

AND A CONTRACT

~ T 1

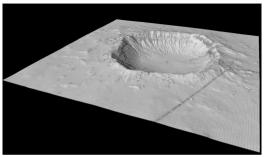
An Algorithmic Introduction to LR B-splines

Francesco Patrizi

Picture: Acropolis

Athens, Greece

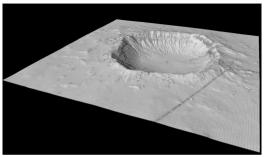
A tool for adaptive approximations



Quasi-Interpolation, Meteor Crater, AZ

Wind streamlines around a telescope

A tool for adaptive approximations

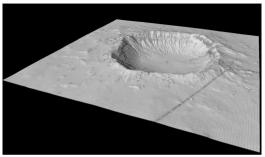


Quasi-Interpolation, Meteor Crater, AZ

Created by the vikings

Wind streamlines around a telescope

A tool for adaptive approximations



Quasi-Interpolation, Meteor Crater, AZ

Created by the vikings

T. Dokken

Wind streamlines around a telescope

K. F. Pettersen

(Local) Knot Vector: Given a degree p, $t = t_p$ with $|t_p| = p + 2$ with repetitions

$$\underbrace{t_1 = \cdots = t_{m_1}}_{\max p+1 \text{ times}} < \underbrace{t_{m_1+1} = \cdots = t_{m_1+m_2}}_{\max p+1 \text{ times}} < \cdots$$

(Local) Knot Vector: Given a degree p, $t = t_p$ with $|t_p| = p + 2$ with repetitions

$$\underbrace{t_1 = \cdots = t_{m_1}}_{\max p+1 \text{ times}} < \underbrace{t_{m_1+1} = \cdots = t_{m_1+m_2}}_{\max p+1 \text{ times}} < \cdots$$

Univariate B-spline: Given a degree p, the B-spline of degree p is defined recursively:

$$Bt = \frac{t-t_1}{t_{p+1}-t_1}B[t_1,\ldots,t_{p+1}](t) + \frac{t_{p+2}-t}{t_{p+2}-t_2}B[t_2,\ldots,t_{p+2}](t),$$

where each time a fraction with zero denominator appears, it is taken as zero. The initial B-splines of degree 0 are defined as

$$B[t_i, t_{i+1}](t) := \left\{egin{array}{ccc} 1 & ext{if} \ t_i \leq t < t_{i+1}; \ 0 & ext{otherwise}; \end{array}
ight.$$

(Local) Knot Vector: Given a degree p, $t = t_p$ with $|t_p| = p + 2$ with repetitions

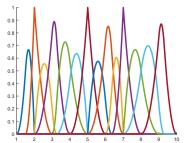
$$\underbrace{t_1 = \cdots = t_{m_1}}_{\max p+1 \text{ times}} < \underbrace{t_{m_1+1} = \cdots = t_{m_1+m_2}}_{\max p+1 \text{ times}} < \cdots$$

Univariate B-spline: Given a degree *p*, the B-spline of degree *p* is defined recursively:

$$Bt = \frac{t-t_1}{t_{p+1}-t_1}B[t_1,\ldots,t_{p+1}](t) + \frac{t_{p+2}-t}{t_{p+2}-t_2}B[t_2,\ldots,t_{p+2}](t),$$

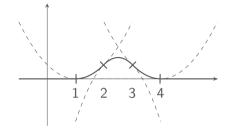
where each time a fraction with zero denominator appears, it is taken as zero. The initial B-splines of degree 0 are defined as

$$B[t_i, t_{i+1}](t) := \left\{egin{array}{cc} 1 & ext{if} \ t_i \leq t < t_{i+1}; \\ 0 & ext{otherwise}; \end{array}
ight.$$

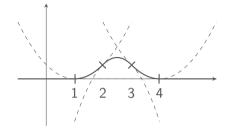


2 / 39

 $p = 2, \ \mathbf{t} = (1, 2, 3, 4)$ $B[\mathbf{t}](t) = \begin{cases} 0 & t \notin [1, 4], \\ \frac{1}{2}t^2 - t + \frac{1}{2} & 1 \le t < 2, \\ -t^2 + \frac{1}{2}t - \frac{11}{2} & 2 \le t < 3, \\ \frac{1}{2}t^2 - 4t + 8 & 3 \le t \le 4. \end{cases}$



 $p = 2, \ \mathbf{t} = (1, 2, 3, 4)$ $B[\mathbf{t}](t) = \begin{cases} 0 & t \notin [1, 4], \\ \frac{1}{2}t^2 - t + \frac{1}{2} & 1 \le t < 2, \\ -t^2 + \frac{1}{2}t - \frac{11}{2} & 2 \le t < 3, \\ \frac{1}{2}t^2 - 4t + 8 & 3 \le t \le 4. \end{cases}$



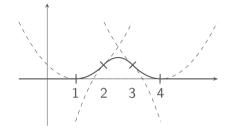
 $p = 2, \ \mathbf{t} = (1, 2, 3, 4)$ $B[\mathbf{t}](t) = \begin{cases} 0 & t \notin [1, 4], \\ \frac{1}{2}t^2 - t + \frac{1}{2} & 1 \le t < 2, \\ -t^2 + \frac{1}{2}t - \frac{11}{2} & 2 \le t < 3, \\ \frac{1}{2}t^2 - 4t + 8 & 3 \le t \le 4. \end{cases}$

Properties:

► $B[t] \ge 0$,

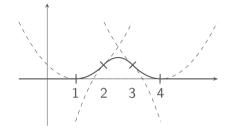
 $p = 2, \ \mathbf{t} = (1, 2, 3, 4)$ $B[\mathbf{t}](t) = \begin{cases} 0 & t \notin [1, 4], \\ \frac{1}{2}t^2 - t + \frac{1}{2} & 1 \le t < 2, \\ -t^2 + \frac{1}{2}t - \frac{11}{2} & 2 \le t < 3, \\ \frac{1}{2}t^2 - 4t + 8 & 3 \le t \le 4. \end{cases}$

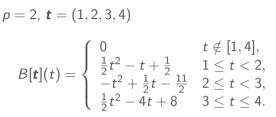
- ► $B[t] \ge 0$,
- supp $B[t] = [t_1, t_{p+2}]$,



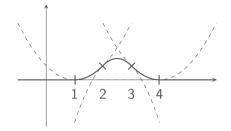
 $p = 2, \ \mathbf{t} = (1, 2, 3, 4)$ $B[\mathbf{t}](t) = \begin{cases} 0 & t \notin [1, 4], \\ \frac{1}{2}t^2 - t + \frac{1}{2} & 1 \le t < 2, \\ -t^2 + \frac{1}{2}t - \frac{11}{2} & 2 \le t < 3, \\ \frac{1}{2}t^2 - 4t + 8 & 3 \le t \le 4. \end{cases}$

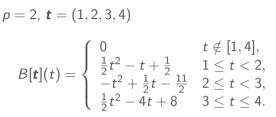
- ► $B[t] \ge 0$,
- supp $B[t] = [t_1, t_{p+2}]$,
- ► $B[\mathbf{t}]_{|[t_i,t_{i+1})} \in \Pi_p$,



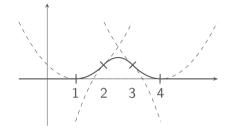


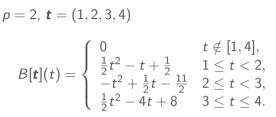
- ► $B[t] \ge 0$,
- ▶ supp $B[t] = [t_1, t_{p+2}]$,
- $\blacktriangleright B[t]_{|[t_i,t_{i+1})} \in \Pi_p,$
- B[t] is C^{p-m_i} -continuous at t_i ,



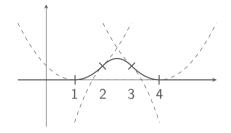


- ► $B[t] \ge 0$,
- ▶ supp $B[t] = [t_1, t_{p+2}]$,
- $\blacktriangleright B[t]_{|[t_i,t_{i+1})} \in \Pi_{\rho},$
- B[t] is C^{p-m_i} -continuous at t_i ,
- locally linearly independent,

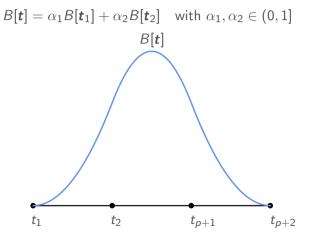




- ► $B[t] \ge 0$,
- ▶ supp $B[t] = [t_1, t_{p+2}],$
- $\blacktriangleright B[t]_{|[t_i,t_{i+1})} \in \Pi_p,$
- B[t] is C^{p-m_i} -continuous at t_i ,
- ► locally linearly independent,
- ► form a partition of unity.

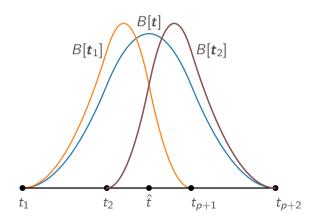


Knot Insertion: Suppose we insert a knot $\hat{t} \to t$. We obtain two knot vectors t_1 and t_2 , considering the first and the last p + 2 knots respectively in $(t_1, \ldots, \hat{t}, \ldots, t_{p+2})$. Then

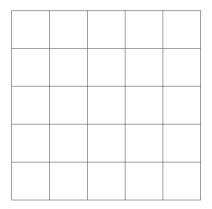


Knot Insertion: Suppose we insert a knot $\hat{t} \to t$. We obtain two knot vectors t_1 and t_2 , considering the first and the last p + 2 knots respectively in $(t_1, \ldots, \hat{t}, \ldots, t_{p+2})$. Then

 $B[t] = \alpha_1 B[t_1] + \alpha_2 B[t_2]$ with $\alpha_1, \alpha_2 \in (0, 1]$

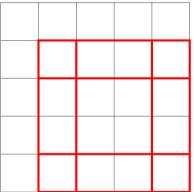


Given a tensor mesh N and a bidegree (p_1, p_2) (for instance (2, 2)),



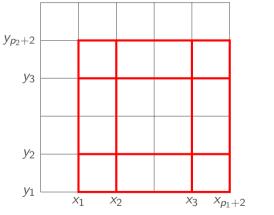
Given a tensor mesh N and a bidegree (p_1, p_2) (for instance (2, 2)),

let \mathcal{N}_B be a subcollection of meshlines in \mathcal{N} forming a sub-grid of $p_1 + 2$ vertical lines and $p_2 + 2$ horizontal lines.



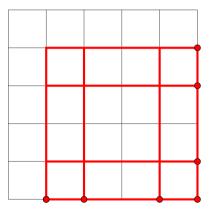
Given a tensor mesh \mathcal{N} and a bidegree (p_1, p_2) (for instance (2, 2)),

let N_B be a subcollection of meshlines in N forming a sub-grid of $p_1 + 2$ vertical lines and $p_2 + 2$ horizontal lines.



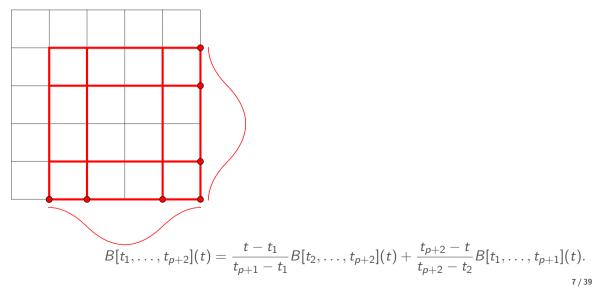
Such vertical and horizontal lines can be parametrized as $\{x_i\} \times [y_1, y_{p_2+2}]$ and $[x_1, x_{p_1+2}] \times \{y_j\}$ with $\boldsymbol{x} := (x_i)_{i=1}^{p_1+2}$ and $\boldsymbol{y} = (y_j)_{j=1}^{p_2+2}$.

x and y are knot vectors on top on which we define univariate B-splines of degrees p_1 and p_2^{var} .



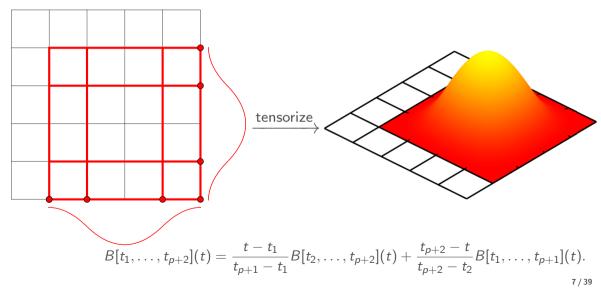
$$B[t_1,\ldots,t_{p+2}](t)=\frac{t-t_1}{t_{p+1}-t_1}B[t_2,\ldots,t_{p+2}](t)+\frac{t_{p+2}-t}{t_{p+2}-t_2}B[t_1,\ldots,t_{p+1}](t).$$

x and y are knot vectors on top on which we define univariate B-splines of degrees p_1 and p_2^{var} .

