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Inferring topology from data

Part 1 focuses on the computation of a simplicial 
complex which reproduces the homotopy type.


In part 2 we consider the computation of homeomorphic 
simplicial complexes, in other words Triangulations
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Topological faithful reconstruction and 
topological inference
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?

?
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Topological faithful reconstruction and 
topological inference
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Topological faithful reconstruction and 
topological inference

Reconstruction beyond visual realism: 
understanding the topology



6

Topological faithful reconstruction and 
topological inference

Reconstruction beyond visual realism: 
understanding the topology
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Topological faithful reconstruction and 
topological inference

Reconstruction beyond visual realism: 
Topology driven segmentation



Motivation: TDA
(Topological Data Analysis)

Manifold 
reconstruction

Topological inference 
(topology learning)

topology 
computation

Data= movie/pictures

Robot configuration space

MANIFOLD LEARNING
input
: output:

For example as 
simplicial complex 
= triangulation
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To persistent homology 
(barcode/diagram)

from raw data

Motivation: TDA
(Topological Data Analysis)
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What does it mean to recover the topology ? 
(of  subsets of euclidean space)?

• Computing a finite representation, typically a simplicial complex 
which is homeomorphic = triangulation (or meshing)

• Computing a finite representation that shares the homotopy type

• Computing some topological invariants, homology and 
persistent homology



Inferring topology from data
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Part 1 focuses on the computation of a simplicial complex 
which reproduces the homotopy type.
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What does it mean to recover the topology ? 
(of  subset of euclidean space)

• Computing a finite representation, typically a simplicial complex 
which is homeomorphic = triangulation (or meshing)
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What does it mean to recover the topology ? 
(of  subset of euclidean space)

• Computing a finite representation, typically a simplicial complex 
which is homeomorphic = triangulation (or meshing)

≠ ≠ ≠=
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What does it mean to recover the topology ? 
(of  subset of euclidean space)

• Computing a finite representation, typically a simplicial complex 
which is homeomorphic = triangulation (or meshing)

≠ =≠



What does it mean to recover the topology ? 
(of  subset of euclidean space)?

• Computing a finite representation that shares the homotopy type

≠== =

Homotopy type of a point Homotopy type of a circle
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Homotopy type
(thanks to Frederic Chazal)
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H(0, x) =

H(t, x) =

H(1, x) = 0

H(t, x) := (1 − t)x



Homotopy type
(thanks to Frederic Chazal)

17

H(0, x) =

H(t, x) =

H(1, x) = 0

X Y
g

   f



Homotopy type
A particular case : deformation retract

X Y
 f

 =inclusiong

 f
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∀x ∈ D, f(x) = p

D = {(x, y) ∈ ℝ2 ∣ x2 + y2 ≤ 1}    D

g(p) = 0 ∈ D

0

Homotopy type

X Y
g

   f

    {p}D
f
g
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∀x ∈ D, f(x) = p

D = {(x, y) ∈ ℝ2 ∣ x2 + y2 ≤ 1}    D

g(p) = 0 ∈ D

0

f ∘ g = 1{p}

H(0, x) = 1D

g ∘ f = H(1, x)

Homotopy type

H(0, x) =

H(t, x) =

H(1, x) = 0

X Y
g

   f

H(t, x) = (1 − t)x

    {p}D
f
g



0- 1- 2- 3-simplex     etc…

…

(Abstract) simplicial complexes 
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An simplicial complex is a collection of simplices glued along common faces:

A    -simplex is a set of verticesk k + 1

…such that if a simplex is in the complex, all its faces (i.e. its non 
empty subsets) are also in the complex.



Simplicial complexes 
(geometric realization)
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verticesA    -simplex is a set of k k + 1

A simplicial complex defines a topological space by associating 
to each   -simplex the convex hull of            points in general 
position in Euclidean space.

This topological space is called its geometric realization.


k k + 1

…
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Nerve Theorem
(finite, convex case)



ech complex and     -complex 
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ech complex and     -complex 
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Equivalently:



ech complex and     -complex 

26



ech complex and     -complex 
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By the nerve Theorem, both  
have the homotopy type of the corresponding union of balls



ech complex and     -complex 
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Intuition: under some conditions, it may retrieve 
also the homotopy type of the sampled object

By the nerve Theorem, both  
have the homotopy type of the corresponding union of balls



Vietoris-Rips complex 
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r

2r



An embedded manifold M A Point cloud  sampling S M A simplicial complex  
built upon , typically a 
parametrized Cech or Rips,

K
S

K ≃ M ?
radius = Cech 

parameter

K
S

(i.e. is   homotopy equivalent to  ?)K M
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Is it possible to capture the topology of a 
``shape’’ from a finite sampling ?



An embedded shape M A Point cloud  sampling S M A simplicial complex  
built upon , typically a 
parametrized Cech or Rips,

K
S

K ≃ M ?
radius = Cech 

parameter

K
S

(i.e. is   homotopy equivalent to  ?)K M

with some quantified 
regularity

with a sampling density 
related to the shape 
regularity with a parameter related 

to the shape regularity 
and sampling density

31

Is it possible to capture the topology of a 
``shape’’ from a finite sampling ?



Regularity measures

Critical function

closed 
 set S

a

b

Metric distorsion

Convexity deffect

Reach and medial axis
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(smooth objects)

(not necessarily 
smooth)



Medial Axis and Reach

closed 
 set C

 (Euclidean space )ℝn
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Medial Axis and Reach

closed 
 set C

p

point in C closest to p

 (Euclidean space )ℝn
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Medial Axis and Reach

closed 
 set C

p

points in C closest to p

 (Euclidean space )ℝn
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Medial Axis and Reach

closed 
 set C

Medial Axis

 (Euclidean space )ℝn
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Medial Axis and Reach

Reach

Medial Axis

closed 
 set

Reach of a closed set C  
« infimum of distances between C and its medial axis»
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Medial Axis and Reach

Reach

Medial Axis

closed 
 set

Reach of a closed set C  
« infimum of distances between C and its medial axis»

• Introduced by Herbert Federer (Curvature Measures 
1959): class of sets with positive reach allow to 
define curvature measures beyond smooth case.
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Medial Axis and Reach

Reach

Medial Axis

closed 
 set

Reach of a closed set C  
« infimum of distances between C and its medial axis»

• Introduced by Herbert Federer (Curvature Measures 
1959): class of sets with positive reach allow to 
define curvature measures beyond smooth case.

