces to optimise the hull shape for 2F . The 2F values of optimised shapes obtained
from the two spaces showed only 2.5589% of difference. Moreover, the computational cost
to perform PSA and shape optimisation with 2F and M2 is approximately 375 and 9.5 hours,
respectively. These results indicate that PSA performed withmoments can reasonably estimate
parameters’ sensitivity to the design’s physics with considerably reduced computational cost.

I. Introduction

With the advancements in computational power, Computer-Aided Design (CAD) and physics-based simulation
tools have been a driving innovation in engineering and industrial product design. These technologies have

outdated the costly and time-consuming physical prototyping and testing processes with effective shape optimisation
pipelines integrated with digital twins. These pipelines are usually composed of three main components; CAD-based
parametric techniques, optimisers and design’s performance evaluation solvers such as Computational Fluid Dynamics
(CFD) and Finite Elements Analysis (FEA). At first, design parameterisation creates a rich design space, which is later
coupled with an optimiser and a solver to initiate shape optimisation [1]. Here, the optimiser first searches a parametric
instance. The shape modification method then updates the initial design based on this instance, and the solver evaluates
its performance to drive the exploration towards a global optimum.

The construction of parametric models, especially for freeform shapes, is an intricate process, and the decision on
the number of parameters is critical. It is commonly made intuitively based on designers’ or engineers’ experience
while considering a few essential factors: (1) all the critical features of the shape are parameterised [2], and (2)
modification of the parameters does not create impractical or invalid geometries [3]. Even though designers try to favour
parametrisation with many parameters for high design variation; however, in optimisation, this increases the risk of the
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curse of dimensionality resulting in high computational cost as it requires extensive exploration of high-dimensional
design space for global optima and evaluation of a large number of designs with time expensive physical simulations [4].

Parametric sensitivity analyses (PSA) are widely used to support the robustness and efficiency in shape optimisation.
It enables the designers to identify the subset of most sensitive parameters to the design’s physics variability [5]. Once
obtained, insensitive parameters can be excluded or fixed to reduce the dimensionality of the design space, thereby
facilitating the efficient exploration of the design space. However, for complex engineering problems involving free
shapes (e.g., ship hulls), PSA implementation often suffers from high computational cost, especially when the design’s
physics is computationally costly to evaluate [6, 7].

In this work, we aim to tackle these changelings in the context of computationally inexpensive PSA, which, instead
of the design’s physical properties, adopts geometric ones to access parametric sensitives. The physical properties rely
strongly on design geometry, and the evaluation of geometric properties is comparatively computationally inexpensive
[8, 9]. Therefore, we propose a geometry-based sensitivity analyses approach, which uses integral properties, such as
geometric moments. The selection of geometric moments in our work for evaluating parametric sensitivities at the early
design stage is made based on two fundamental insights; geometric moments of a shape:

1) are the intrinsic properties of its underlying geometry, which provides critical design cues to aid it’s CAD [8], and
2) are the unifying medium between geometry and its physical evaluation [9].
From a geometric point of view, these moments can provide overall volume enclosed by the shape, its centre of mass,

a moment of inertia and can evaluate the distribution of volume in different coordinate directions. More interestingly,
these have been widely utilised to measure the extrinsic geometric similarity, which is used for object recognition [10],
shape retrieval [11], rigid body transformation [12], etc. Moreover, shape integrals also provide a geometric foundation
for many physical analyses of design, such as structural analysis [13], meshless physical analysis [9], governing equations
of motion [14], fluid simulations [15, 16], hydrodynamic and hydrostatic stability [17], etc.

Therefore, we perform an experimental study to prove that geometric moments can ease the designer for efficient and
appropriate design parameterisation and provide a preliminary estimation of parameters’ sensitivity on design physics
at the initial stage. We first performed a global variance-based sensitivity analysis [5] concerning wave resistance
coefficient (2F ) and a set of second-order volume moments invariant to translation and scaling [18]. Here, the former is
a physical quantity and computationally expensive to evaluate, and the latter is purely a geometric one. Afterwards, we
perform a correlation study to identify a common set of sensitive parameters between two quantities. Two different
Gaussian process-based surrogate models are developed with a set of sensitive parameters obtained with moments and
2F , which were then connected with an optimiser to obtain optimal designs.