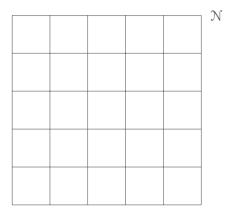


A REAL PROPERTY AND A REAL

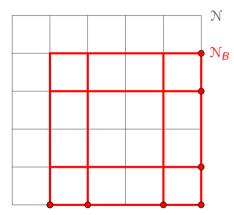
x and y are knot vectors on top on which we define univariate B-splines of degrees p_1 and p_2^{var} .



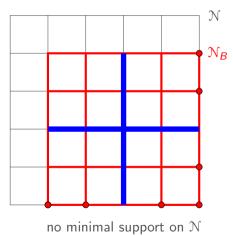
Each \mathcal{N}_B corresponds to a B-spline *B* defined on \mathcal{N} .



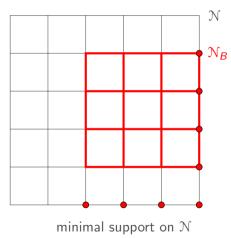
Each \mathcal{N}_B corresponds to a B-spline B defined on \mathcal{N} .



Each \mathcal{N}_B corresponds to a B-spline B defined on \mathcal{N} .

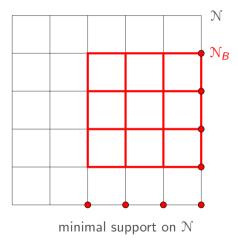


Each \mathcal{N}_B corresponds to a B-spline B defined on \mathcal{N} .



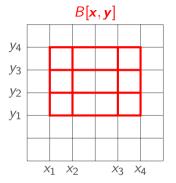
Each \mathcal{N}_B corresponds to a B-spline B defined on \mathcal{N} .

If no line in $\mathcal{N}\setminus\mathcal{N}_B$ traverses int(supp B) then we say that B has minimal support on \mathcal{N} .

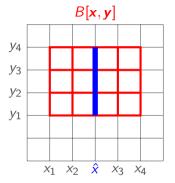


We call B-spline set on ${\mathcal N}$ the set of all the minimal support B-splines on ${\mathcal N}.$

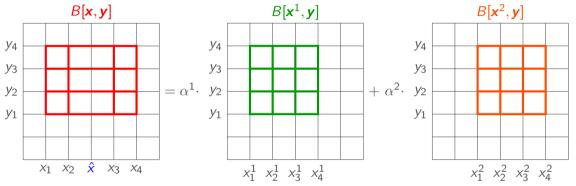
Assume $B[\mathbf{x}, \mathbf{y}]$ no minimal support on \mathcal{N} because of a vertical line at $x = \hat{x}$ with $\hat{x} \notin \mathbf{x}$.



Assume $B[\mathbf{x}, \mathbf{y}]$ no minimal support on \mathcal{N} because of a vertical line at $x = \hat{x}$ with $\hat{x} \notin \mathbf{x}$.

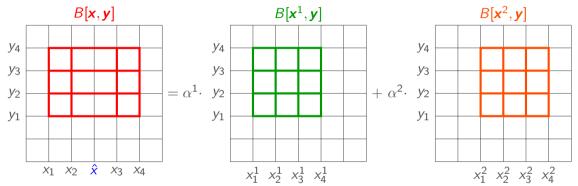


Assume $B[\mathbf{x}, \mathbf{y}]$ no minimal support on \mathcal{N} because of a vertical line at $x = \hat{x}$ with $\hat{x} \notin \mathbf{x}$.



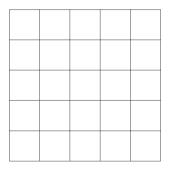
with $\alpha^1, \alpha^2 \in (0, 1]$.

Assume $B[\mathbf{x}, \mathbf{y}]$ no minimal support on \mathcal{N} because of a vertical line at $x = \hat{x}$ with $\hat{x} \notin \mathbf{x}$.

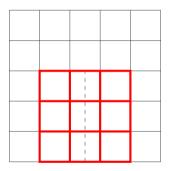


with $\alpha^1, \alpha^2 \in (0, 1]$. $B[\mathbf{x}, \mathbf{y}]$ is expressed in terms of B-splines of minimal support on \mathcal{N} .

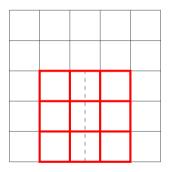
Let \mathcal{N} be a tensor mesh and \mathcal{B} be the set of (minimal support) B-splines on \mathcal{N} .



Let \mathcal{N} be a tensor mesh and \mathcal{B} be the set of (minimal support) B-splines on \mathcal{N} . We insert a new line γ , traversing the support of at least one B-spline $\boldsymbol{B} \in \mathcal{B}$.

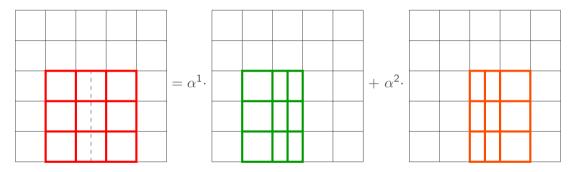


Let \mathcal{N} be a tensor mesh and \mathcal{B} be the set of (minimal support) B-splines on \mathcal{N} . We insert a new line γ , traversing the support of at least one B-spline $\boldsymbol{B} \in \mathcal{B}$.



By construction B has not minimal support on the new mesh $\mathcal{N}' = \mathcal{N} \cup \gamma$.

Let \mathcal{N} be a tensor mesh and \mathcal{B} be the set of (minimal support) B-splines on \mathcal{N} . We insert a new line γ , traversing the support of at least one B-spline $\boldsymbol{B} \in \mathcal{B}$.



By construction B has not minimal support on the new mesh $\mathcal{N}' = \mathcal{N} \cup \gamma$. By knot insertion we replace B with the B-splines B^1 and B^2 of minimal support on \mathcal{N}' . This operation creates a new set \mathcal{B}' of minimal support B-splines on \mathcal{N}' .

LR mesh \mathcal{N}' (recursive definition):

LR mesh \mathcal{N}' (recursive definition): It is either

LR mesh \mathcal{N}' (recursive definition): It is either

- ► a tensor mesh,
- \blacktriangleright obtained by insertion of a new line from the LR mesh $\mathcal N,$ traversing at least one support.

LR mesh \mathcal{N}' (recursive definition): It is either

- ► a tensor mesh,
- \blacktriangleright obtained by insertion of a new line from the LR mesh $\mathcal N,$ traversing at least one support.

LR B-spline set \mathcal{B}' (recursive definition):

LR mesh \mathcal{N}' (recursive definition): It is either

- ► a tensor mesh,
- \blacktriangleright obtained by insertion of a new line from the LR mesh $\mathcal N,$ traversing at least one support.

LR B-spline set \mathcal{B}' (recursive definition): It is either

LR mesh \mathcal{N}' (recursive definition): It is either

- ► a tensor mesh,
- \blacktriangleright obtained by insertion of a new line from the LR mesh $\mathcal N,$ traversing at least one support.

LR B-spline set \mathcal{B}' (recursive definition): It is either

- \blacktriangleright the B-spline set on \mathcal{N}' if \mathcal{N}' is a tensor mesh,
- \blacktriangleright an update via knot insertion of the LR B-spline set ${\mathcal B}$ on ${\mathcal N}.$

LR mesh \mathcal{N}' (recursive definition): It is either

- ► a tensor mesh,
- \blacktriangleright obtained by insertion of a new line from the LR mesh $\mathcal N,$ traversing at least one support.

LR B-spline set \mathcal{B}' (recursive definition): It is either

- \blacktriangleright the B-spline set on \mathcal{N}' if \mathcal{N}' is a tensor mesh,
- \blacktriangleright an update via knot insertion of the LR B-spline set ${\mathcal B}$ on ${\mathcal N}.$

LR mesh \mathcal{N}' (iterative definition):

LR mesh \mathcal{N}' (recursive definition): It is either

- ► a tensor mesh,
- \blacktriangleright obtained by insertion of a new line from the LR mesh $\mathcal N,$ traversing at least one support.

LR B-spline set \mathcal{B}' (recursive definition): It is either

- \blacktriangleright the B-spline set on \mathcal{N}' if \mathcal{N}' is a tensor mesh,
- \blacktriangleright an update via knot insertion of the LR B-spline set ${\mathcal B}$ on ${\mathcal N}.$

LR mesh \mathcal{N}' (iterative definition): $\mathcal{N}'=\mathcal{N}_{\textit{N}}$ with

LR mesh \mathcal{N}' (recursive definition): It is either

- ► a tensor mesh,
- \blacktriangleright obtained by insertion of a new line from the LR mesh $\mathcal N,$ traversing at least one support.

LR B-spline set \mathcal{B}' (recursive definition): It is either

- \blacktriangleright the B-spline set on \mathcal{N}' if \mathcal{N}' is a tensor mesh,
- \blacktriangleright an update via knot insertion of the LR B-spline set ${\mathcal B}$ on ${\mathcal N}.$

 $\begin{array}{ll} \text{LR mesh } \mathcal{N}' \text{ (iterative definition): } \mathcal{N}' = \mathcal{N}_N \text{ with} \\ \left\{ \begin{array}{ll} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{array} \right. \end{array}$

LR mesh \mathcal{N}' (recursive definition): It is either

- ► a tensor mesh,
- \blacktriangleright obtained by insertion of a new line from the LR mesh $\mathcal N,$ traversing at least one support.

LR B-spline set \mathcal{B}' (recursive definition): It is either

- \blacktriangleright the B-spline set on \mathcal{N}' if \mathcal{N}' is a tensor mesh,
- \blacktriangleright an update via knot insertion of the LR B-spline set ${\mathcal B}$ on ${\mathcal N}.$

 $\begin{array}{ll} \text{LR mesh } \mathcal{N}' \text{ (iterative definition): } \mathcal{N}' = \mathcal{N}_{\mathcal{N}} \text{ with} \\ \left\{ \begin{array}{ll} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{array} \right. \end{array}$

LR B-spline set ${\mathcal B}^\prime$ (iterative definition):

LR mesh \mathcal{N}' (recursive definition): It is either

- ► a tensor mesh,
- \blacktriangleright obtained by insertion of a new line from the LR mesh $\mathcal N,$ traversing at least one support.

LR B-spline set \mathcal{B}' (recursive definition): It is either

- \blacktriangleright the B-spline set on \mathcal{N}' if \mathcal{N}' is a tensor mesh,
- \blacktriangleright an update via knot insertion of the LR B-spline set ${\mathcal B}$ on ${\mathcal N}.$

 $\begin{array}{ll} \text{LR mesh } \mathcal{N}' \text{ (iterative definition): } \mathcal{N}' = \mathcal{N}_{\mathcal{N}} \text{ with} \\ \left\{ \begin{array}{ll} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{array} \right. \end{array}$

LR B-spline set \mathcal{B}' (iterative definition): $\mathcal{B}'=\mathcal{B}_N$ with

LR mesh \mathcal{N}' (recursive definition): It is either

- ► a tensor mesh,
- \blacktriangleright obtained by insertion of a new line from the LR mesh $\mathcal N,$ traversing at least one support.

LR B-spline set \mathcal{B}' (recursive definition): It is either

- \blacktriangleright the B-spline set on \mathcal{N}' if \mathcal{N}' is a tensor mesh,
- \blacktriangleright an update via knot insertion of the LR B-spline set ${\mathcal B}$ on ${\mathcal N}.$

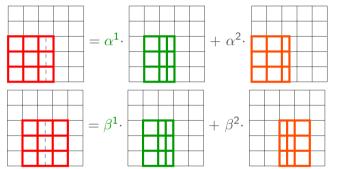
 $\begin{array}{ll} \text{LR mesh } \mathcal{N}' \text{ (iterative definition): } \mathcal{N}' = \mathcal{N}_N \text{ with} \\ \left\{ \begin{array}{ll} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{array} \right. \end{array}$

LR B-spline set \mathcal{B}' (iterative definition): $\mathcal{B}' = \mathcal{B}_N$ with $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.