• Used again in the context of manifold reconstruction 
with topological guarantees : Amenta et al. (lfs), 
Boissonnat et al., Dey et al., Niyogi et al. 
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Notation: offset of a set

40

We denote by S ⊕ B(ε) or sometime S⊕ε
the Minkowski sum of      and a the ball            of radius S B(ε) ε
In other words the    -offset of Sε
In other words,     « inflated » of      : εS

S ⊕ B(ε) = S⊕ε := ⋃
x∈S

B(x, ε) = {y ∈ ℝd ∣ d(y, S) ≤ ε}
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Reconstruction Theorem for set with positive reach
R ≤ reach(S)

Reach

Medial Axis

closed 
 set

R ≤
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Reconstruction Theorem for set with positive reach
S ⊂ P ⊕ B(ϵ) and P ⊂ S ⊕ B(δ)

Reach

Medial Axis

closed 
 set

R ≤

SS

R ≤ reach(S)
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Reconstruction Theorem for set with positive reach
S ⊂ P ⊕ B(ϵ) and P ⊂ S ⊕ B(δ)

Reach

Medial Axis

closed 
 set

R ≤

SS

R ≤ reach(S)

P
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Reconstruction Theorem for set with positive reach

Reac

Medial Axis

close

R ≤

r = 1/2(R + ε)

General set of positive reach:

Weaker conditions for manifold of positive reach:

These conditions are tight for retrieving the homology 
and homotopy by some offset of the sample

R ≤ reach(S) S ⊂ P ⊕ B(ϵ) and P ⊂ S ⊕ B(δ)R ≤ reach(S)

r = (R + ε)/2
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Reconstruction Theorem for set with positive reach

These conditions are tight for retrieving the homology 
and homotopy by some offset of the sample

S ⊂ P ⊕ B(ϵ) and P ⊂ S ⊕ B(δ)R ≤ reach(S)



The reach can be alternatively defined by 
the metric distortion

closed 
 set S

a

b

r
a b

𝕊1

(Boissonnat, L, Wintraecken, 2017)

|a − b |
dS(a, b)

|a − b |

dS(a, b)
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Metric distortion  as measure of regularity of a set  𝒟S S
(Boissonnat, L, Wintraecken, 2017)

Metric distortion  as measure 
of regularity of a set  ? 

𝒟S
S

t → 𝒟S(t) = sup
∥a−b∥≤t

dS(a, b)

Condition above can be rewritten as:

According to  Gromov et Al.*:

*Metric Structures for Riemannian and Non-Riemannian Spaces, M. Gromov, M. Katz, P. Pansu, S.Semmes  

  is simply connected𝒟S(t) ≤
π
2

t ⇒ S

  is contractible𝒟S(t) ≤
2 2

π
t ⇒ S

 𝒟S(t) ≤ 2r arcsin
t

2r
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Beyond the reach

Medial Axis

S reach(S) = 0 !

But for non smooth manifolds the reach is 0 !
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Beyond the reach
Outside the medial axis, the distance fonction  
is differentiable and its gradient has unit norm:

x ↦ R(x)

R(x) x

∥∇(x)∥ = 1
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Beyond the reach

x

R(x)
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Beyond the reach

R(x)

F(x)

x



52

Beyond the reach
Outside the medial axis, the distance fonction  
is differentiable and its gradient has unit norm:

x ↦ R(x)

R(x) x

∥∇(x)∥ = 1

F(x) = 0
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Beyond the reach

F(x) = R(x)

x
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critical function

K

∥∇(x)∥ = 1 −
F(x)2

R(x)2
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Beyond the reach

R(x)

F(x)

x ∥∇(x)∥ = 1 −
F(x)2

R(x)2
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Beyond the reach

F(x) = R(x)

x

∥∇(x)∥ = 1 −
F(x)2

R(x)2
= 0



critical function

(Chazal, Cohen-Steiner, L, 2006)

dS(x)

∇S(x)

x
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We study the properties of the  sublevel set of the distance function  to the set (offsets).

• The distance function is not smooth but admit a generalized Gradient  (Clarke gradient)


dS
∇S

S



critical function

(Chazal, Cohen-Steiner, L, 2006)

∇S(x)

∇S(x)

r
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χS(r) =def. inf
ds(x)=r

∥∇S(x)∥
Value of critical function  for offset  : χS r

1

χS(r)

r
S⊕r

We study the properties of the  sublevel set of the distance function  to the set (offsets).

• The distance function is not smooth but admit a generalized Gradient  (Clarke gradient)


dS
∇S



χS(r) =def. inf
ds(x)=r

∥∇S(x)∥ = 1

(Chazal, Cohen-Steiner, L, 2006)

Value of critical function  for offset  : χS r

∇S(x)

∇S(x)

r
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1

χS(r)

r

critical function

S⊕r

We study the properties of the  sublevel set of the distance function  to the set (offsets).

• The distance function is not smooth but admit a generalized Gradient  (Clarke gradient)


dS
∇S



critical function

χS(r) =def. inf
ds(x)=r

∥∇S(x)∥ = 1

(Chazal, Cohen-Steiner, L, 2006)

Value of critical function  for offset  : χS r

∇S(x)

∇S(x)

r
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1

χS(r)

r
S⊕r

We study the properties of the  sublevel set of the distance function  to the set (offsets).

• The distance function is not smooth but admit a generalized Gradient  (Clarke gradient)


dS
∇S



critical function

χS(r) =def. inf
ds(x)=r

∥∇S(x)∥ < 1

(Chazal, Cohen-Steiner, L, 2006)

Value of critical function  for offset  : χS r

reach

∇S(x)

∇S(x)
∇S(x)

r
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1

χS(r)

r
S⊕r

We study the properties of the  sublevel set of the distance function  to the set (offsets).

• The distance function is not smooth but admit a generalized Gradient  (Clarke gradient)


dS
∇S



critical function

(Chazal, Cohen-Steiner, L, 2006)

χS(r) =def. inf
ds(x)=r

∥∇S(x)∥ < 1
Value of critical function  for offset  : χS r

∇S(x)

∇S(x)
∇S(x)

r
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1

χS(r)

r
S⊕r

We study the properties of the  sublevel set of the distance function  to the set (offsets).

