

Vector Graphics on Discrete Surfaces

Claudio Mancinelli

Raster graphics

Vector graphics

Every point has a neighborhood that "looks like" an open set of the Euclidean plane

The Traditional Way

Parametrization maps from 2D plane to the surface

The Traditional Way

Geometric Primitives in the Euclidean setting

$$(1-t)P_0 + tP_1 \qquad (x-x_0)^2 + (y-y_0)^2 = r^2$$

$$\sum_{i=0}^{3} B_i^3(t) P_i$$

Geodesic Distance

Geodesic Distance

Let $\gamma:[a,b]\to\mathcal{M}$ be a curve on \mathcal{M} .

Then its *length* is defined as

$$L(\gamma) = \int_{a}^{b} ||\dot{\gamma}(t)||_{\gamma(t)} dt$$

The geodesic distance between two points on ${\mathcal M}$ can be defined as

$$d(x,y) = \inf\{L(\gamma) : \gamma \in \mathcal{C}_{xy}\}\$$

Geodesic Distance

The geodesic distance between two points on ${\mathcal M}$ can be defined as

$$d(x,y) = \inf\{L(\gamma) : \gamma \in \mathcal{C}_{xy}\}\$$

We will often consider the geodesic distance field

$$d_x: \mathcal{M} \to \mathbb{R}$$

$$y \mapsto d(x, y)$$

Geodesics

UniGe DIBRIS

If a curve $\gamma:[a,b]\to\mathcal{M}$ realizes the distance between two points, then γ is called a *geodesic*.

Geodesics have null (geodesic) curvature.

Moving to the manifold setting

Moving to the manifold setting

Moving to the manifold setting

 \mathbb{R}^3

 \mathcal{M}

M (discretization of $\mathcal M$)

Straight line ———— Geodesic ———— Shortest path

Circle

Geodesic circle

 $d_x(\cdot)$

Uni**Ge** | DIBRIS

[Mitchell et al., 1987]

Exact polyhedral methods

[Mitchell et al., 1987; Chen and Han, 1990; Surazhsky et al., 2005; Xin and Wang, 2007; Xu et al., 2015; Qin et al., 2016]

PDE-based methods

[Kimmel and Sethian, 1998; Crane et al. 2013]

Graph-based methods

[Lanthier, 1997; Mata and Mitchell, 1997; Aleksandrov et al., 2000; Aleksandrov et al., 2005; Ying et al., 2013; Wang et al., 2017]

Shortest paths tracing

Local methods

[Wan, 2004; Martínez et al., 2005; Xin et al., 2007; Sharp and Crane, 2020]

Geodesic queries on triangle mesh

Shortest paths

[Mancinelli et al., 2022]

Geodesic distance fields

[Nazzaro et al., 2022]

For more details see [Crane et al., 2020]

Geodesic queries on triangle mesh

Shortest paths

Straightest paths

Geodesic distance fields

[Mancinelli et al., 2022]

[Polthier and Schmies, 1998]

[Nazzaro et al., 2022]

For more details see [Crane et al., 2020]

Geodesic queries on triangle mesh

 Straightedge: can be positioned between any two points and extended indefinitely in both directions

 Compass: can trace circles of any radius by starting with its needle and pencil points at two given points in the plane

Vector Graphics on Surfaces

Preliminaries

The exponential map "shoots" geodesics from a given point

The logarithmic map returns the direction of the geodesic "you need to shoot"

 $v = \log_p(q)$ $T_p\mathcal{M}$ γ_v

Vector space of dimension 2

How do we port straightedge and compass constructions on surface?

Draw on the tangent space and map the result to the surface

Draw directly on the surface

Vector Graphics on Surfaces

How do we port straightedge and compass constructions on surface?

Draw on the tangent space and map the result to the surface

Draw directly on the surface

Vector Graphics on Surfaces

Tangent Space Constructions

Vector Graphics on Surfaces Tangent Space Constructions

Vector Graphics on Surfaces

How do we port straightedge and compass constructions on surface?

Draw on the tangent space and map the result to the surface

Draw directly on the surface

- 1. Creating the line through two existing points
- 2. Creating the circle through one point with center another point
- 3. Creating the point which is the intersection of two non existing, non parallel lines
- 4. Creating the one or two points in the intersection of a line and a circle
- 5. Creating the one or two points in the intersection of two circles

- i) the perpendicular bisector is a straight line
- ii) ${\mathcal X}$ is the midpoint of the segment
- iii) the bisector is orthogonal to the segment
- iv) all the points on the bisector have the same distance from $\,a\,$ and $\,b\,$