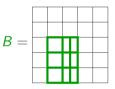
A REAL PROPERTY OF A REAL PROPER

Partition of Unity Weights: sum of the knot insertion coefficients

Partition of Unity Weights: sum of the knot insertion coefficients

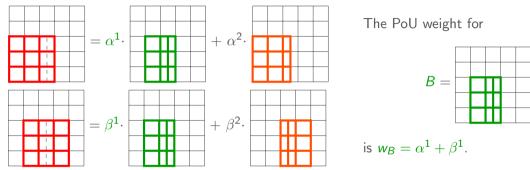


The PoU weight for



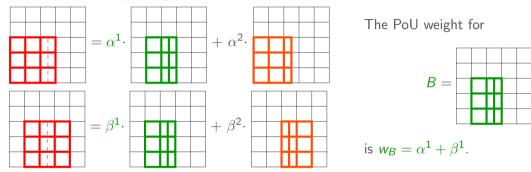
is
$$w_B = \alpha^1 + \beta^1$$
.

Partition of Unity Weights: sum of the knot insertion coefficients



Remark: If not specified otherwise, we consider internal meshlines of multiplicity 1 and boundary meshlines of multiplicity $p_k + 1$, for k = 1, 2, for vertical and horizontal meshlines respectively.

Partition of Unity Weights: sum of the knot insertion coefficients



Remark: If not specified otherwise, we consider internal meshlines of multiplicity 1 and boundary meshlines of multiplicity $p_k + 1$, for k = 1, 2, for vertical and horizontal meshlines respectively.

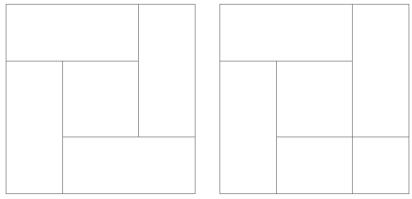
Remark: Meshline insertion ordering can often be changed. However, the final LR B-spline set is well defined because independent of such insertion ordering.

Remark: Not all meshes with local lines are LR meshes

LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$

Remark: Not all meshes with local lines are LR meshes

LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$



Not LR mesh

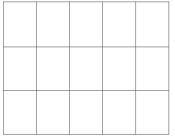
LR mesh

Remark: Secondary splits may be needed.

LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.

Remark: Secondary splits may be needed.

LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.

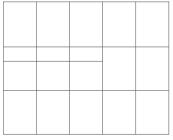


,		,	

(a) current mesh

Remark: Secondary splits may be needed.

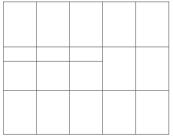
LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.

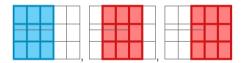


(a) current mesh

Remark: Secondary splits may be needed.

LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.

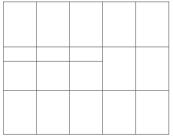


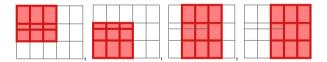


(a) current mesh

Remark: Secondary splits may be needed.

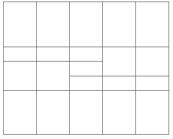
LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.

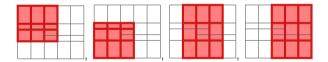




Remark: Secondary splits may be needed.

LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.

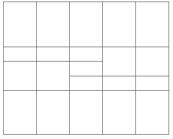


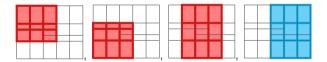


(a) current mesh

Remark: Secondary splits may be needed.

LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.

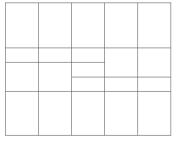




(a) current mesh

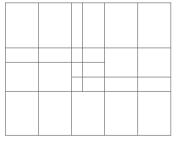
Remark: Secondary splits may be needed.

LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.



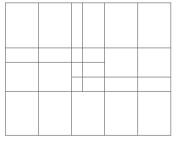
Remark: Secondary splits may be needed.

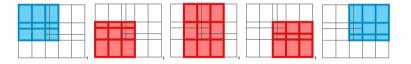
LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.



Remark: Secondary splits may be needed.

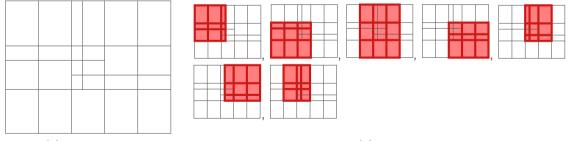
LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.





Remark: Secondary splits may be needed.

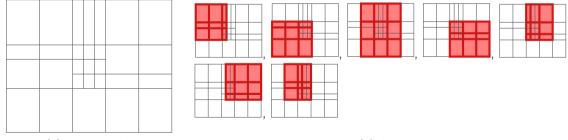
LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.



(a) current mesh

Remark: Secondary splits may be needed.

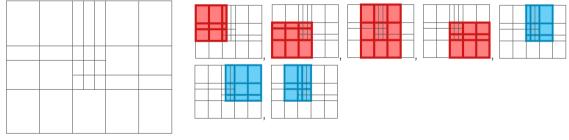
LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.



(a) current mesh

Remark: Secondary splits may be needed.

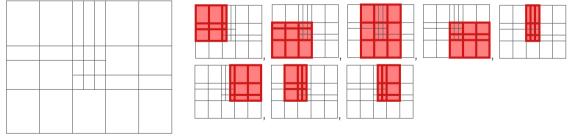
LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.



(a) current mesh

Remark: Secondary splits may be needed.

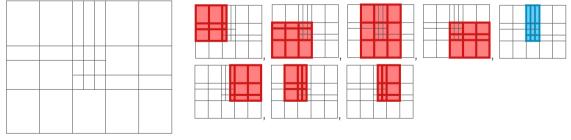
LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.



(a) current mesh

Remark: Secondary splits may be needed.

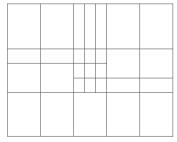
LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.

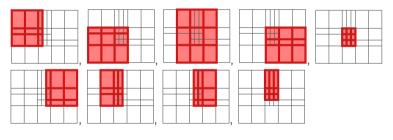


(a) current mesh

Remark: Secondary splits may be needed.

LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.





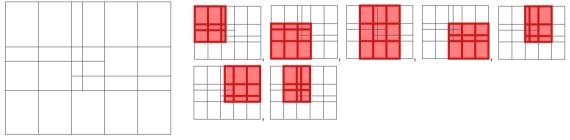
(a) current mesh

Remark: LR B-spline set \neq Minimal Support B-spline set.

 $\begin{array}{ll} \mathsf{LR} \mbox{ mesh: } & \left\{ \begin{array}{ll} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \mbox{ new line, traversing at least one support} \\ \mathcal{N}_0 & \mbox{ tensor mesh,} \end{array} \right. \\ \mathsf{LR} \mbox{ B-splines: } & \left\{ \begin{array}{ll} \mathcal{B}_{i+1} = (\mathcal{B}_i \backslash \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \mbox{ B-splines in } \mathcal{B}_i \mbox{ traversed by } \gamma_i \\ \mathcal{B}_0 & \mbox{ tensor B-splines on } \mathcal{N}_0 \end{array} \right. \\ \text{with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.} \end{array}$

Remark: LR B-spline set \neq Minimal Support B-spline set.

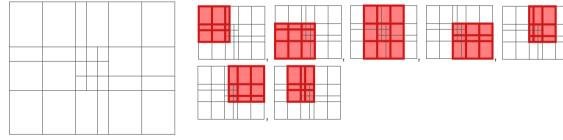
LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.



(a) current mesh

Remark: LR B-spline set \neq Minimal Support B-spline set.

LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.

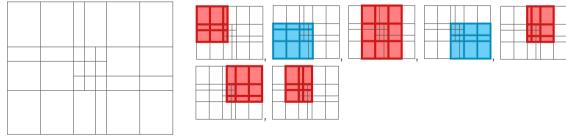


(a) current mesh

(b) B₃

Remark: LR B-spline set \neq Minimal Support B-spline set.

LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.

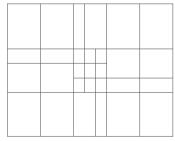


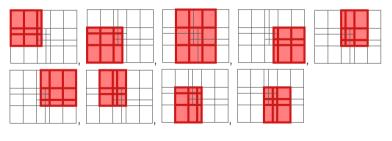
(a) current mesh

(b) B₃

Remark: LR B-spline set \neq Minimal Support B-spline set.

LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.



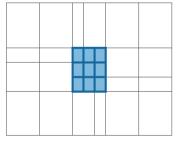


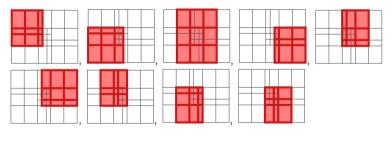
(a) current mesh

(b) B₄

Remark: LR B-spline set \subsetneq Minimal Support B-spline set.

LR mesh: $\begin{cases} \mathcal{N}_{i+1} = \mathcal{N}_i \cup \gamma_i & \gamma_i \text{ new line, traversing at least one support} \\ \mathcal{N}_0 & \text{tensor mesh,} \end{cases}$ LR B-splines: $\begin{cases} \mathcal{B}_{i+1} = (\mathcal{B}_i \setminus \mathcal{B}_i(\gamma_i)) + \mathcal{K}(\mathcal{B}_i(\gamma_i)) & \mathcal{B}_i(\gamma_i) := \text{ B-splines in } \mathcal{B}_i \text{ traversed by } \gamma_i \\ \mathcal{B}_0 & \text{tensor B-splines on } \mathcal{N}_0 \end{cases}$ with \mathcal{K} all the refinements via knot insertion needed to have minimal supports.





(a) current mesh

(b) B₄

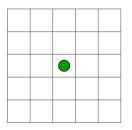
Input: Bunch of boxes where a larger error is committed is some sense. For each of such boxes

1. Among all the LR B-splines on that box, select those with smallest support (semi-perimeter),

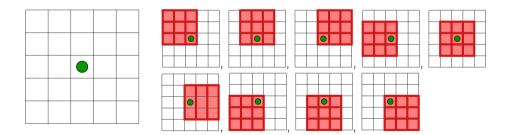
- 1. Among all the LR B-splines on that box, select those with smallest support (semi-perimeter),
- 2. Pick one randomly and insert a cross centered at the box to split it in 4.

- 1. Among all the LR B-splines on that box, select those with smallest support (semi-perimeter),
- 2. Pick one randomly and insert a cross centered at the box to split it in 4.

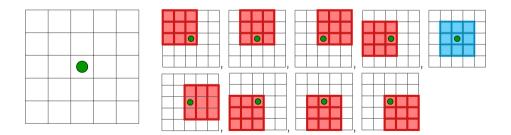
- 1. Among all the LR B-splines on that box, select those with smallest support (semi-perimeter),
- 2. Pick one randomly and insert a cross centered at the box to split it in 4.



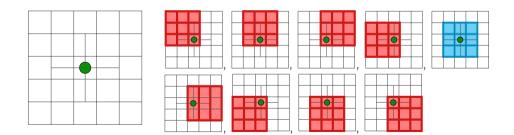
- 1. Among all the LR B-splines on that box, select those with smallest support (semi-perimeter),
- 2. Pick one randomly and insert a cross centered at the box to split it in 4.



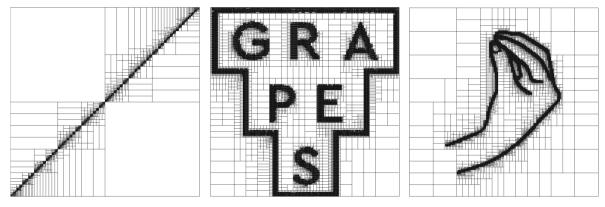
- 1. Among all the LR B-splines on that box, select those with smallest support (semi-perimeter),
- 2. Pick one randomly and insert a cross centered at the box to split it in 4.



- 1. Among all the LR B-splines on that box, select those with smallest support (semi-perimeter),
- 2. Pick one randomly and insert a cross centered at the box to split it in 4.



Minimum Span Refinement strategy: Examples



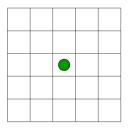
Input: Bunch of boxes where a larger error is committed is some sense. For each of such boxes

1. Select all the LR B-splines on that box,

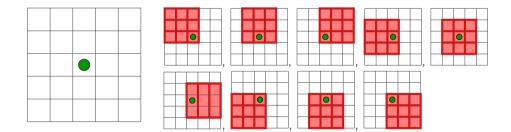
- 1. Select all the LR B-splines on that box,
- 2. Insert a cross centered at the box and long enough to traverse all of such LR B-splines.

- 1. Select all the LR B-splines on that box,
- 2. Insert a cross centered at the box and long enough to traverse all of such LR B-splines.