• The distance function is not smooth but admit a generalized Gradient  (Clarke gradient)


dS
∇S



(Chazal, Cohen-Steiner, L, 2006)

χS(r) =def. inf
ds(x)=r

∥∇S(x)∥ < 1
Value of critical function  for offset  : χS r

∇S(x)

∇S(x)
∇S(x)

critical function

r

63

1

χS(r)

r
S⊕r

We study the properties of the  sublevel set of the distance function  to the set (offsets).

• The distance function is not smooth but admit a generalized Gradient  (Clarke gradient)


dS
∇S



critical function

χS(r) =def. inf
ds(x)=r

∥∇S(x)∥ = 0

(Chazal, Cohen-Steiner, L, 2006)

Value of critical function  for offset  : χS r

Topology changes !

Critical point of 
distance function.∇S(x)

∇S(x)

∇S(x) = 0

r
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1

χS(r)

r
S⊕r

We study the properties of the  sublevel set of the distance function  to the set (offsets).

• The distance function is not smooth but admit a generalized Gradient  (Clarke gradient)

•  is somewhat similar to a Morse function: topological changes arise only when 

dS
∇S

dS χS(r) = 0



Beyond the reach

(Chazal, Cohen-Steiner, L, 2006)

χS(r) =def. inf
ds(x)=r

∥∇S(x)∥ < 1
Value of critical function  for offset  : χS r Critical point of 

distance function.

∇S(x)

∇S(x)

∇S(x)

r
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1

χS(r)

r
S⊕r

We study the properties of the  sublevel set of the distance function  to the set (offsets).

• The distance function is not smooth but admit a generalized Gradient  (Clarke gradient)

•  is somewhat similar to a Morse function: topological changes arise only when 

dS
∇S

dS χS(r) = 0



(Chazal, Cohen-Steiner, L, 2006)

χS(r) =def. inf
ds(x)=r

∥∇S(x)∥ < 1
Value of critical function  for offset  : χS r Critical point of 

distance function.

∇S(x)

∇S(x)

∇S(x)

r
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1

χS(r)

r

critical function

S⊕r

We study the properties of the  sublevel set of the distance function  to the set (offsets).

• The distance function is not smooth but admit a generalized Gradient  (Clarke gradient)

•  is somewhat similar to a Morse function: topological changes arise only when 

dS
∇S

dS χS(r) = 0



critical function

χS(r) =def. inf
ds(x)=r

∥∇S(x)∥ = 0

(Chazal, Cohen-Steiner, L, 2006)

Value of critical function  for offset  : χS r

Topology changes !

Critical points of 
distance function.

∇S(x)

∇S(x)

∇S(x)

∇S(x) = 0

r
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1

χS(r)

r
S⊕r

We study the properties of the  sublevel set of the distance function  to the set (offsets).

• The distance function is not smooth but admit a generalized Gradient  (Clarke gradient)

•  is somewhat similar to a Morse function: topological changes arise only when 

dS
∇S

dS χS(r) = 0



critical function

(Chazal, Cohen-Steiner, L, 2006)

χS(r) =def. inf
ds(x)=r

∥∇S(x)∥ < 1
Value of critical function  for offset  : χS r Critical points of 

distance function.

∇S(x)

∇S(x)

∇S(x)

r
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1

χS(r)

r
S⊕r

We study the properties of the  sublevel set of the distance function  to the set (offsets).

• The distance function is not smooth but admit a generalized Gradient  (Clarke gradient)

•  is somewhat similar to a Morse function: topological changes arise only when 

dS
∇S

dS χS(r) = 0
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2
2

χS(r) =def. inf
ds(x)=r

∥∇S(x)∥

critical function
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2
2

χS(r) =def. inf
ds(x)=r

∥∇S(x)∥

2
2

critical function
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2
2

2
2

χS(r) =def. inf
ds(x)=r

∥∇S(x)∥

critical function
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dH(X, Y ) := max ( sup
x∈x

d(x, Y ), sup
y∈Y

d(y, X))

d(x, Y ) := sup
y∈Y

d(x, y)

dH(X, Y ) = sup {ρ ≥ 0 ∣ X ⊂ Y⊕ρ and Y ⊂ X⊕ρ}

Where:

Equivalently:

= ∥d( . , X) − d( . , Y )∥∞ = sup
z∈ℝd

|d(z, X) − d(z, Y ) |

Hausdorff distance
between compact sets
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critical function

2
2

2
2

KK′ 
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critical function

2
2

2
2

KK′ 
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critical function

2
2

2
2

K′ K



Homotopy reconstruction of non smooth sets
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dH(K′ , K) < ε ⇒ K⊕α ⊂ K′ ⊕α+ε ⊂ K⊕α+2ε
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dH(X, Y ) := max ( sup
x∈x

d(x, Y ), sup
y∈Y

d(y, X))

d(x, Y ) := sup
y∈Y

d(x, y)

dH(X, Y ) = sup {ρ ≥ 0 ∣ X ⊂ Y⊕ρ and Y ⊂ X⊕ρ}

Where:

Equivalently:

= ∥d( . , X) − d( . , Y )∥∞ = sup
z∈ℝd

|d(z, X) − d(z, Y ) |

Hausdorff distance
between compact sets
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Inclusion commutes 

Homotopy reconstruction of non smooth sets

dH(K′ , K) < ε ⇒ K⊕α ⊂ K′ ⊕α+ε ⊂ K⊕α+2ε

K⊕α K⊕α+ε K⊕α+2ε

K′ ⊕α K′ ⊕α+ε K′ ⊕α+2ε
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Inclusion commutes 

Horizontal inclusions are homotopy equivalences 

Homotopy reconstruction of non smooth sets

2ε 2ε

dH(K′ , K) < ε ⇒ K⊕α ⊂ K′ ⊕α+ε ⊂ K⊕α+2ε

K⊕α K⊕α+ε K⊕α+2ε

K′ ⊕α K′ ⊕α+ε K′ ⊕α+2ε
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=> all inclusions are homotopy equivalences 

Homotopy reconstruction of non smooth sets

dH(K′ , K) < ε ⇒ K⊕α ⊂ K′ ⊕α+ε ⊂ K⊕α+2ε

K′ ⊕α K′ ⊕α+ε K′ ⊕α+2ε

K⊕α K⊕α+ε K⊕α+2ε
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=> all inclusions are homotopy equivalences 