II. Proposed Approach
This section gives general assumptions set for the proposed approach along with a brief overview of sensitivity

analysis and the mathematical formulation of geometric moments and their invariants.
Let a parametric design, W, is represented with a set of = continuous design parameters X = {-: , : = 1, 2, . . . , =} ∈

X ⊆ R=, whose certain realisation is represented as x = {G: , : = 1, ..., =}. Here X is the =-dimensional solution/design
space, which is bounded with lower xl

m and upper xu
m limits of parameters (i.e.,X := {G;

:
≤ G: ≤ GD: ,∀: ∈ {1, 2, . . . =}}).

Moreover, all the elements of X are also assumed to be statistically independent from each other, i.e., ?x (x) =∏=
:=1 ?-:

(G: ), where ?X (x) : R= → R represents the Probability Density Function (PDF) of X and ?-:
(G: ) is the

marginal PDF of -: . Now, the objective is to access the sensitivity indices, {I1,I2, . . . ,I=}, of each element of X with
respect to a quantity of interest (QoI), which is evaluated using a square-integrable vector function 6 : X ⊆ R= → R.
Afterwards, we find a set of < sensitive or significant parameters whose sensitivity index is greater than a significant
threshold, n , where < is favourable to be less than =.

A. Sensitivity analysis
In a parametric study, sensitivity analysis enables identifying the local or global influence of a single or set of

parameters on the QoI, respectively. In other words, it provides insight into the variability of QoI, which in our case are
the geometric moments contributed by input parameters. In a local sensitivity analysis, the change in QoI is evaluated
with respect to variation in a single parameter. In the global sensitivity analysis, variability in QoI is measured against
the variation in all parameters over the entire design space. This allows users to evaluate the relative contribution of
each parameter to QoI’s output variation. In literature, different types of local and global sensitivity analyses, such
as variance-based (or Sobol’s method), derivative-based, density-based sensitivity, elementary effects test (or Morris
method) [19], etc., have been proposed.
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Among these techniques, global variance-based methods like Sobol’s analysis is suitable for complex nonlinear and
non-additive models; therefore, is well received in different design applications and thus used in the current study. This
method investigates how much of the overall variance of QoI is achieved due to the variability of a single or collection
of design parameters. This variance is usually measured with First-order indices (or main effects) or total-order indices
(or total effects). The former quantifies the direct contribution to QoI variance from an individual parameter. The latter
approximates the overall contribution from a parameter considering its direct effect and interactions with all the other
design parameters.

B. Geometry-Based Sensitivity Analysis
In our approach, QoIs are the integral characteristics, such as geometric moments of various orders. As mentioned

earlier, in physical analyses, such as Finite Element Method (FEM) and Computational Fluid Dynamics (CFD), these
moments are used for displacement, deflection, shear stress, stability [17], governing equation of motions [14] and
incompressible flows [15, 16], etc. Recently, meshfree methods have also been developed in FEA [9], which uses
moment-based representations of shape to aid the interoperability between CAD representation and its physics. Moreover,
for floating structures such as ships, moments also play a critical role in determining their initial stability in the water.
These applications motivate us to create a direct relation for the parameter sensitive to the moment and study if this
makes a similar sensitivity effect on its associated physics. Moreover, performing computationally effective sensitivity
analysis at the preliminary stage can also provide a reasonable estimation of the sensitivity of parameters, thereby
expediting the entire product development process.

1. Geometric Moments and Invariants
Consider W as an arbitrary shape in a three-dimensional (3D) Euclidean space. The geometric measure of W in term

of moments can be defined as Riemann integrals and represented as:

" ?,@,A (W) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
G? H@ IA d(G, H, I) dGdHdI, ?, @, A ∈ {0, 1, 2, . . . }. (1)

Eq. 1 give a BCℎ order geometric moment for W of 3D density function d(G, H, I), where B = @ + ? + A. If d(G, H, I) is
piecewise continuous and bounded in 3D Euclidean space then moments for W of any order can be evaluated. With Eq.
1 can construct a moment-vector, MB , containing all the moments up to BCℎ order to represent a shape as

MB =

[
" ?,@,A (W),∀?, @, A ∈ {0, 1, 2, . . . , B} | ? + @ + A ≤ B

]
. (2)

The zeroth and first order moments, "0,0,0 (W), "1,0,0 (W), "0,1,0 (W), and "0,0,1 (W), are most widely used and
correspond to the object volume, + = "0,0,0 (W) and the coordinates of the center-of-mass (c(W)):

c(W) =


2G

2H

2I


=


" 1,0,0 (W)
" 0,0,0 (W)
" 0,1,0 (W)
" 0,0,0 (W)
" 0,0,1 (W)
" 0,0,0 (W)


(3)