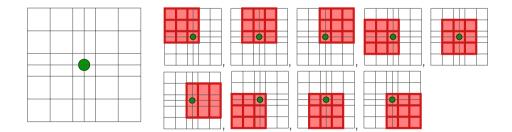
- 1. Select all the LR B-splines on that box,
- 2. Insert a cross centered at the box and long enough to traverse all of such LR B-splines.



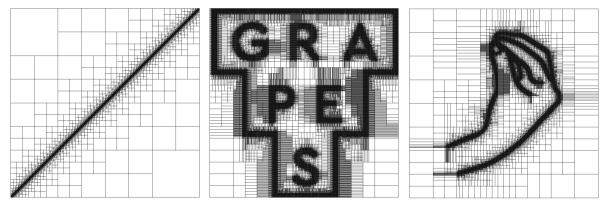
- 1. Select all the LR B-splines on that box,
- 2. Insert a cross centered at the box and long enough to traverse all of such LR B-splines.



- 1. Select all the LR B-splines on that box,
- 2. Insert a cross centered at the box and long enough to traverse all of such LR B-splines.



Full Span Refinement strategy: Examples

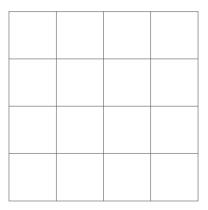


Input: Bunch of LR B-splines where a larger error is committed is some sense. For each of such LR B-splines

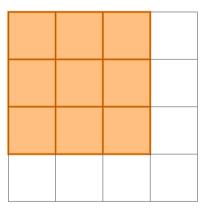
Input: Bunch of LR B-splines where a larger error is committed is some sense. For each of such LR B-splines

Input: Bunch of LR B-splines where a larger error is committed is some sense. For each of such LR B-splines

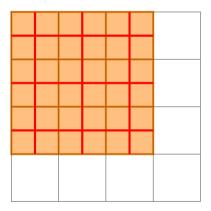
Input: Bunch of LR B-splines where a larger error is committed is some sense. For each of such LR B-splines



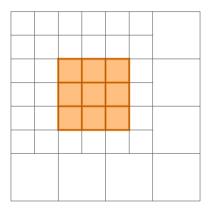
Input: Bunch of LR B-splines where a larger error is committed is some sense. For each of such LR B-splines



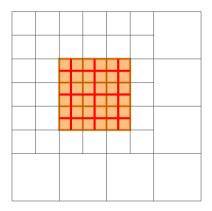
Input: Bunch of LR B-splines where a larger error is committed is some sense. For each of such LR B-splines



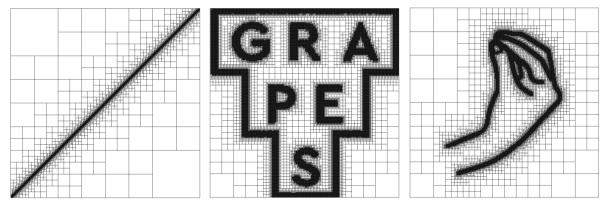
Input: Bunch of LR B-splines where a larger error is committed is some sense. For each of such LR B-splines



Input: Bunch of LR B-splines where a larger error is committed is some sense. For each of such LR B-splines



Structured Mesh Refinement strategy: Examples

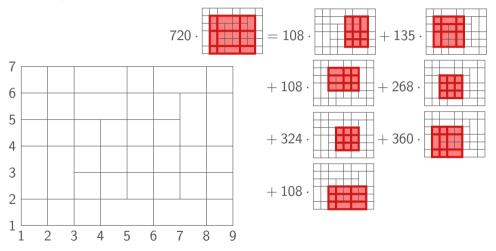


The Linear Dependence Problem

Unfortunately, linear dependence relations may arise in the LR B-spline set.

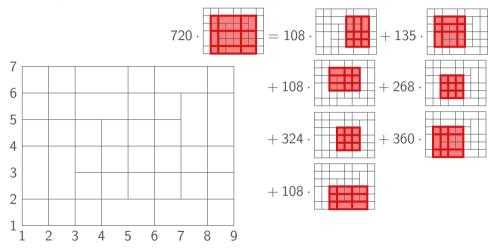
The Linear Dependence Problem

Unfortunately, linear dependence relations may arise in the LR B-spline set.



The Linear Dependence Problem

Unfortunately, linear dependence relations may arise in the LR B-spline set.



Minimum Span, Full Span and Structured Mesh may have linear dependence **Conjecture:** the latter only for $(p_1, p_2) \ge (4, 4)$.

Seek and Destroy Linear Dependence: Peeling Algorithm

Remark: In every box we span the polynomial space $\Pi_{p} \Rightarrow$ each box is in at least $(p_1 + 1)(p_2 + 1) = \dim \Pi_{p}$ LR B-spline supports.

Seek and Destroy Linear Dependence: Peeling Algorithm

Remark: In every box we span the polynomial space $\Pi_{p} \Rightarrow$ each box is in at least $(p_1+1)(p_2+1) = \dim \Pi_{p}$ LR B-spline supports.

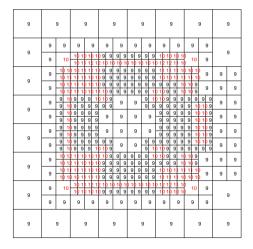
Overloaded box: box contained in more than $(p_1 + 1)(p_2 + 1)$ LR B-spline supports.

9		9	9		9		9		9		9		9		
9	9	9	9	9	9	9	9	9	9	9	9	9			
	9	10	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 1 12 1) 9 9 2 10 1	99 9101	9 9 0 10 1	99 9101	10 1 0 12 1	0 10 1 2 11 1	10	9		9	
9	9	10 1 10 1	P - P - P	11 1 10 1	99	999 99	9 9 9 9	999 99	111 101	1 1 1 0 1 1 1	0 10 1 I 11 1	9	9	9	
	9	10 1 10 1		10 1 10 1)99 1109	99 99	9 9 9 9	99 91	99 0109	9 1 9 1	0 10 9 0 10 9	9	9	9	
9	9	9 1 9 1	099	9 1 9 9) 10 9 9 9	9	9	9 1 9 9	9 9	999 99	99 91		9	9	
	9	9 1 9 1	099	99 99	9	9	9	9	99 99	99 99	9 1 9 1	0 10 9	9	9	
9	9	9 1 9 1	099	99 99	9	9	9	9	99 99	99 99	9 1 9 1	0 10 9	9	9	
	9	9 1 9 1	099	99 91		9	9	99 91		99 99	9 1 9 9	0 10 9 9 9	9	9	
9	9	10 1 10 1	2 11 10	10 1 10 1	1109 999	99 99	99 99	9 1 9 9	9 9	9 1 9 1	_	9	9	9	
	9	10 1 10 1	<u> </u>	10 1 11 1)999 199	999 99	99 99	99 99	101	0 1 1 1 1	1 11 1 0 10 1	9	9	9	
9	9	10 1 10 1		12 1 10 1	2 10 10 10 1 0 9 9 9 9 9		9 9	999	0 12 1: 10 1	2 11 10 0 10 10 ¹⁰		9	9		
	9	9	9	9	9	9	9	9	9	9	9	9			
9	9		9		,	9		9		9		9		9	

Seek and Destroy Linear Dependence: Peeling Algorithm

Remark: In every box we span the polynomial space $\Pi_{p} \Rightarrow$ each box is in at least $(p_1 + 1)(p_2 + 1) = \dim \Pi_{p}$ LR B-spline supports.

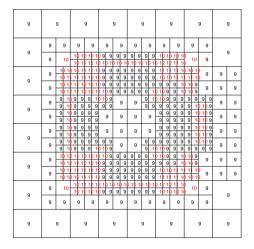
Overloaded box: box contained in more than $(p_1 + 1)(p_2 + 1)$ LR B-spline supports.



Overloaded LR B-spline: all the boxes in its support are overloaded.

Remark: In every box we span the polynomial space $\Pi_{p} \Rightarrow$ each box is in at least $(p_1 + 1)(p_2 + 1) = \dim \Pi_{p}$ LR B-spline supports.

Overloaded box: box contained in more than $(p_1 + 1)(p_2 + 1)$ LR B-spline supports.

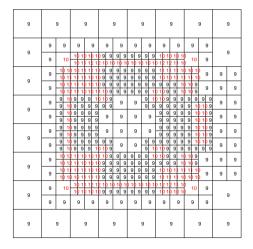


Overloaded LR B-spline: all the boxes in its support are overloaded.

Only overloaded LR B-splines can be in a linear dependence relation.

Remark: In every box we span the polynomial space $\Pi_{p} \Rightarrow$ each box is in at least $(p_1 + 1)(p_2 + 1) = \dim \Pi_{p}$ LR B-spline supports.

Overloaded box: box contained in more than $(p_1 + 1)(p_2 + 1)$ LR B-spline supports.

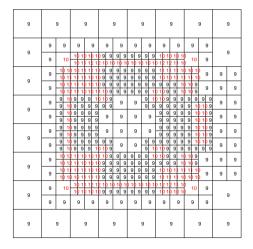


Overloaded LR B-spline: all the boxes in its support are overloaded.

- **Only overloaded LR B-splines can be in a linear dependence relation.**
- A linear dependence relation needs at least 2 functions.

Remark: In every box we span the polynomial space $\Pi_{p} \Rightarrow$ each box is in at least $(p_1 + 1)(p_2 + 1) = \dim \Pi_{p}$ LR B-spline supports.

Overloaded box: box contained in more than $(p_1 + 1)(p_2 + 1)$ LR B-spline supports.



Overloaded LR B-spline: all the boxes in its support are overloaded.

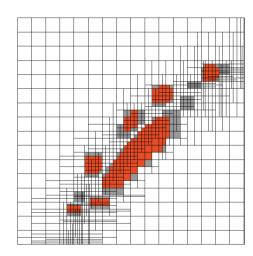
- **Only overloaded LR B-splines can be in a linear dependence relation.**
- $\ensuremath{\mathbbmath{\mathbb{P}}}$ A linear dependence relation needs at least 2 functions.
- \Rightarrow If a box is just in one overloaded LR B-spline *B*, then *B* cannot be part of a linear dependence relation.

Peeling Algorithm

- 1 Create the set ${\mathcal B}^{\mathcal O}$ of overloaded LR B-splines;
- 2 Let \mathcal{E}^{O} be the boxes of the LR B-splines in \mathcal{B}^{O} ;
- 3 for every box in \mathcal{E}^O do
- 4 Identify the set $\mathcal{B}_1^O \subseteq \mathcal{B}^O$ of those having a box covered by no other LR B-splines in \mathcal{B}^O ;
- 5 if $\mathcal{B}^O \setminus \mathcal{B}^O_1 = \emptyset$ then
- 6 | linear independence, break.

7 else

- 8 | if $\mathcal{B}_1^O = \emptyset$ then
 - break, but might have linear dependence
- 10 $\mathbb{B}^{O} \leftarrow \mathbb{B}^{O} \setminus \mathbb{B}_{1}^{O};$
- 11 Go to 2;

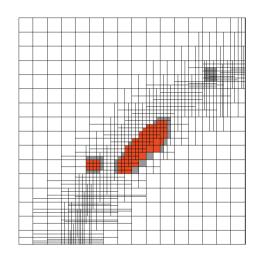


Peeling Algorithm

- 1 Create the set ${\mathcal B}^{\mathcal O}$ of overloaded LR B-splines;
- 2 Let \mathcal{E}^{O} be the boxes of the LR B-splines in \mathcal{B}^{O} ;
- 3 for every box in \mathcal{E}^O do
- 4 Identify the set $\mathcal{B}_1^O \subseteq \mathcal{B}^O$ of those having a box covered by no other LR B-splines in \mathcal{B}^O ;
- 5 if $\mathcal{B}^O \setminus \mathcal{B}^O_1 = \emptyset$ then
- 6 linear independence, break.

7 else

- 8 | if $\mathcal{B}_1^O = \emptyset$ then
 - break, but might have linear dependence
- 10 $\mathbb{B}^{O} \leftarrow \mathbb{B}^{O} \setminus \mathbb{B}_{1}^{O};$
- 11 Go to 2;

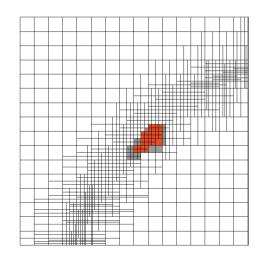


Peeling Algorithm

- 1 Create the set $\mathcal{B}^{\mathcal{O}}$ of overloaded LR B-splines;
- 2 Let \mathcal{E}^{O} be the boxes of the LR B-splines in \mathcal{B}^{O} ;
- 3 for every box in \mathcal{E}^O do
- 4 Identify the set $\mathcal{B}_1^O \subseteq \mathcal{B}^O$ of those having a box covered by no other LR B-splines in \mathcal{B}^O ;
- 5 if $\mathcal{B}^O \setminus \mathcal{B}^O_1 = \emptyset$ then
- 6 | linear independence, break.