Homotopy reconstruction of non smooth sets

dH(K′ , K) < ε ⇒ K⊕α ⊂ K′ ⊕α+ε ⊂ K⊕α+2ε

K′ ⊕α K′ ⊕α+ε K′ ⊕α+2ε

K⊕α K⊕α+ε K⊕α+2εK



Cech complex, 
non-smooth

By quantifying the stability of the critical function with respect 
to the change in Hausdorff distance we get:

When a simplicial complex over a point sample 
recovers the homotopy type
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Beyond the reach
Convexity defect approach (Attali, L, Salinas, 2011)

cX(t) = dH(Centers(X, t), X) hX(t) = dH(Hull(X, t), X)
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Beyond the reach
Convexity defect approach (Attali, L, Salinas, 2011)

cX(t) = dH(Centers(X, t), X) hX(t) = dH(Hull(X, t), X)

84



By quantifying the stability of the convexity defect with respect 
to the change in Hausdorff distance we get:

For Rips Complex: a kind of geometric and effective (i.e. 
quantified) version of a result by J. Latschev (2001)

When a simplicial complex over a point sample 
recovers the homotopy type
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reach

Critical function & 
-reach

Convexity defects

When a simplicial complex over a point sample 
recovers the homotopy type

86

μ
(optimal)

(best known constant for Vietoris-Rips complexes)

(best known constant for Cech complexes)



Part 2: 

Triangulation by minimal chains
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Part 2: 

Triangulation by minimal chains

Part 1 has focused on the computation of a simplicial 
complex which reproduce the homotopy type.


In part 2 we consider the computation of homeomorphic 
simplicial complexes, in other words Triangulations
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Part 2: 

Triangulation by minimal chains

89



Minimal homology notions:
Algebraic formulation of topological properties

90

α

β

γ

δ

ε
a

b

c

d
e

f

Is there a path between α εand ?



Minimal homology notions:
Algebraic formulation of topological properties
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α

β

γ

δ

ε
a

b

c

d
e

f

Is there a path between α εand ?
A (linear) algebra formulation of this question ?



Minimal homology notions:
Algebraic formulation of topological properties
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Vector space of 0-chains:

C0 = {Yα α + Yβ β + Yγ γ + Yδ δ + Yε ε ∣ Y ∈ ℝ5}

α

β

γ

δ

ε



Minimal homology notions:
Algebraic formulation of topological properties
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Vector space of 0-chains:

α

β

γ

δ

ε
a

b

c

d
e

f

Vector space of 1-chains:

α

β
−a

C0 = {Yα α + Yβ β + Yγ γ + Yδ δ + Yε ε ∣ Y ∈ ℝ5}
(basis = 0-simplices)

C1 = {Xa a + Xb b + Xc c + Xd d + Xe e + Xf f ∣ X ∈ ℝ6}
(basis = ``oriented’’ 1-simplices)



Minimal homology notions:
Algebraic formulation of topological properties
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Boundary linear operator:

α

β
a ∂a = α − β

α

β
−a ∂(−a) = − ∂a = β − α

α

β

γ

δ

ε
a

b

c

d
e

f

∂ : C1→ C0

C1 = {Xa a + Xb b + Xc c + Xd d + Xe e + Xf f ∣ X ∈ ℝ6}
(basis = ``oriented’’ 1-simplices)

C0 = {Yα α + Yβ β + Yγ γ + Yδ δ + Yε ε ∣ Y ∈ ℝ5}
(basis = 0-simplices)



Minimal homology notions:
Algebraic formulation of topological properties

95

∂(−a + c + f ) = (β − α) + (δ − β) + (ε − δ)
= ε − α

Is there a path between α εand ?
Yes: −a + c + f

∂ : C1→ C0

α

β

γ

δ

ε
a

b

c

d
e

f



Minimal homology notions:
Algebraic formulation of topological properties

96

There a path between α εand

⟺ ∃𝒳 ∈ C1 ∣ ∂𝒳 = ε − α
α

β

γ

δ

ε
a

b

c

d
e

f

𝒳 ← −a + c + f



Minimal homology notions:
Algebraic formulation of topological properties

97

1 0 0 0 0 0
-1 1 -1 0 0 0
0 -1 0 1 0 0
0 0 1 -1 -1 -1
0 0 0 0 1 1

∂ =
α
β
γ
δ
ε

a b c d e f

α

β

γ

δ

ε
a

b

c

d
e

f

There a path between α εand

⟺ ∃𝒳 ∈ C1 ∣ ∂𝒳 = ε − α
α

β

γ

δ

ε
a

b

c

d
e

f

𝒳 ← −a + c + f



Minimal homology notions:
Algebraic formulation of topological properties

There a path between α εand

⟺ ∃𝒳 ∈ C1 ∣ ∂𝒳 = ε − α

⟺ ∃𝒳 ∈ C1 ∣

1 0 0 0 0 0
-1 1 -1 0 0 0
0 -1 0 1 0 0
0 0 1 -1 -1 -1
0 0 0 0 1 1

Xa
Xb

Xc
Xd

Xe

Xf

-1
0
0
0
1

=

α

β

γ

δ

ε
a

b

c

d
e

f



Minimal homology notions:
Algebraic formulation of topological properties
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There a path between α εand

⟺ ∃𝒳 ∈ C1 ∣ ∂𝒳 = ε − α

⟺ ∃𝒳 ∈ C1 ∣

1 0 0 0 0 0
-1 1 -1 0 0 0
0 -1 0 1 0 0
0 0 1 -1 -1 -1
0 0 0 0 1 1

Xa
Xb

Xc
Xd

Xe

Xf

-1
0
0
0
1

=

α

β

γ

δ

ε
a

b

c

d
e

f

𝒳 ← −a + c + f

1 0 0 0 0 0
-1 1 -1 0 0 0
0 -1 0 1 0 0
0 0 1 -1 -1 -1
0 0 0 0 1 1

-1
0
1
0
0
1

-1
0
0
0
1

=

α

β

γ

δ

ε
a

b

c

d
e

f



Minimal homology notions:
Algebraic formulation of topological properties
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There a path between α εand

⟺ ∃𝒳 ∈ C1 ∣ ∂𝒳 = ε − α

⟺ ∃𝒳 ∈ C1 ∣

1 0 0 0 0 0
-1 1 -1 0 0 0
0 -1 0 1 0 0
0 0 1 -1 -1 -1
0 0 0 0 1 1

Xa
Xb

Xc
Xd

Xe

Xf

-1
0
0
0
1

=

α

β

γ

δ

ε
a

b

c

d
e

f

𝒳 ← −a + c + d − e

1 0 0 0 0 0
-1 1 -1 0 0 0
0 -1 0 1 0 0
0 0 1 -1 -1 -1
0 0 0 0 1 1

-1
0
1
1
-1
0

-1
0
0
0
1

=

α

β

γ

δ

ε
a

b

c

d
e

f



Minimal homology notions:
Algebraic formulation of topological properties

∂1 : C1 → C0 :