Bézier Curves

Weighted Averages (Bernstein)

$$\mathbf{b}^{k}(t) = \sum_{i=0}^{k} B_{i}^{k}(t) P_{i} \qquad t \in [0, 1]$$

de Casteljau (recursive algortihm)

$$\mathbf{b}_{i}^{0}(t) = P_{i}$$

$$\mathbf{b}_{i}^{r}(t) = (1 - t)\mathbf{b}_{i}^{r-1}(t) + t\mathbf{b}_{i+1}^{r-1}(t)$$

3

Bézier Curves

Weighted Averages (Bernstein)

Euclidean setting

$$\mathbf{b}^k(t) = \sum_{i=0}^k B_i^k(t) P_i \qquad t \in [0,1]$$

Manifold setting

$$\mathbf{b}^{k}(t) = \underset{P \in M}{\operatorname{arg\,min}} \sum_{i=0}^{\kappa} B_{i}^{k}(t) d^{2}(P, P_{i})$$

Excursus: gradient of a scalar field

$$f = \{f_1, f_2, \dots, f_n\}$$

$$\nabla f_t \approx \frac{1}{A_t} \int_{A_t} \nabla f d\mathbf{a} = \frac{1}{A_t} \int_{\partial A_t} f \mathbf{n} d\ell$$

$$\nabla f_t = (f_j - f_i) \frac{(v_i - v_k)^{\perp}}{2A_t} + (f_k - f_i) \frac{(v_j - v_i)^{\perp}}{2A_t}$$

UniGe DIBRIS

Excursus: gradient of a scalar field

$$\nabla f_i = \frac{1}{\sum_{t_j \in \mathcal{N}(v_i)} A_{t_j}} \sum_{t_j \in \mathcal{N}(v_i)} A_{t_j} P_{t_j, v_i}(\nabla f_{t_j})$$

Excursus: Hessian of a scalar field

$$V_i := \nabla f_i$$

$$X_t := (1 - \alpha - \beta)V_i + \alpha V_j + \beta V_k \uparrow$$

$$\operatorname{Hess} f_t = J(X_t)$$

UniGe DIBRIS

Solving an optimization problem on a triangle mesh

$$U(x) := \sum_{i=0}^{\infty} w_i d^2(x, P_i) \longrightarrow \nabla U(x) = 0$$

Algorithm 1: Computation of the RCM with Newton's algorithm

Input: Mesh M, Control points P_i , Weights w_i , Warm start QOutput: Riemannian center of mass \bar{P} if $Q \neq NONE$ then $| \bar{P} \leftarrow Q$ else

while $\|\nabla U(\bar{P})\| > \varepsilon \ \mathbf{do}$

solve the Newton equation $\mathrm{Hess}U(\bar{P})\mathbf{s} = -\nabla U(\bar{P})$

 $\begin{array}{l} \gamma \leftarrow \texttt{trace_geodesic}(\bar{P}, \mathbf{s}) \\ \bar{P} \leftarrow \texttt{argmin}_{P \in \gamma} \nabla U(P) \end{array}$

return \bar{P}

Rational Bézier

[Ramantantoanina and Hormann, 2021]

Uni**Ge** | DIBRIS

43

Limitations

We need convexity!!

Bézier Curves de Casteljau on Manifolds

We define the manifold average operator between two points as

$$\mathcal{A}: M \times M \times [0,1] \longrightarrow M; \quad (P,Q;w) \mapsto \gamma_{P,Q}(w)$$

Always well defined except at the cut locus

$$\mathbf{b}_{i}^{0}(t) = P_{i}$$

$$\mathbf{b}_{i}^{r}(t) = \mathcal{A}(\mathbf{b}_{i}^{r-1}(t), \mathbf{b}_{i+1}^{r-1}(t), t)$$

[Park and Ravani, 1995]

Bézier Curves Subdivision Schemes

Approaches based on subdivision schemes can be used to solve the problem of broken curves (no free lunch!)

- Recursive de Casteljau (RDC) [Morera et al., 2008]
- Open Lane-Riesenfield (OLR) [Mancinelli et al., 2022]

Uni**Ge** | DIBRIS

Bézier Curves Subdivision Schemes

Approaches based on subdivision schemes can be used to solve the problem of broken curves (no free lunch!)

- Recursive de Casteljau (RDC) [Morera et al., 2008]
- Open Lane-Riesenfield (OLR) [Mancinelli et al., 2022]

UniGe DIBRIS

Bézier Curves RDC

At each iteration, we split every control polygon into two sub-polygons using de Casteljau's algorithm.

Converges to a \mathcal{C}^1 curve [Noakes, 1998; Mancinelli et al., 2022]

Bézier Curves

RDC

Uni**Ge** | DIBRIS

Bézier Curves RDC

- 2056 curves on the 394k Pumpkin
- 289 ms to trace all of them