Moreover, the moments of second order can be organised in a second rank tensor, the moment of inertia tensor (MoI),
which is represented as follows:

MoI =


"0,2,0 (W) + "0,0,2 (W) −"1,1,0 (W) −"1,0,1 (W)

−"1,1,0 (W) "2,0,0 (W) + "0,0,2 (W) −"0,1,1 (W)
−"1,0,1 (W) −"0,1,1 (W) "2,0,0 (W) + "0,2,0 (W)

 (4)

The moments in MB are variant to rigid and non-rigid transformations, such as translation, rotation and scaling
[18]. However, most of the physical quantities are invariant to either all or some of these transformations. For instance,
evaluating 2F for the ship is invariant to translation and scaling if assessed at a certain Froude number. Therefore, to
measure the sensitives of the parameters with respect to the geometry, the invariants of these moments with respect to
translation and scaling have to be evaluated.
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If the Eq. (1) is evaluated while placing W at its cenertiod, c(W) then it provides a central moment of BCℎ order, which
is invariant to the translation and is expressed as:

`?,@,A (W) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(G − 2G) ? (H − 2H)@ (I − 2I)A d(G, H, I) dGdHdI. (5)

It is noteworthy that as W is place at the c(W); therefore the centralmoment of first order is zero, i.e., [`1,0,0, `0,1,0, `0,0,1] =
0. Assume that the object is scaled by factor _ then

ˆ̀ ?,@,A (W) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(G − 2G) ? (H − 2H)@ (I − 2I)A d(

G

_
,
H

_
,
I

_
) dGdHdI, (6)

= _?+@+A+3`?,@,A (W). (7)

So,
Z ?,@,A =

`?,@,A

(`0,0,0)1+(?+@+A )/3
(8)

is an invariant moment form for W under uniform scaling and translation.

2. Sensitivity index with respect to moments
Unlike physics, which are mostly scale quantities, the moment of any order is a vector quantity composed of multiple

term with different order of each of the ?-, @- and A-th component. For instance, there are six different moments of
second order:

[Z2,0,0 (W), Z0,2,0 (W), Z0,0,2 (W), Z1,1,0 (W), Z1,0,1 (W), Z0,1,1 (W)] . (9)

All the terms in moment-vector MB represents W up to BCℎ order. Therefore, we first construct a sensitivity matrix,
shown in Eq. (10), which contains the sensitivity indices of all parameters in X with respect to all terms of MB .

IB =


�
0,0,0
1 �

1,0,0
1 . . . �

?,0,0
1 �

?,1,0
1 . . . �

?,@,0
1 �

?,@,1
1 . . . �

?,@,A

1
�
0,0,0
2 �

1,0,0
2 . . . �

?,0,0
2 �

?,1,0
2 . . . �

?,@,0
2 �

?,@,1
2 . . . �

?,@,A

2
...

...
. . .

...
...

. . .
...

...
. . .

...

�
0,0,0
= �

1,0,0
= . . . �

?,0,0
= �

?,1,0
= . . . �

?,@,0
= �

?,@,1
= . . . �

?,@,A
=


(10)

All moments in MB has the same nature when it comes to representing geometry. Therefore, the overall sensitivity
index, IB

:
, of an : Cℎ parameter is evaluated by summing its sensitivity indices with respect to all the moments in MB as

IB: =

B∑
?=0

B∑
@=0

B∑
A=0

F
?,@,A

:
, ∀: ∈ {1, 2, . . . , =}, (11)

where

F
?,@,A

:
=

{
�
?,@,A

:
if ? + @ + A ≤ B

0 otherwise
. (12)

To ease the visual analysis of the sensitivity indices they are normalised to have a unit norm as:

IB: ↦→
IB
:∑=

:=1 IB:
. (13)

Eq. 13 give sensitivity bounded between 0 and 1.0. Parameters having an index value close to 1.0 have more impact
on the variability of QoI’s. After obtaining the sensitivity indices, the total = parameters are divided into two subsets
containing < significant and = − < insignificant parameters. The significant parameters have a sensitivity index greater
or equal to the significant threshold, n . For complex analyses, n = 0.05 is widely used [20].
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3. Optimisation
Once a set of < significant parameters are identified, they are first used to construct an <-dimensional sensitivities

space, X" ⊆ R<, which is then re-sampled to build a dataset along with the design’s functional QoI. This dataset is
used to construct a surrogate model, which is then connected with an optimiser to explore the significant design space,
coupled with the surrogate model, for an optimal design.