∂1a = ∂1[α, β] = β − α

α β
a

−α β
a∂1( ) =

∂2 : C2 → C1 :

∂2 t = ∂2[α, β, γ] = [α, β] + [β, γ] + [γ, α] = − c + b − a

bc

β

α γa
t b−c

β

α γ−a
t) =∂2(

∂1 ∘ ∂2 = 0

(      : basis = ``oriented’’ 2-simplices)C2



Minimal homology notions:
Algebraic formulation of topological properties

∂2 t = − c + b − a

t1
t2

t3
t4

t5

t6

a

b

c

d

e

f t1
t2

t3
t4

t5

t6

a

b

c

d

e

f

∂2( ) =

∂2 (t1 + t2 + t3 + t4 + t5 + t6) = a + b + c + d + e + f

bc

β

α γa
t b−c

β

α γ−a
t) =∂2(

∂1 ∘ ∂2 = 0



Minimal homology notions:
Simplicial homology in a single slide !
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Hk =
ker ∂k

Im ∂k+1

Ck Ck−1Ck+1

∂k ∘ ∂k+1 = 0 Im ∂k+1 ⊂ ker ∂k⟺



Minimal homology notions:

104

Γ

∂1Γ = 0 ⇒ Γ ∈ ker ∂1

H1 =
ker ∂1

Im ∂2



Minimal homology notions:
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∂1Γ = 0 ⇒ Γ ∈ ker ∂1

H1 =
ker ∂1

Im ∂2

But... Γ ∈ Im ∂2

Γ = ∂2B
B

⇒ [Γ]Im ∂2
= 0



Minimal homology notions:
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Γ

∂1Γ = 0 ⇒ Γ ∈ ker ∂1

H1 =
ker ∂1

Im ∂2

Γ ∉ Im ∂2 ⇒ [Γ]Im ∂2
≠ 0



Minimal homology notions:

107

Γ

H1 =
ker ∂1

Im ∂2

Γ′ 



Minimal homology notions:
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Γ

∂1Γ = 0 ∂1Γ′ = 0 ⇒ Γ, Γ′ ∈ ker ∂1

H1 =
ker ∂1

Im ∂2

Γ′ 



Minimal homology notions:
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∂1Γ = 0 ∂1Γ′ = 0 ⇒ Γ, Γ′ ∈ ker ∂1

H1 =
ker ∂1

Im ∂2

Γ′ 

B
Γ−Γ′ = ∂2B



Minimal homology notions:
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∂1Γ = 0 ∂1Γ′ = 0 ⇒ Γ, Γ′ ∈ ker ∂1

H1 =
ker ∂1

Im ∂2

Γ − Γ′ ∈ Im ∂2

Γ′ 

B
Γ−Γ′ = ∂2B

⟺ [Γ]Im ∂2
= [Γ′ ]Im ∂2



Minimal homology notions:
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H1 =
ker ∂1

Im ∂2

Γ − Γ′ ∈ Im ∂2 ⟺ [Γ]Im ∂2
= [Γ′ ]Im ∂2

Γ′ 

B
Γ−Γ′ = ∂2B

are homologous cycles⟺ Γ and Γ′ 
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Γ

Minimal homology notions:
back to algorithms

Hk =
ker ∂k

Im ∂k+1



Fundamental class
(orientable and non-orientable, with/without boundary)

If  is a connected compact orientable -manifold, its -homology group is one 
dimensional and a generator of it is called the Fundamental class.

M d d

dim Hd(Md) = 1

113



Fundamental class
(orientable and non-orientable, with/without boundary)

If  is a connected compact orientable -manifold, its -homology group is one 
dimensional and a generator of it is called the Fundamental class.

M d d

dim Hd(Md, ℤ2) = 1

If the coefficients field is , this is also true 
for non-orientable (compact, connected) manifolds.

ℤ2 = ℤ/2ℤ
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Fundamental class
(orientable and non-orientable, with/without boundary)

If  is a connected compact orientable -manifold, its -homology group is one 
dimensional and a generator of it is called the Fundamental class.

M d d

For manifolds with boundaries, this generalizes with relative homology:

dim Hd(M, ∂M, ℤ2) = 1

dim Hd(Md, ℤ2) = 1

If the coefficients field is , this is also true 
for non-orientable (compact, connected) manifolds.

ℤ2 = ℤ/2ℤ

115



Remember:

116

r

2r



  contains a single non zero element.⇒ Hd(K)

In particular, under adequate sampling conditions and parameters,    ech 
or Vietoris-Rips complexes K share the homotopy type and therefore 
the d-homology of the complex. 
Which is then is one dimensional and reproduces the fundamental class 
of the manifold. 

Fundamental class

Hd(K, ℤ2) ≃ ℤ2⇒
117

ech

Rips



  contains a single non zero element.⇒ Hd(K)

Fundamental class

Hd(K, ℤ2) ≃ ℤ2⇒

118

But Homology classes are not geometric: we look for a particular 
simplicial chain representative of the homology class whose support 
could be homeomorphic to the sampled manifold:

We search for it as the minimum representative chain in the fundamental class



Two canonical problems

Given   find:β ∈ Cd−1(K, 𝔽 )

Γmin = min{Γ ∈ Cd(K, 𝔽 ), ∂Γ = β}

Minimal chain for a given boundary β

Given   find:α ∈ Cd(K, 𝔽 )

Γmin = min{α+∂ω, ω ∈ Cd+1(K, 𝔽 )}

Minimal chain homologous to α

dim(K) = 1

dim(K) = 2

119



Minimizing L2 norm  
=> harmonic form: 

L2 minima are not sparse

Minimal homology representative cycle 
(real coefficients)

n = 1

Minimal chain for a given boundary β

120

2

electrical resistanceRj =
(= electrical power)



L1 minima are sparse

Minimal homology representative cycle 
(real coefficients)

n = 1

Minimal chain for a given boundary β

(Path length)  Minimizing L1 norm : 
=> shortest path  

Sparsity

121

1



α

Γmin

αΓmin

∥Γ∥1 = length(Γ) = ∑ |Γ(τ) | length(τ)