7 else

- 8 | if $\mathcal{B}_1^O = \emptyset$ then
 - break, but might have linear dependence
- 10 $\mathbb{B}^{O} \leftarrow \mathbb{B}^{O} \setminus \mathbb{B}_{1}^{O};$
- 11 Go to 2;

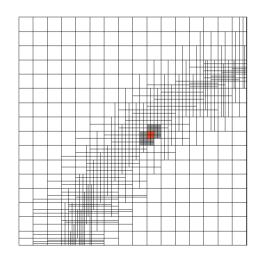


Peeling Algorithm

- 1 Create the set $\mathcal{B}^{\mathcal{O}}$ of overloaded LR B-splines;
- 2 Let \mathcal{E}^{O} be the boxes of the LR B-splines in \mathcal{B}^{O} ;
- 3 for every box in \mathcal{E}^O do
- 4 Identify the set $\mathcal{B}_1^O \subseteq \mathcal{B}^O$ of those having a box covered by no other LR B-splines in \mathcal{B}^O ;
- 5 if $\mathcal{B}^O \setminus \mathcal{B}^O_1 = \emptyset$ then
- 6 | linear independence, break.

7 else

- 8 | if $\mathcal{B}_1^O = \emptyset$ then
 - break, but might have linear dependence
- 10 $\mathbb{B}^{O} \leftarrow \mathbb{B}^{O} \setminus \mathbb{B}_{1}^{O};$
- 11 Go to 2;



Peeling Algorithm

- 1 Create the set ${\mathcal B}^{\mathcal O}$ of overloaded LR B-splines;
- 2 Let \mathcal{E}^{O} be the boxes of the LR B-splines in \mathcal{B}^{O} ;
- 3 for every box in \mathcal{E}^O do
- 4 Identify the set $\mathcal{B}_1^O \subseteq \mathcal{B}^O$ of those having a box covered by no other LR B-splines in \mathcal{B}^O ;
- 5 if $\mathcal{B}^O \setminus \mathcal{B}^O_1 = \emptyset$ then
- 6 | linear independence, break.

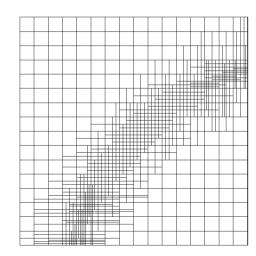
7 else

g

8 | if $\mathcal{B}_1^O = \emptyset$ then

break, but might have linear dependence

- 10 $\mathcal{B}^{O} \leftarrow \mathcal{B}^{O} \setminus \mathcal{B}_{1}^{O};$
- 11 Go to 2;



Peeling Algorithm

```
1 Create the set \mathcal{B}^{O} of overloaded LR B-splines;
 2 Let \mathcal{E}^{O} be the boxes of the LR B-splines in \mathcal{B}^{O}:
 3 for every box in \mathcal{E}^{O} do
           Identify the set \mathcal{B}_1^O \subset \mathcal{B}^O of those having a box
 Δ
           covered by no other LR B-splines in \mathcal{B}^{O};
 5 if \mathcal{B}^{O} \setminus \mathcal{B}_{1}^{O} = \emptyset then
         linear independence, break.
 7 else
        if \mathcal{B}_1^O = \emptyset then
 8
        break, but might have linear dependence
 9
10 \mathbb{B}^{O} \leftarrow \mathbb{B}^{O} \setminus \mathbb{B}^{O}_{1}:
11
           Go to 2:
```


Peeling Algorithm Peeling Algorithm++ 1 Create the set \mathcal{B}^{O} of overloaded LR B-splines: 1 Create the set \mathcal{B}^{O} of overloaded LR B-splines; **2** Let \mathcal{E}^{O} be the boxes of the LR B-splines in \mathcal{B}^{O} : **2** Let \mathcal{E}^{O} be the boxes of the LR B-splines in \mathcal{B}^{O} : **3** Let \mathcal{V}^{O} be the T-vertices of the LR B-splines in \mathcal{B}^{O} : **3** for every box in \mathcal{E}^{O} do Identify the set $\mathcal{B}_1^O \subseteq \mathcal{B}^O$ of those having a box **4** for every box in \mathcal{E}^O do covered by no other LR B-splines in \mathcal{B}^{O} ; Identify the set $\mathcal{B}_1^O \subset \mathcal{B}^O$ of those having a box 5 covered by no other LR B-splines in $\mathcal{B}^{\mathcal{O}}$; 5 if $\mathcal{B}^{O} \setminus \mathcal{B}_{1}^{O} = \emptyset$ then linear independence, break. **6** for every *T*-vertex **v** in \mathcal{V}^O do **7** | If **v** is only in one $B \in \mathcal{B}^{O}$, add B to \mathcal{B}_{1}^{O} ; 7 else if $\mathcal{B}_1^O = \emptyset$ then 8 8 if $|\mathcal{B}^O \setminus \mathcal{B}_1^O| < 8$ then break, but might have linear dependence linear independence, break. Q $\mathcal{B}^{O} \leftarrow \mathcal{B}^{O} \setminus \mathcal{B}_{1}^{O}$: 10 10 else 11 Go to 2: if $\mathcal{B}_1^O = \emptyset$ then 11 12 break, but might have linear dependence

> **13** $\mathcal{B}^{O} \leftarrow \mathcal{B}^{O} \setminus \mathcal{B}_{1}^{O};$ **14** Go to 2:

Peeling Algorithm Peeling Algorithm++ 1 Create the set \mathcal{B}^{O} of overloaded LR B-splines; 1 Create the set \mathcal{B}^{O} of overloaded LR B-splines; **2** Let \mathcal{E}^{O} be the boxes of the LR B-splines in \mathcal{B}^{O} : **2** Let \mathcal{E}^{O} be the boxes of the LR B-splines in \mathcal{B}^{O} : 3 Let \mathcal{V}^{O} be the T-vertices of the LR B-splines in \mathcal{B}^{O} : **3** for every box in \mathcal{E}^{O} do Identify the set $\mathcal{B}_1^O \subseteq \mathcal{B}^O$ of those having a box **4** for every box in \mathcal{E}^O do covered by no other LR B-splines in $\mathcal{B}^{\mathcal{O}}$; **5** | Identify the set $\mathcal{B}_1^O \subseteq \mathcal{B}^O$ of those having a box covered by no other LR B-splines in $\mathcal{B}^{\mathcal{O}}$; 5 if $\mathcal{B}^{O} \setminus \mathcal{B}_{1}^{O} = \emptyset$ then linear independence, break. **6** for every *T*-vertex \mathbf{v} in \mathcal{V}^O do **7** | If **v** is only in one $B \in \mathcal{B}^{O}$, add B to \mathcal{B}_{1}^{O} ; 7 else if $\mathcal{B}_1^O = \emptyset$ then 8 8 if $|\mathcal{B}^{O} \setminus \mathcal{B}_{1}^{O}| < 8$ then break, but might have linear dependence linear independence, break. 0 10 $\mathbb{B}^{O} \leftarrow \mathbb{B}^{O} \setminus \mathbb{B}^{O}_{1}$: 10 else 11 Go to 2; **if** $\mathcal{B}_1^O = \emptyset$ then 11 12 break, but might have linear dependence

13 $\begin{bmatrix} B^{O} \leftarrow B^{O} \setminus B_{1}^{O}; \\ Go to 2; \end{bmatrix}$

Conjecture: Peeling Algorithm++ sorts out all cases, if $\mathcal{B}_1^O = \emptyset$ then there is a linear dependece relation.

Local linear independence and N₂S property

On the other hand, local linear independence has been characterized by Bressan and Jüttler.

Local linear independence and N_2S property

On the other hand, local linear independence has been characterized by Bressan and Jüttler.

Local linear independence: \nexists open set $A \subseteq \Omega$: $\sum_{B \in \mathcal{B}} \alpha_A B|_A = 0$, with α_A not all zero,

Local linear independence and N₂S property

On the other hand, local linear independence has been characterized by Bressan and Jüttler.

Local linear independence: \nexists open set $A \subseteq \Omega$: $\sum_{B \in \mathcal{B}} \alpha_A B|_A = 0$, with α_A not all zero,

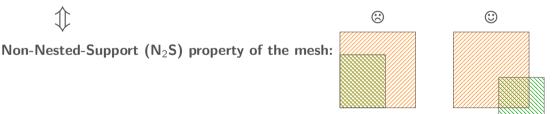
No overloading: \forall cell in the mesh β , $\#\{B \in \mathcal{B} : \beta \in \text{supp } B\} = (p_1 + 1)(p_2 + 1)$,

Local linear independence and N_2S property

On the other hand, local linear independence has been characterized by Bressan and Jüttler.

Local linear independence: \nexists open set $A \subseteq \Omega$: $\sum_{B \in \mathfrak{B}} \alpha_A B|_A = 0$, with α_A not all zero,

No overloading: \forall cell in the mesh β , $\#\{B \in \mathcal{B} : \beta \in \text{supp } B\} = (p_1 + 1)(p_2 + 1)$,



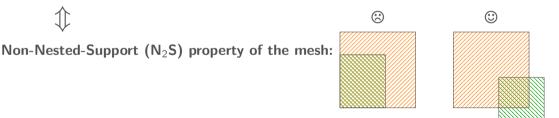
 $\nexists B^1, B^2$ such that supp $B^2 \subseteq \text{supp } B^1$.

Local linear independence and $N_2 \boldsymbol{S}$ property

On the other hand, local linear independence has been characterized by Bressan and Jüttler.

Local linear independence: \nexists open set $A \subseteq \Omega$: $\sum_{B \in \mathcal{B}} \alpha_A B|_A = 0$, with α_A not all zero,

No overloading: \forall cell in the mesh β , $\#\{B \in \mathcal{B} : \beta \in \text{supp } B\} = (p_1 + 1)(p_2 + 1)$,



 $\nexists B^1, B^2$ such that supp $B^2 \subseteq \text{supp } B^1$.

How do we build LR meshes with the N_2S property?

1. select the LR B-spline contributing more to the approximation error (in some sense),

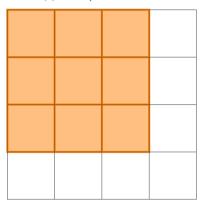
A REAL PROPERTY OF LAND

Non-Nested Support Structured (N_2S_2) Mesh Refinement

- select the LR B-spline contributing more to the approximation error (in some sense),
 split in 4 all the boxes in their supports (i.e., insert new meshlines)
- 2. split in 4 all the boxes in their supports (i.e., insert new meshlines),

select the LR B-spline contributing more to the approximation error (in some sense),
 split in 4 all the boxes in their supports (i.e., insert new meshlines),

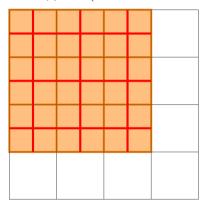
select the LR B-spline contributing more to the approximation error (in some sense),
 split in 4 all the boxes in their supports (i.e., insert new meshlines),



A REAL PROPERTY OF A REAL PROPER

Non-Nested Support Structured (N_2S_2) Mesh Refinement

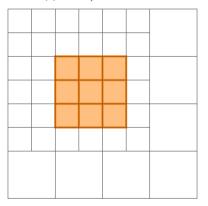
select the LR B-spline contributing more to the approximation error (in some sense),
 split in 4 all the boxes in their supports (i.e., insert new meshlines),



A CALL AND A CALL AND

Non-Nested Support Structured (N_2S_2) Mesh Refinement

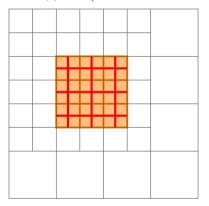
select the LR B-spline contributing more to the approximation error (in some sense),
 split in 4 all the boxes in their supports (i.e., insert new meshlines),



A CONTRACTOR OF A CONTRACTOR O

Non-Nested Support Structured (N_2S_2) Mesh Refinement

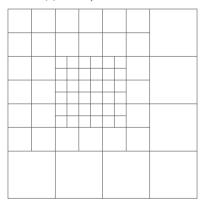
select the LR B-spline contributing more to the approximation error (in some sense),
 split in 4 all the boxes in their supports (i.e., insert new meshlines),



A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONT

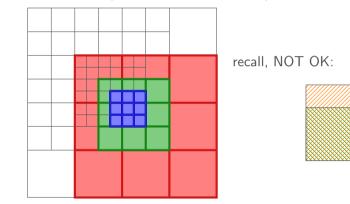
Non-Nested Support Structured (N_2S_2) Mesh Refinement

select the LR B-spline contributing more to the approximation error (in some sense),
 split in 4 all the boxes in their supports (i.e., insert new meshlines),



final mesh

select the LR B-spline contributing more to the approximation error (in some sense),
 split in 4 all the boxes in their supports (i.e., insert new meshlines),



final mesh (no N_2S property)

A REAL PROPERTY OF LAND

Non-Nested Support Structured (N_2S_2) Mesh Refinement

- select the LR B-spline contributing more to the approximation error (in some sense),
 split in 4 all the boxes in their supports (i.e., insert new meshlines)
- 2. split in 4 all the boxes in their supports (i.e., insert new meshlines),

27 / 39

Non-Nested Support Structured (N₂S₂) Mesh Refinement

select the LR B-spline contributing more to the approximation error (in some sense),
 split in 4 all the boxes in their supports (i.e., insert new meshlines),

B-splines defined on a plain tensor mesh are locally linearly independent. The meshes generated with 1.-2. are locally tensor meshes far from the boundary of the region where the refinement is applied.