III. Test Case
The proposed method is demonstrated for the hull-form optimisation of the DTMB 5415 model (see Fig. 1), an

early and open to the public version of the USS Arleigh Burke destroyer DDG 51, extensively used as an international
benchmark for shape optimisation problems [21, 22]. Table 1 summarises the main characteristics of the hull and test
conditions.

Fig. 1 CAD geometry of DTMB 5415 naval ship model used as test case for the proposed approach.

Table 1 DTMB 5415 original (model scale) hull main particulars.

Quantity Symbol Unit Value

Displacement ∇ m3 0.549
Length between perpendiculars !pp m 5.720
Beam � m 0.760
Draft ) m 0.248
Longitudinal center of gravity LCG m 2.884
Vertical center of gravity VCG m 0.056
Water density d kg/m3 998.5
Kinematic viscosity a m2/s 1.09E-6
Gravity acceleration 6 m/s2 9.803
Froude number Fr – 0.250

The optimisation aims to reduce the (model-scale) calm-water wave resistance coefficient (2F ) at Froude number
equal to 0.25.

A. Shape Modification Method
The shape modification is defined using a recursive combination of = = 27 shape modification vectors over a

hyper-rectangle embedding the demi hull:

78 (') : A = [0, !Z1 ] × [0, !Z2 ] × [0, !Z3 ] ∈ R3 −→ R3, (14)

with 8 = 1, . . . , =. Specifically,
%(' , x) = %" , (15)

where

%8 (' , x) = G878 ('), with

{
' = ' + %8−1

%1 = 0
(16)
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The coefficients {G8 , 8 = 1, . . . , = ∈ R} are the design parameters and forms a 27−dimensional initial (original) design
space X. For modification the shape functions are defined as:

78 (') :=
3∏
9=1

sin
(
08 9cZ 9

!Z 9
+ A8 9

)
e@ (8) . (17)

In Eq. (17), {08 9 , 9 = 1, 2, 3} ∈ R define the order of the function along 9-th axis; {A8 9 , 9 = 1, 2, 3} ∈ R are the
corresponding spatial phases; {!Z 9 , 9 = 1, 2, 3} ∈ R are the hyper-rectangle edge lengths; e@ (8) is a unit vector.
Modifications are applied along Z1, Z2, or Z3, with @(8) = 1, 2, or 3 respectively. Details of setting parameters can be
found in [23].

IV. Results and Discussion
In this section, we first discuss the sensitivity analysis results performed with respect to M2 and 2F along with the

correlation between the results. Afterwards, we present the results of the surrogate modelling and the optimisation
performed in the sensitivity spaces evaluated with M2 and 2F .

A. Sensitivity Analysis
First, a 27-dimensional design space is created with original = = 27 design parameters to commence the sensitivity

analysis, which was sampled using Monte-Carlo sampling with ( = 9000 samples. Afterwards, second-order moment
invariants (M2) and wave-resistance coefficient (2F ) of design were evaluated, and two different datasets were created,
first containing the design parameter values as the dependent variable and 2F as independent variables. 2F values are
obtained using the code WARP (Wave Resistance Program), developed at CNR-INSEAN. Wave resistance computations
are based on linear potential flow theory using Dawson (double-model) linearisation [24]. The second dataset is
composed of design parameters and M2 as independent variables. Sobol’s global sensitivity analysis is performed using
both datasets, whose results are shown in Figure 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Parameters

0

0.02
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0.12

0.14

S
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ti
v
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d
ex

(I
2 k
)

Second order moment invariants
cw

Fig. 2 Sensitivity indices all 27 design parameters obtained using Eq. (13) with respect to 2F and second order
moment invariants.

To select the set of < sensitive parameters the significant threshold set to n = 0.05. It can be seen that in case of 2F ,
seven out of 27 parameters, -4, -8, -14, -15, -17, -22 and -26 has the sensitivity index greater than n and thus regarded
as the most sensitive parameters with respect to 2F . Among these parameters, -14, -8 and -15 have substantially high
sensitivity index and -17, -22 and -26 have the sensitivity index close to n . In case of M2, also in total seven parameters,
-3, -4, -8, -14, -15, -24 and -26, have sensitivity index higher than n . It is interesting to note that out of these seven
sensitive parameters, five of them, -4, -8, -14, -15 and -26, are also sensitive in case of 2F . More importantly, the
parameters, -4, -14, -8 and -15, are the top four sensitive parameters with respect to both 2F and moments. Using the
top seven parameters sensitive to 2F and M2, two different seven-dimensional design spaces, X2F and X" , are created,
respectively.
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Table 2 Error values obtained during the training of surrogate models 62F and 6" .