Minimal homology representative cycle

Given   find:α ∈ Cd(K, ℤ2)

Γmin = min{α+∂ω, ω ∈ Cd+1(K, ℤ2)}

Minimal chain homologous to α

α α

Γmin
Γmin

∥Γ∥1 = area(Γ) = ∑ |Γ(τ) |area(τ)

( Thanks to T. Dey et Al. for the figures)

Minimality for  norm, typically « volumes»:L1

∥Γ∥1 = Vol(Γ) = ∑ |Γ(τ) |Vol(τ)

122



Minimal homology representative cycle

Hardness results 
(linear programming):

NP-Hard in general 
for coefficients in ℤ2

α

Γmin

α

α α

Γmin

Γmin
Γmin

Some related works on minimal homologous chain…L1

( Thanks to T. Dey et Al. for the figures)
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Minimal homology representative cycle

polynomial algorithm 
when total unimodularity 

of boundary operator

α

Γmin

α

α α

Γmin

Γmin
Γmin

Some related works on minimal homologous chain…L1

( Thanks to T. Dey et Al. for the figures)
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Hardness results 
(linear programming):



Given   find:β ∈ Cd−1(K, ℤ2)

Γmin = min{Γ ∈ Cd(K, ℤ2), ∂Γ = β}

Minimal chain for a given boundary β

Given   find:α ∈ Cd(K, ℤ2)

Γmin = min{α+∂ω, ω ∈ Cd+1(K, ℤ2)}

Minimal chain homologous to α

dim(K) = 1

dim(K) = 2

Our two canonical problems

 according to:

* norm, 
* lexicographic order.

min
L1

125



Given   find:β ∈ Cd−1(K, ℤ2)

Γmin = min{Γ ∈ Cd(K, ℤ2), ∂Γ = β}

Minimal chain for a given boundary β

Given   find:α ∈ Cd(K, ℤ2)

Γmin = min{α+∂ω, ω ∈ Cd+1(K, ℤ2)}

Minimal chain homologous to α

dim(K) = 1

dim(K) = 2
NP-hard in general (Chen, Freedman, 2011)


  (Cohen-Steiner, L, Vuillamy, 2019)𝒪(n3)

 according to:

* norm, 
* lexicographic order.

min
L1

Our two canonical problems
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Lexicographic order

127



Lexicographic order minimal 1-chain

s

t

Connect the some dots to form a path between  and s t

128



Objective: find path going through “densest” parts of the point cloud.

1D simplicial complex = Complete graph (= one edge by points pairs)

s

t

Lexicographic order minimal 1-chain
Connect the some dots to form a path between  and s t

129



arg min
∂Γ=s+t ∑

e∈Γ

length(e)

s

t

Lexicographic order minimal 1-chain

Classic graph problem:

Find minimal path for given edge 
weights (Dijkstra’s algorithm)

Objective: find path going through “densest” parts of the point cloud.

1D simplicial complex = Complete graph (= one edge by points pairs)

Connect the some dots to form a path between  and s t

𝑝 = 1

130



𝑝 = 2

s

targ min
∂Γ=s+t ∑

e∈Γ

length(e)2

Lexicographic order minimal 1-chain

Objective: find path going through “densest” parts of the point cloud.

1D simplicial complex = Complete graph (= one edge by points pairs)

Connect the some dots to form a path between  and s t

Classic graph problem:

Find minimal path for given edge 
weights (Dijkstra’s algorithm)

131



s

t

Pythagoras: a

c

b

∠acb >
π
2

⇒ ac2 + cb2 < ab2

Lexicographic order minimal 1-chain

Objective: find path going through “densest” parts of the point cloud.

1D simplicial complex = Complete graph (= one edge by points pairs)

Connect the some dots to form a path between  and s t

𝑝 = 2arg min
∂Γ=s+t ∑

e∈Γ

length(e)2
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𝑝 = 4

s

targ min
∂Γ=s+t ∑

e∈Γ

length(e)4

Lexicographic order minimal 1-chain

Objective: find path going through “densest” parts of the point cloud.

1D simplicial complex = Complete graph (= one edge by points pairs)

Connect the some dots to form a path between  and s t
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𝑝 = 8

s

targ min
∂Γ=s+t ∑

e∈Γ

length(e)8

Lexicographic order minimal 1-chain

Objective: find path going through “densest” parts of the point cloud.

1D simplicial complex = Complete graph (= one edge by points pairs)

Connect the some dots to form a path between  and s t

134



Behavior as   ?p → ∞

s

targ min
∂Γ=s+t ∑

e∈Γ

length(e)p

Lexicographic order minimal 1-chain

Objective: find path going through “densest” parts of the point cloud.

1D simplicial complex = Complete graph (= one edge by points pairs)

Connect the some dots to form a path between  and s t

135



Limit behavior as   ? : lexicographic order p → ∞
Assume no two edges have same length (generic condition):

Sort edges along decreasing length:    

                  , where w1 > w2 > … > wN wi = length(τi)

∃p ∈ ℕ, ∀i, wp
i > ∑

j>i

wp
j

Lexicographic order minimal 1-chain

Γ = τ1 + τ3 + …
Γ′ = τ1 + τ2 + …

w2

w1

w3

Γ Γ′ 

Γ ⊑lex Γ′ 
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masterfile.com/682-02892360

137

Lexicographic order minimal 1-chain

Which path is smaller in the lexicographic order ?

Analogy for lexicographic order: “Rock hopping"

Γ1

Γ2

137



Analogy for lexicographic order: “Rock hopping"

masterfile.com/682-02892360

Which path is smaller in the lexicographic order ?

138

Lexicographic order minimal 1-chain

Γ1

Γ2

Γ2 ⊑lex Γ1 !

138



Lexicographic order

    Γ1 ⊑lex Γ2 ⟺
def.