27 / 39

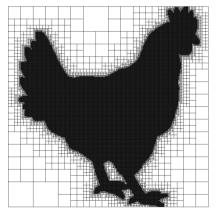
Non-Nested Support Structured (N_2S_2) Mesh Refinement

select the LR B-spline contributing more to the approximation error (in some sense),
 split in 4 all the boxes in their supports (i.e., insert new meshlines),

- B-splines defined on a plain tensor mesh are locally linearly independent. The meshes generated with 1.-2. are locally tensor meshes far from the boundary of the region where the refinement is applied.
- $\Rightarrow \mbox{ The LR B-splines defined in these zones of the mesh behave like the standard B-splines, and therefore are locally linearly independent.}$

select the LR B-spline contributing more to the approximation error (in some sense),
 split in 4 all the boxes in their supports (i.e., insert new meshlines),

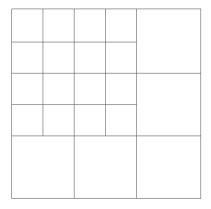
- B-splines defined on a plain tensor mesh are locally linearly independent. The meshes generated with 1.-2. are locally tensor meshes far from the boundary of the region where the refinement is applied.
- ⇒ The LR B-splines defined in these zones of the mesh behave like the standard B-splines, and therefore are locally linearly independent.

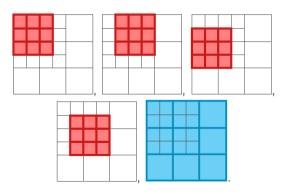


A REAL PROPERTY OF A REAL PROPER

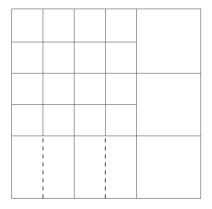
- 1. select the LR B-spline contributing more to the approximation error (in some sense),
- 2. split in 4 all the boxes in their supports (i.e., insert new meshlines),
- 3. modify the boundary of the region where the refinement is applied

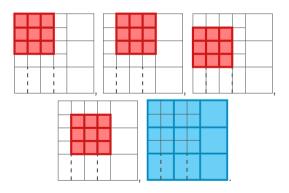
- 1. select the LR B-spline contributing more to the approximation error (in some sense),
- 2. split in 4 all the boxes in their supports (i.e., insert new meshlines),
- 3. modify the boundary of the region where the refinement is applied



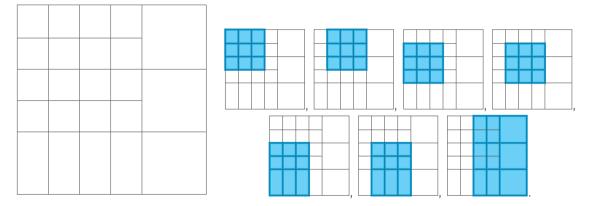


- 1. select the LR B-spline contributing more to the approximation error (in some sense),
- 2. split in 4 all the boxes in their supports (i.e., insert new meshlines),
- 3. modify the boundary of the region where the refinement is applied

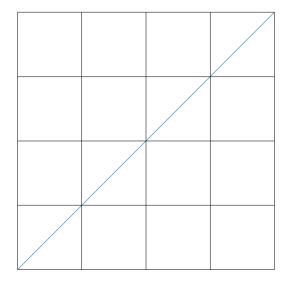




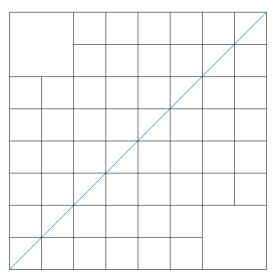
- 1. select the LR B-spline contributing more to the approximation error (in some sense),
- 2. split in 4 all the boxes in their supports (i.e., insert new meshlines),
- 3. modify the boundary of the region where the refinement is applied
- 4. apply the LR B-splines generation algorithm to refine the space.



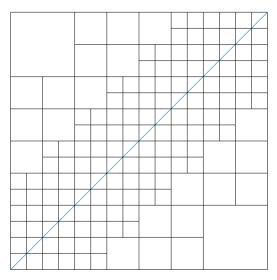
Non-Nested Support Structured (N_2S_2) Mesh Refinement Example: degree (2, 2).



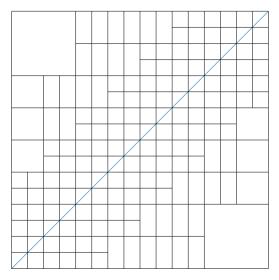
Non-Nested Support Structured (N₂S₂) Mesh Refinement Example: degree (2,2).

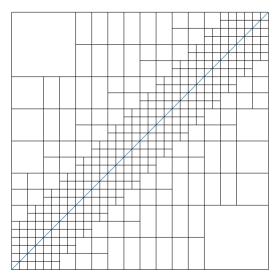


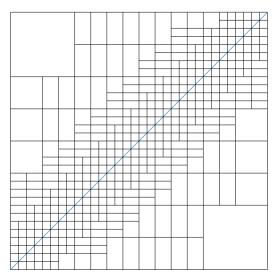
Non-Nested Support Structured (N₂S₂) Mesh Refinement Example: degree (2,2).

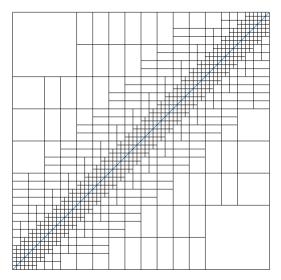


Non-Nested Support Structured (N₂S₂) Mesh Refinement Example: degree (2,2).

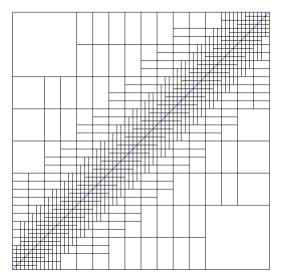


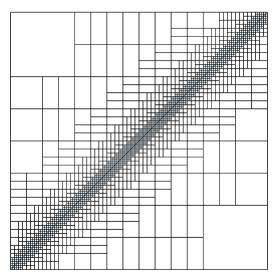




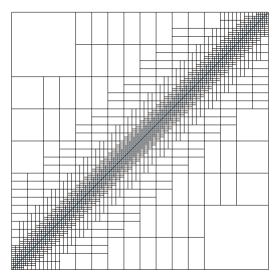


Non-Nested Support Structured (N₂S₂) Mesh Refinement Example: degree (2,2).

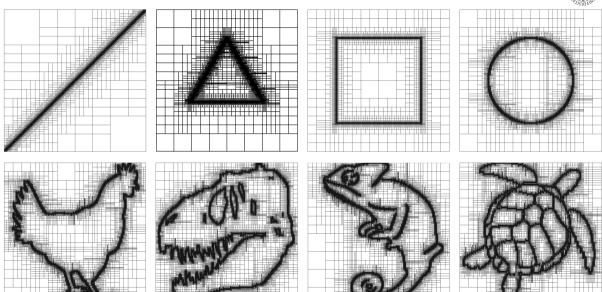




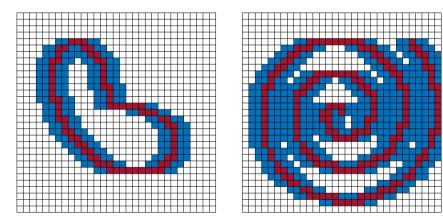
Non-Nested Support Structured (N₂S₂) Mesh Refinement Example: degree (2,2).



Non-Nested Support Structured (N_2S_2) Mesh Refinement



Hierarchical LR-Mesh Costruction Shadow Map:



- $\mathcal{N}^{\ell+1}$ tensor mesh obtained bisecting the boxes of \mathcal{N}^{ℓ} in one direction alternately on ℓ ,
- $\Omega = \Omega^0 \supseteq \ldots \supseteq \Omega^m$ sequence of nested domains with Ω^ℓ union of boxes in \mathcal{N}^ℓ ,

Shadow Map: A bunch of boxes in a tensor mesh \mathcal{N} , the horizontal shadow of A, SA is the superset obtained moving the boundary outward of p_1 more boxes in the horizontal direction.

- $\mathcal{N}^{\ell+1}$ tensor mesh obtained bisecting the boxes of \mathcal{N}^{ℓ} in one direction alternately on ℓ ,
- $\Omega = \Omega^0 \supseteq \ldots \supseteq \Omega^m$ sequence of nested domains with Ω^ℓ union of boxes in \mathfrak{N}^ℓ ,

Hierarchical LR-mesh: $\bigcup_{\ell=0} \{\beta \text{ boxes of } \mathcal{N}^{\ell} \text{ inside } \Omega^{\ell} \setminus \Omega^{\ell+1} \}$

- $\mathcal{N}^{\ell+1}$ tensor mesh obtained bisecting the boxes of \mathcal{N}^{ℓ} in one direction alternately on ℓ ,
- $\Omega = \Omega^0 \supseteq \ldots \supseteq \Omega^m$ sequence of nested domains with Ω^ℓ union of boxes in \mathcal{N}^ℓ , **Hierarchical LR-mesh:** $[]{\beta \text{ boxes of } \mathcal{N}^\ell \text{ inside } \Omega^\ell \setminus \Omega^{\ell+1} }$
- **Theorem:** If $\Omega^{\ell} \supseteq S\Omega^{\ell+1}$ for every ℓ then the Hierarchical LR-mesh has the N_2S property.

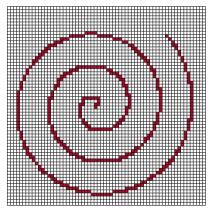
Shadow Map: A bunch of boxes in a tensor mesh \mathcal{N} , the horizontal shadow of A, SA is the superset obtained moving the boundary outward of p_1 more boxes in the horizontal direction.

- $\mathcal{N}^{\ell+1}$ tensor mesh obtained bisecting the boxes of \mathcal{N}^ℓ in one direction alternately on $\ell,$
- $\Omega = \Omega^0 \supseteq \ldots \supseteq \Omega^m$ sequence of nested domains with Ω^ℓ union of boxes in \mathcal{N}^ℓ ,

Hierarchical LR-mesh: $\bigcup \{\beta \text{ boxes of } \mathcal{N}^{\ell} \text{ inside } \Omega^{\ell} \setminus \Omega^{\ell+1} \}$

Theorem: If $\Omega^{\ell} \supseteq S\Omega^{\ell+1}$ for every ℓ then the Hierarchical LR-mesh has the N_2S property.

1. select the refinement region and max resolution m,

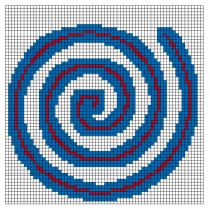


Shadow Map: A bunch of boxes in a tensor mesh \mathcal{N} , the horizontal shadow of A, SA is the superset obtained moving the boundary outward of p_1 more boxes in the horizontal direction.