Surrogate models 62F 6"

Dimensions 7 7
Cross-validation-MSE 0.2683 0.2716
'2 0.9595 0.9576

B. Surrogate Modelling and Optimisation
To initiate optimisation, we first construct two surrogate models, 62F and 6" one in a design space constructed with

the set significant parameters identified with 2F (X2F ) and other with parameters identified significant for M2 (X" ). For
constructing the surrogate model, we utilised Gaussian process regression (GPR), which is a non-parametric Bayesian
approach [25], which have been used in different design applications [26]. It maps the nonlinear and globally coupled
relationship between inputs and outputs sampled from a theoretically infinite-dimensional normal distribution and any
finite number of samples in the input space, which follow a corresponding joint (multivariate) Gaussian distribution. The
main advantages of GPR over other modelling techniques are, it can: (1) map relationship between inputs and outputs
with small data size and, (2) easily handle noise in the data, thus, avoid over-fitting, and (3) optimise hyper-parameters
from training data to increase the fit accuracy. The '2 and cross-validation mean squared error (MSE) values for both
models are shown in the Table 2.

Afterwards, two different optimisation experiments are performed to optimise the parent hull in order to reduce 2F .
First, the optimisation is performed in X2F and design were during this optimisation are evaluated with the surrogate
model 62F . The second optimisation is carried out in X" , and during the exploration of this space, designs were
evaluated with the surrogate model 6" . For optimisation, we utilised the Jaya Algorithm (JA) [27], which is a simple yet
effective meta-heuristic optimisation technique whose performance has been proven in various engineering applications.
As JA is a stochastic meta-heuristic technique, which may provide different results in each run, 100 different optimisation
runs were performed. In each run, a total of 1500 iterations were conducted. Figure 3 shows the average, maximum and
minimum values of 2F during 100 runs performed in both design spaces.

0 10 20 30 40 50 60 70 80 90 100
Iterations

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

c w

#10-4

Average cw from Xcw

Average cw from XM

Max & min cw from Xcw

Max & min cw from XM

Fig. 3 Plots showing the average, aximum and minimum values of 2F versus number of optimisation iterations
performed in -2F and -" over 100 optimisation runs.

Figure 4 show the designs generated form X2F and X" at the end of the optimisation, whose 2F values are
5.2241E-4 and 5.3578E-4, respectively. It is interesting to note that both designs have similar shapes, especially for the
part below the waterline. Their 2F values are also close to each other, with a difference of only 2.5589% in terms of
absolute percentage error.

The computational cost to perform sensitivity analysis with respect to 2F and M2 and to perform optimisation in
X2F and X" is approximately 375 and 9.5 hours, respectively. This shows that performing sensitivity analysis with

7



Optimised


Original


Optimised


Original


(a)
 (b)


Waterline


Fig. 4 Comparison between the baseline design and optimised designs obtained from the lower-dimensional
design spaces, X2F and X" .

geometric moments can estimate the parameters’ sensitivity concerning physics, at least in hydrodynamic analysis, with
extensively reduced computational cost.

V. Conclusion & Final Paper Contents
This work describes our quest to support computationally demanding physical models with computationally efficient

geometric quantities such as geometric moments and their invariants. Using these geometric quantities, we proposed
a method to expedite the parametric sensitivity analysis in the context of shape optimisation of 3D free-form shapes
such as ship hulls. The selection of geometric properties is motivated by the fact that the moments of solid shapes
are intrinsic properties of their underlying shape that can provide essential design indications to facilitate designers
in Computer-aided Design. Computing moments is also vital for physics-based simulations that help in improving
realism in animations. To prove if geometric moments can benefit designers as a prior check on the sensitivity of
parameters, we performed two different PSA; first with wave-resistance coefficient (2F ), which is a physical property
and then with second-order geometric moment invariants (M2). The results showed a good correlation between the
sensitive parameters obtained from both experiments. Afterwards, two different design spaces were constructed, one
with sensitive parameters obtained with 2F and the other with moments. Shape optimisation is performed in both
spaces in connection with the surrogate models. Final optimisation results showed that the design generated from both
spaces has similar features, and 2F values are close with only 2.5589% of difference.

As future work, we would like to study the effect of higher-order geometric moments on the sensitivity of parameters,
specifically third-order geometric moment invariants (M3) as similar to 2F it is primarily affected by the variation in
shape along its longitudinal direction.
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