Γ1 = Γ2
or
σmax = max {σ ∈ Γ1 − Γ2} ∈ Γ2

 defines a lexicographic order  on chains:≤ ⊑lex

(With coefficients in ,  is the 
symmetric difference between   and ) 

ℤ2 Γ1 − Γ2
Γ1 Γ2

w2

w1

w3

Γ1
Γ2

139



Given   find:β ∈ Cd−1(K, ℤ2)
Γmin = min

⊑lex

{Γ ∈ Cd(K, ℤ2), ∂Γ = β}

Lexicographic-minimal chain for a given boundary

Our two canonical problems again

Given   find:α ∈ Cd(K, ℤ2)
Γmin = min

⊑lex

{α+∂ω, ω ∈ Cd+1(K, ℤ2)}

Lexicographic-minimal homologous chain:

Both problem can be solved in less than  time complexity𝒪(n3)
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Given   find:β ∈ Cd−1(K, ℤ2)
Γmin = min

⊑lex

{Γ ∈ Cd(K, ℤ2), ∂Γ = β}

Lexicographic-minimal chain for a given boundary

Our two canonical problems again

Given   find:α ∈ Cd(K, ℤ2)
Γmin = min

⊑lex

{α+∂ω, ω ∈ Cd+1(K, ℤ2)}

Lexicographic-minimal homologous chain:

141

β ↦ Γmin α ↦ Γmin                and                 are linear maps, (as for        minima) 
but minima are sparse (as for        minima).

L2

L1



 general algorithm𝒪(n3)

Given   find:α ∈ Cd(K, ℤ2)
Γmin = min

⊑lex

{α+∂ω, ω ∈ Cd+1(K, ℤ2)}

Lexicographic-minimal homologous chain:

A chain  is said to be a reduction of a chain  if:Γ′ Γ

 is homologous to  and  Γ′ Γ Γ′ <lex Γ
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∂d+1 =

1 1 1 1 0
0 1 1 1 1
1 1 1 0 1
1 0 0 1 0
0 1 0 0 1
1 0 0 0 1
0 0 1 1 0

-simplices(d + 1)

-simplices ordered 
along increasing 
d

≤

 general algorithm𝒪(n3)

Given   find:α ∈ Cd(K, ℤ2)
Γmin = min

⊑lex

{α+∂ω, ω ∈ Cd+1(K, ℤ2)}

Lexicographic-minimal homologous chain:

143



Same as Homological persistence

∂d+1 =

1 1 1 1 0
0 1 1 1 1
1 1 1 0 1
1 0 0 1 0
0 1 0 0 1
1 0 0 0 1
0 0 1 1 0

= R . V R =

1 1 1 0 0
0 1 1 0 0
1 1 1 1 0
1 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0

In , there is exactly one column with a lowest  for each reducible simplex 1  R 1

 general algorithm𝒪(n3)
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∂d+1 = R . V

R =

1 1 1 0 0
0 1 1 0 0
1 1 1 1 0
1 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0

Total reduction of  using the reduced boundary operator  Γ R

Γ0 = α =

1
1
0
1
0
1
1

Γ1 =

0
0
1
1
0
1
0

+

In , there is exactly one column with a lowest  for each reducible simplex 1  R 1

 general algorithm𝒪(n3)
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 general algorithm𝒪(n3)
∂d+1 = R . V

R =

1 1 1 0 0
0 1 1 0 0
1 1 1 1 0
1 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0

Γ0 = α =

1
1
0
1
0
1
1

Γ1 =

0
0
1
1
0
1
0

+

Γ2 =

1
0
0
0
0
0
0

Total reduction of  using the reduced boundary operator  Γ R

In , there is exactly one column with a lowest  for each reducible simplex 1  R 1
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 algorithm in co-dimension 1𝒪(nα(n))

 algorithm using union-find data structure on the dual 
graph to solve a lexicographic MIN-CUT/MAX-FLOW problem.
𝒪(n α(n))

Once -simplices are sorted ( in time ):d 𝒪(n log n)

IN

OUTOUT

IN IN

OUT

Given   find:α ∈ Cd(K, ℤ2)
Γmin = min

⊑lex

{α+∂ω, ω ∈ Cd+1(K, ℤ2)}

Lexicographic-minimal homologous chain:
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When L1 minimal chain is Delaunay

Delaunay as linear programming

148



δτ(x) = Lτ(x) − x2

x2

L[v1v2v3](x)

L[v1v2v3](x) − x2

xδτ(x)

lift(τ)

τ x

When L1 minimal chain is Delaunay

149

Delaunay as linear programming



When L1 minimal chain is Delaunay

 Triangulation  is Delaunay iff.:T

∀T′ , (∫𝒟
δT(x)pdx)

1/p

≤ (∫𝒟
δT′ 

(x)pdx)
1/p

When L1 minimal chain is Delaunay

T′ T

𝒟

 minimum along the  that triangulates   T T′ 𝒟
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 δτ(x) = Lτ(x) − x2

x

Delaunay as linear programming



When L1 minimal chain is Delaunay

wp(τ) = (∫|τ|
δτ(x)pdx)

1
p

When L1 minimal chain is Delaunay

 Triangulation  is Delaunay iff.:T

∀T′ , ∑
τ∈T

wp(τ)p ≤ ∑
τ∈T′ 

wp(τ)p

T′ T

𝒟

 minimum along the  that triangulates   T T′ 𝒟
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 δτ(x) = Lτ(x) − x2

x

Delaunay as linear programming



Variational definition of Delaunay 

=> triangulation  optimization :

When L1 minimal chain is Delaunay

wp(τ) = (∫|τ|
δτ(x)pdx)

1
p

When L1 minimal chain is Delaunay

 Triangulation  is Delaunay iff.:T

∀T′ , ∑
τ∈T

wp(τ)p ≤ ∑
τ∈T′ 

wp(τ)p

152

Delaunay as linear programming



When L1 minimal chain is DelaunayWhen L1 minimal chain is Delaunay

wp(τ) = (∫|τ|
δτ(x)pdx)

1
p

 Triangulation  is Delaunay iff.:T

∀T′ , ∑
τ∈T

wp(τ)p ≤ ∑
τ∈T′ 

wp(τ)p

T′ T

𝒟

 minimum along the  that triangulates   T T′ 𝒟
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Delaunay as linear programming



When L1 minimal chain is Delaunay

wp(τ) = (∫|τ|
δτ(x)pdx)

1
p

When L1 minimal chain is Delaunay

 Triangulation  is Delaunay iff.:T

∀T′ , ∑
τ∈T

wp(τ)p ≤ ∑
τ∈T′ 

wp(τ)p

Γ
T

𝒟

 minimum along the chains  such that 
   

T Γ
∂Γ = ∂𝒟
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Delaunay as linear programming



∥Γ∥p = ∑
σ∈Kd

wp(τ)p |Γ(τ) |

Define the following norm on chains:

When L1 minimal chain is Delaunay

wp(τ) = (∫|τ|
δτ(x)pdx)

1
p

When L1 minimal chain is Delaunay

Still a  norm :  exponent  is on 
the weight, not on the coordinate.