- $\mathcal{N}^{\ell+1}$ tensor mesh obtained bisecting the boxes of \mathcal{N}^ℓ in one direction alternately on $\ell,$
- $\Omega = \Omega^0 \supseteq \ldots \supseteq \Omega^m$ sequence of nested domains with Ω^ℓ union of boxes in \mathcal{N}^ℓ ,

Hierarchical LR-mesh: $\bigcup \{\beta \text{ boxes of } \mathcal{N}^{\ell} \text{ inside } \Omega^{\ell} \setminus \Omega^{\ell+1} \}$

- 1. select the refinement region and max resolution m,
- 2. select the boxes in the supports of the tensor product B-splines on $\ensuremath{\mathbb{N}}^m$ touching the region,

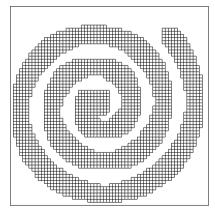


Shadow Map: A bunch of boxes in a tensor mesh \mathcal{N} , the horizontal shadow of A, SA is the superset obtained moving the boundary outward of p_1 more boxes in the horizontal direction.

- $\mathcal{N}^{\ell+1}$ tensor mesh obtained bisecting the boxes of \mathcal{N}^ℓ in one direction alternately on $\ell,$
- $\Omega = \Omega^0 \supseteq \ldots \supseteq \Omega^m$ sequence of nested domains with Ω^ℓ union of boxes in \mathcal{N}^ℓ ,

Hierarchical LR-mesh: $\bigcup \{\beta \text{ boxes of } \mathcal{N}^{\ell} \text{ inside } \Omega^{\ell} \setminus \Omega^{\ell+1} \}$

- 1. select the refinement region and max resolution m,
- 2. select the boxes in the supports of the tensor product B-splines on $\ensuremath{\mathbb{N}}^m$ touching the region,

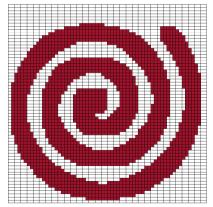


Shadow Map: A bunch of boxes in a tensor mesh \mathcal{N} , the horizontal shadow of A, SA is the superset obtained moving the boundary outward of p_1 more boxes in the horizontal direction.

- $\mathcal{N}^{\ell+1}$ tensor mesh obtained bisecting the boxes of \mathcal{N}^ℓ in one direction alternately on $\ell,$
- $\Omega = \Omega^0 \supseteq \ldots \supseteq \Omega^m$ sequence of nested domains with Ω^ℓ union of boxes in \mathcal{N}^ℓ ,

Hierarchical LR-mesh: $\bigcup \{\beta \text{ boxes of } \mathbb{N}^{\ell} \text{ inside } \Omega^{\ell} \setminus \Omega^{\ell+1} \}$

- 1. select the refinement region and max resolution m,
- 2. select the boxes in the supports of the tensor product B-splines on $\ensuremath{\mathcal{N}}^m$ touching the region,
- 3. embed this new region inside \mathcal{N}^{m-1} which is coarser in one direction,

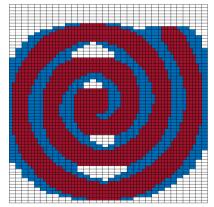


Shadow Map: A bunch of boxes in a tensor mesh \mathcal{N} , the horizontal shadow of A, SA is the superset obtained moving the boundary outward of p_1 more boxes in the horizontal direction.

- $\mathcal{N}^{\ell+1}$ tensor mesh obtained bisecting the boxes of \mathcal{N}^ℓ in one direction alternately on $\ell,$
- $\Omega = \Omega^0 \supseteq \ldots \supseteq \Omega^m$ sequence of nested domains with Ω^ℓ union of boxes in \mathcal{N}^ℓ ,

Hierarchical LR-mesh: $\bigcup \{\beta \text{ boxes of } \mathcal{N}^{\ell} \text{ inside } \Omega^{\ell} \setminus \Omega^{\ell+1} \}$

- 1. select the refinement region and max resolution m,
- 2. select the boxes in the supports of the tensor product B-splines on $\ensuremath{\mathcal{N}}^m$ touching the region,
- 3. embed this new region inside \mathbb{N}^{m-1} which is coarser in one direction,
- 4. compute the shadow along the coarser direction in \mathbb{N}^{m-1} ,

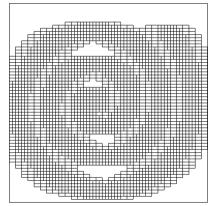


Shadow Map: A bunch of boxes in a tensor mesh \mathcal{N} , the horizontal shadow of A, SA is the superset obtained moving the boundary outward of p_1 more boxes in the horizontal direction.

- $\mathcal{N}^{\ell+1}$ tensor mesh obtained bisecting the boxes of \mathcal{N}^ℓ in one direction alternately on $\ell,$
- $\Omega = \Omega^0 \supseteq \ldots \supseteq \Omega^m$ sequence of nested domains with Ω^ℓ union of boxes in \mathcal{N}^ℓ ,

Hierarchical LR-mesh: $\bigcup \{\beta \text{ boxes of } \mathcal{N}^{\ell} \text{ inside } \Omega^{\ell} \setminus \Omega^{\ell+1} \}$

- 1. select the refinement region and max resolution m,
- 2. select the boxes in the supports of the tensor product B-splines on $\ensuremath{\mathcal{N}}^m$ touching the region,
- 3. embed this new region inside $\ensuremath{\mathbb{N}}^{m-1}$ which is coarser in one direction,
- 4. compute the shadow along the coarser direction in \mathbb{N}^{m-1} ,
- 5. select the boxes enclosed in this new boundary,

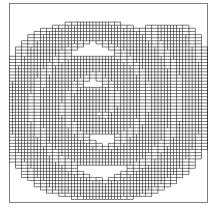


Shadow Map: A bunch of boxes in a tensor mesh \mathcal{N} , the horizontal shadow of A, SA is the superset obtained moving the boundary outward of p_1 more boxes in the horizontal direction.

- $\mathcal{N}^{\ell+1}$ tensor mesh obtained bisecting the boxes of \mathcal{N}^ℓ in one direction alternately on $\ell,$
- $\Omega = \Omega^0 \supseteq \ldots \supseteq \Omega^m$ sequence of nested domains with Ω^ℓ union of boxes in \mathcal{N}^ℓ ,

Hierarchical LR-mesh: $\bigcup \{\beta \text{ boxes of } \mathcal{N}^{\ell} \text{ inside } \Omega^{\ell} \setminus \Omega^{\ell+1} \}$

- 1. select the refinement region and max resolution m,
- 2. select the boxes in the supports of the tensor product B-splines on $\ensuremath{\mathcal{N}}^m$ touching the region,
- 3. embed this new region inside \mathbb{N}^{m-1} which is coarser in one direction,
- 4. compute the shadow along the coarser direction in \mathbb{N}^{m-1} ,
- ${\bf 5.}\,$ select the boxes enclosed in this new boundary,
- **6.** repeat 3.-5. for coarser meshes switching the shadow direction until the mesh is complete.

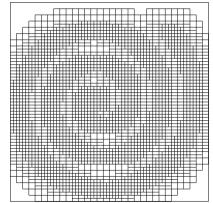


Shadow Map: A bunch of boxes in a tensor mesh \mathcal{N} , the horizontal shadow of A, SA is the superset obtained moving the boundary outward of p_1 more boxes in the horizontal direction.

- $\mathcal{N}^{\ell+1}$ tensor mesh obtained bisecting the boxes of \mathcal{N}^ℓ in one direction alternately on $\ell,$
- $\Omega = \Omega^0 \supseteq \ldots \supseteq \Omega^m$ sequence of nested domains with Ω^ℓ union of boxes in \mathcal{N}^ℓ ,

Hierarchical LR-mesh: $\bigcup \{\beta \text{ boxes of } \mathbb{N}^{\ell} \text{ inside } \Omega^{\ell} \setminus \Omega^{\ell+1} \}$

- 1. select the refinement region and max resolution m,
- 2. select the boxes in the supports of the tensor product B-splines on $\ensuremath{\mathcal{N}}^m$ touching the region,
- 3. embed this new region inside \mathcal{N}^{m-1} which is coarser in one direction,
- 4. compute the shadow along the coarser direction in \mathbb{N}^{m-1} ,
- 5. select the boxes enclosed in this new boundary,
- **6.** repeat 3.-5. for coarser meshes switching the shadow direction until the mesh is complete.

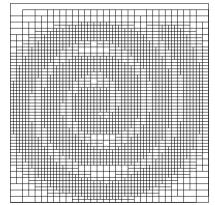


Shadow Map: A bunch of boxes in a tensor mesh \mathcal{N} , the horizontal shadow of A, SA is the superset obtained moving the boundary outward of p_1 more boxes in the horizontal direction.

- $\mathcal{N}^{\ell+1}$ tensor mesh obtained bisecting the boxes of \mathcal{N}^ℓ in one direction alternately on $\ell,$
- $\Omega = \Omega^0 \supseteq \ldots \supseteq \Omega^m$ sequence of nested domains with Ω^ℓ union of boxes in \mathcal{N}^ℓ ,

Hierarchical LR-mesh: $\bigcup \{\beta \text{ boxes of } \mathcal{N}^{\ell} \text{ inside } \Omega^{\ell} \setminus \Omega^{\ell+1} \}$

- 1. select the refinement region and max resolution m,
- 2. select the boxes in the supports of the tensor product B-splines on $\ensuremath{\mathcal{N}}^m$ touching the region,
- 3. embed this new region inside \mathcal{N}^{m-1} which is coarser in one direction,
- 4. compute the shadow along the coarser direction in \mathbb{N}^{m-1} ,
- 5. select the boxes enclosed in this new boundary,
- **6.** repeat 3.–5. for coarser meshes switching the shadow direction until the mesh is complete.

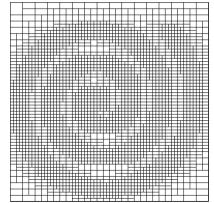


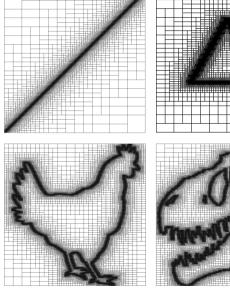
Shadow Map: A bunch of boxes in a tensor mesh \mathcal{N} , the horizontal shadow of A, SA is the superset obtained moving the boundary outward of p_1 more boxes in the horizontal direction.

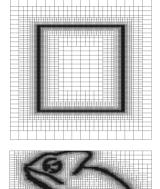
- $\mathcal{N}^{\ell+1}$ tensor mesh obtained bisecting the boxes of \mathcal{N}^ℓ in one direction alternately on $\ell,$
- $\Omega = \Omega^0 \supseteq \ldots \supseteq \Omega^m$ sequence of nested domains with Ω^ℓ union of boxes in \mathcal{N}^ℓ ,

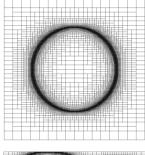
Hierarchical LR-mesh: \bigcup { β boxes of \mathbb{N}^{ℓ} inside $\Omega^{\ell} \setminus \Omega^{\ell+1}$ }

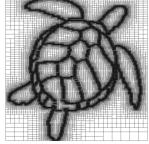
- 1. select the refinement region and max resolution m,
- 2. select the boxes in the supports of the tensor product B-splines on $\ensuremath{\mathcal{N}}^m$ touching the region,
- 3. embed this new region inside \mathcal{N}^{m-1} which is coarser in one direction,
- 4. compute the shadow along the coarser direction in \mathbb{N}^{m-1} ,
- 5. select the boxes enclosed in this new boundary,
- **6.** repeat 3.–5. for coarser meshes switching the shadow direction until the mesh is complete.