L1 p

 Triangulation  is Delaunay iff.:T

∀T′ , ∑
τ∈T

wp(τ)p ≤ ∑
τ∈T′ 

wp(τ)p

Γ
T

𝒟

 minimum along the chains  such that 
   

T Γ
∂Γ = ∂𝒟
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Delaunay as linear programming



P βP

Delaunay triangulation

wp(σ) = (∫|σ|
δσ(x)pdx)

1
p

= ∥δσ∥p

156

(Attali, L., 2016)

∥Γ∥p = ∑
σ∈Kd

wp(τ)p |Γ(τ) |

Delaunay as linear programming

Let       be a cycle  whose support is the boundary of the convex hull of βP P
Let P ⊂ ℝd be a finite set of points. 

∂Γ = βPunder constraintΓ ↦ ∥Γ∥pThe support of the chain that minimizes 
is the Delaunay triangulation of  P



2-manifolds and perturbed d-manifolds:

157

∥Γ∥p = ∑
σ∈Kd

wp(τ)p |Γ(τ) |

Delaunay as linear programming

ech

(Attali, Dominique, and A. L. "Delaunay-Like Triangulation of Smooth 
Orientable Submanifolds by ℓ1-Norm Minimization. » 2022)

Γ ↦ ∥Γ∥1

{∂Γ = 0
load m0, Approx(Tm0ℳ) = 1,under constraint

The support of the chain that minimizes 

triangulates the manifold. 

m0

Approx(Tm0
ℳ)



P βP

Delaunay triangulation

wp(σ) = (∫|σ|
δσ(x)pdx)

1
p

= ∥δσ∥p

158

(Attali, L., 2016)

∥Γ∥p = ∑
σ∈Kd

wp(τ)p |Γ(τ) |

Delaunay as linear programming

Let       be a cycle  whose support is the boundary of the convex hull of βP P
Let P ⊂ ℝd be a finite set of points. 

∂Γ = βPunder constraintΓ ↦ ∥Γ∥pThe support of the chain that minimizes 
is the Delaunay triangulation of  P

Behavior as   ?p → ∞



wp(σ) = (∫|σ|
δσ(x)pdx)

1
p

= ∥δσ∥p

  The weights defines a preorder  on simplices:wp ≤∞

σ1 ≤∞ σ2 ⟺
def.

∃p ∈ [1,∞[, ∀p′ ∈ [p, ∞[, wp′ (σ1) ≤ wp′ (σ2)

Delaunay order
When lexicographic-minimal chain is Delaunay

Behavior as   ?p → ∞
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 is a finer (pre-)order than comparing   ≤∞ w∞ = ∥δσ∥∞ = max
x∈|σ|

δσ(x) = lim
p→∞

wp

p

wp(σ2)

wp(σ1)

wp(σ) = (∫|σ|
δσ(x)pdx)

1
p

= ∥δσ∥p

  The weights defines a preorder  on simplices:wp ≤∞

Behavior as   ?p → ∞

w∞(σ1) = w∞(σ2)

σ1 ≤∞ σ2 ⟺
def.

∃p ∈ [1,∞[, ∀p′ ∈ [p, ∞[, wp′ (σ1) ≤ wp′ (σ2)

Delaunay order
When lexicographic-minimal chain is Delaunay
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 is a finer (pre-)order than comparing   ≤∞ w∞ = ∥δσ∥∞ = max
x∈|σ|

δσ(x) = lim
p→∞

wp

p

wp(σ2)

wp(σ1)

wp(σ) = (∫|σ|
δσ(x)pdx)

1
p

= ∥δσ∥p

  The weights defines a preorder  on simplices:wp ≤∞

Behavior as   ?p → ∞

 
but 

 
and 

 

w∞(σ1) = w∞(σ2)

σ1 ≤∞ σ2

σ2 ≰∞ σ1

w∞(σ1) = w∞(σ2)

σ1 ≤∞ σ2 ⟺
def.

∃p ∈ [1,∞[, ∀p′ ∈ [p, ∞[, wp′ (σ1) ≤ wp′ (σ2)

Delaunay order
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wp(σ) = (∫|σ|
δσ(x)pdx)

1
p

= ∥δσ∥p

  The weights defines a preorder  on simplices:wp ≤∞

Behavior as   ?p → ∞

σ1 ≤∞ σ2 ⟺
def.

∃p ∈ [1,∞[, ∀p′ ∈ [p, ∞[, wp′ (σ1) ≤ wp′ (σ2)

For 2-simplices, under a generic condition, one has:

RC = RB

RB

RC

Acute triangle:

Obtuse triangle:

Delaunay order
When lexicographic-minimal chain is Delaunay
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wp(σ) = (∫|σ|
δσ(x)pdx)

1
p

= ∥δσ∥p

  The weights defines a preorder  on simplices:wp ≤∞

    Γ1 ⊑lex Γ2 ⟺
def.

Γ1 = Γ2
or
σmax = max≤∞ {σ ∈ Γ1 − Γ2} ∈ Γ2

When  is a total order, it defines a lexicographic order  on chains:≤∞ ⊑lex

(With coefficients in ,  is the symmetric difference between   and ) ℤ2 Γ1 − Γ2 Γ1 Γ2

Behavior as   ?p → ∞

σ1 ≤∞ σ2 ⟺
def.

∃p ∈ [1,∞[, ∀p′ ∈ [p, ∞[, wp′ (σ1) ≤ wp′ (σ2)

Delaunay order
When lexicographic-minimal chain is Delaunay
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Delaunay triangulation

P βP

When lexicographic-minimal chain is Delaunay
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(Cohen-Steiner, L.,Vuillamy 2020)



Delaunay triangulation

P βP

This extends to smooth (positive reach) -manifolds2

When lexicographic-minimal chain is Delaunay
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Triangulation of positive reach -manifolds2

 captures the homotopy type K
⇒ β2 = 1

Lexicographic minimal chain in 
 is a triangulationH2(K, ℤ2)
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Minimal homology representative cycle

Examples of lexicographic-minimal cycle
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Minimal homology representative cycle

Examples of lexicographic-minimal cycle
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Thank you !
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