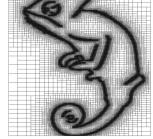






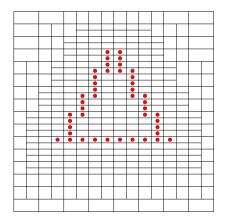




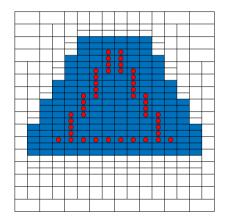


Refinement macro-step:

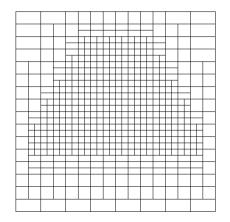
1. Given a set of boxes marked for refinement,



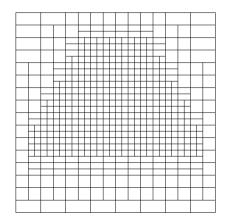
- 1. Given a set of boxes marked for refinement,
- 2. Collect all the LR B-splines whose support intersects the marked boxes,



- 1. Given a set of boxes marked for refinement,
- 2. Collect all the LR B-splines whose support intersects the marked boxes,
- **3.** Halve the boxes of largest diameter in their support (in this case all the boxes in the colored region),



- 1. Given a set of boxes marked for refinement,
- 2. Collect all the LR B-splines whose support intersects the marked boxes,
- **3.** Halve the boxes of largest diameter in their support (in this case all the boxes in the colored region),
- N₂S reinstatement macro-step:

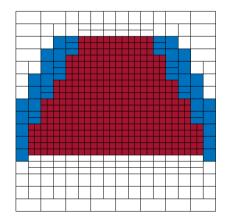


Refinement macro-step:

- 1. Given a set of boxes marked for refinement,
- 2. Collect all the LR B-splines whose support intersects the marked boxes,
- **3.** Halve the boxes of largest diameter in their support (in this case all the boxes in the colored region),

N₂S reinstatement macro-step:

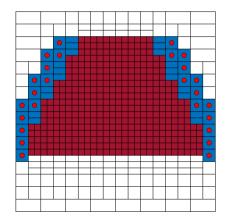
4. Consider the smallest boxes on the mesh and compute the shadow of such region (horizontal if square boxes, vertical if rectangular boxes),



Refinement macro-step:

- 1. Given a set of boxes marked for refinement,
- 2. Collect all the LR B-splines whose support intersects the marked boxes,
- **3.** Halve the boxes of largest diameter in their support (in this case all the boxes in the colored region),

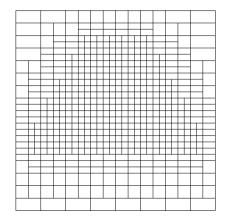
- 4. Consider the smallest boxes on the mesh and compute the shadow of such region (horizontal if square boxes, vertical if rectangular boxes),
- **5.** Mark for refinement those boxes in the shadow that are "too large" compared to the boxes in the red region,



Refinement macro-step:

- 1. Given a set of boxes marked for refinement,
- 2. Collect all the LR B-splines whose support intersects the marked boxes,
- **3.** Halve the boxes of largest diameter in their support (in this case all the boxes in the colored region),

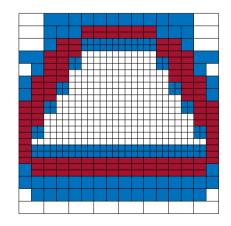
- 4. Consider the smallest boxes on the mesh and compute the shadow of such region (horizontal if square boxes, vertical if rectangular boxes),
- **5.** Mark for refinement those boxes in the shadow that are "too large" compared to the boxes in the red region,
- 6. Halve such larger boxes,



Refinement macro-step:

- 1. Given a set of boxes marked for refinement,
- 2. Collect all the LR B-splines whose support intersects the marked boxes,
- **3.** Halve the boxes of largest diameter in their support (in this case all the boxes in the colored region),

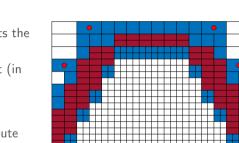
- 4. Consider the smallest boxes on the mesh and compute the shadow of such region (horizontal if square boxes, vertical if rectangular boxes),
- **5.** Mark for refinement those boxes in the shadow that are "too large" compared to the boxes in the red region,
- 6. Halve such larger boxes,
- 7. Iterate over all the boxes from the smaller to the larger.



Refinement macro-step:

- 1. Given a set of boxes marked for refinement,
- 2. Collect all the LR B-splines whose support intersects the marked boxes,
- **3.** Halve the boxes of largest diameter in their support (in this case all the boxes in the colored region),

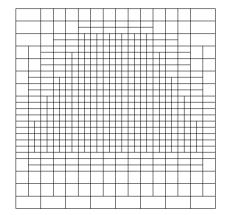
- 4. Consider the smallest boxes on the mesh and compute the shadow of such region (horizontal if square boxes, vertical if rectangular boxes),
- **5.** Mark for refinement those boxes in the shadow that are "too large" compared to the boxes in the red region,
- 6. Halve such larger boxes,
- 7. Iterate over all the boxes from the smaller to the larger.



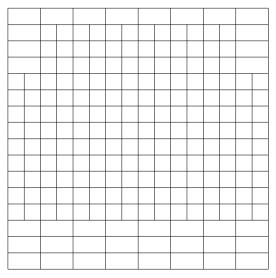
Refinement macro-step:

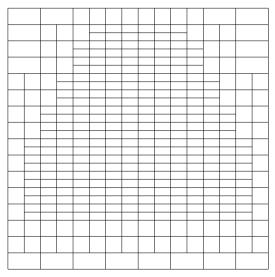
- 1. Given a set of boxes marked for refinement,
- 2. Collect all the LR B-splines whose support intersects the marked boxes,
- **3.** Halve the boxes of largest diameter in their support (in this case all the boxes in the colored region),

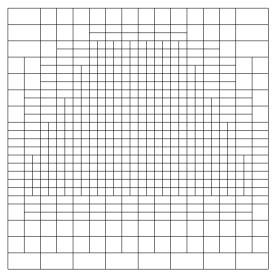
- 4. Consider the smallest boxes on the mesh and compute the shadow of such region (horizontal if square boxes, vertical if rectangular boxes),
- **5.** Mark for refinement those boxes in the shadow that are "too large" compared to the boxes in the red region,
- 6. Halve such larger boxes,
- 7. Iterate over all the boxes from the smaller to the larger.



<table-container> Image <th< th=""><th> </th><th></th><th></th><th></th></th<></table-container>	 			
Image: selection of the				
Image: selection of the selection				
Image: select				
Image				
Image: selection of the				
Image: selection of the selection				
Image: system of the				
Image: selection of the selection				
Image: system of the				
Image: selection of the selection				
Image: selection of the selection				
Image: state Image: state<				
Image: state Image: state<				

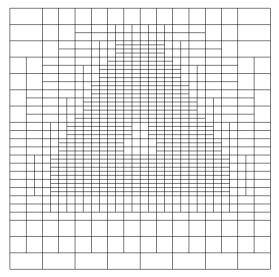


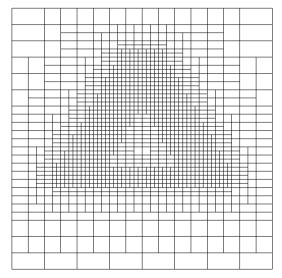


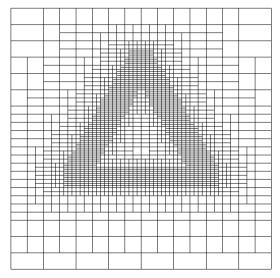


A CONTRACTOR OF A CONTRACTOR O

Effective Grading Refinement Strategy

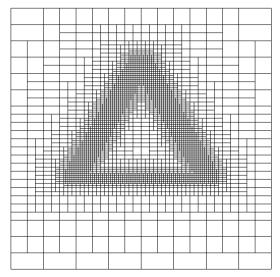


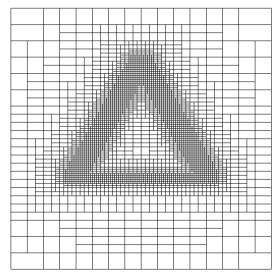


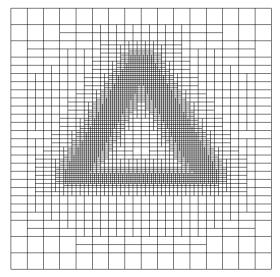


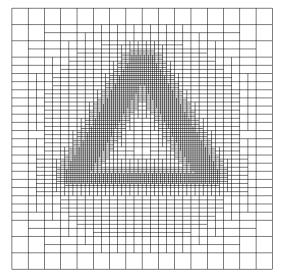
A CONTRACTOR OF A CONTRACTOR O

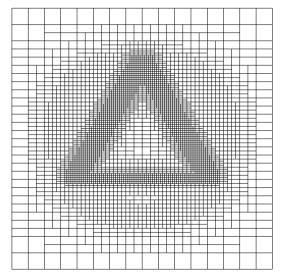
Effective Grading Refinement Strategy

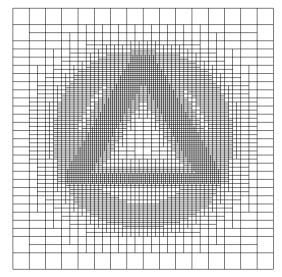


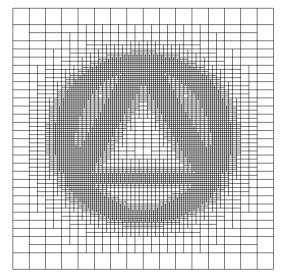


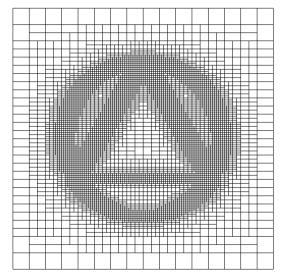


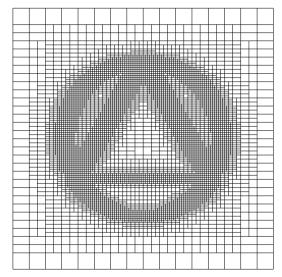


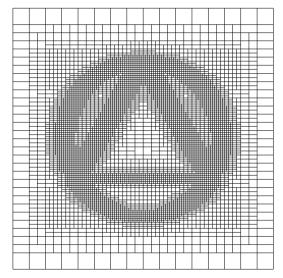


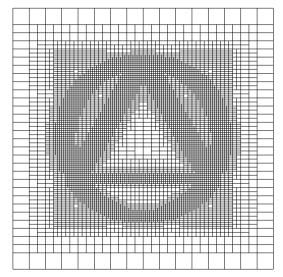


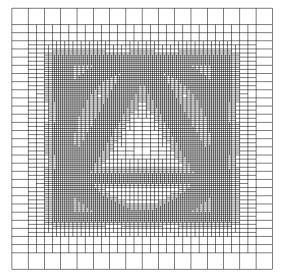


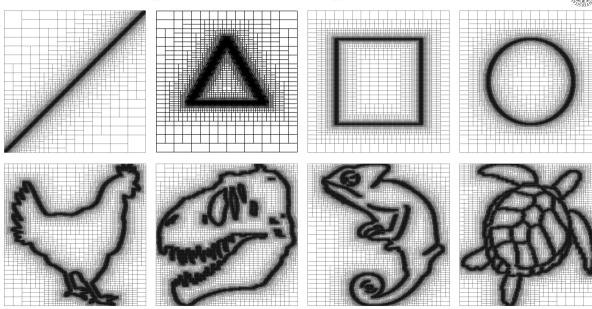


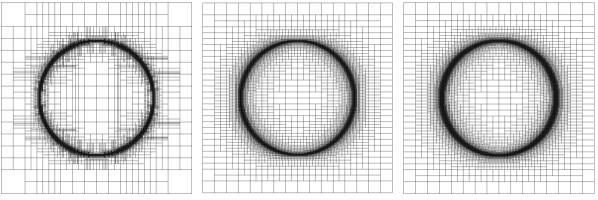












 N_2S_2 10818 LR B-splines

HLR 12374 LR B-splines

EG 15238 LR B-splines

 $\mathcal N$ mesh with local insertions (not necessarily LR mesh)

$$\mathbb{S}(\mathbb{N}) := \begin{cases} f : \mathbb{R}^2 \to \mathbb{R} : \text{supp } f \subseteq \Omega, \\ f|_\beta \text{ is a polynomial of bidegree } \boldsymbol{p} \text{ in any } \beta \text{ box of } \mathbb{N}, \\ f \in C^{p_{3-k}-\mu(\gamma)}\text{-continuous across } \gamma \in \mathbb{N} \text{ in the } k\text{th direction.} \end{cases}$$

>.

 \mathcal{N} mesh with local insertions (not necessarily LR mesh)

 $\mathbb{S}(\mathbb{N}) := \left\{ \begin{array}{l} f: \mathbb{R}^2 \to \mathbb{R} : \text{supp } f \subseteq \Omega, \\ f|_\beta \text{ is a polynomial of bidegree } \boldsymbol{p} \text{ in any } \beta \text{ box of } \mathbb{N}, \\ f \in C^{p_{3-k}-\mu(\gamma)} \text{-continuous across } \gamma \in \mathbb{N} \text{ in the } k\text{th direction.} \end{array} \right\}.$

Dimension formula: In general combinatorial part + homological part.

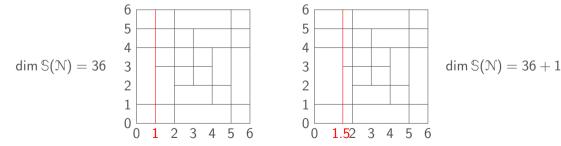
 $\ensuremath{\mathbb{N}}$ mesh with local insertions (not necessarily LR mesh)

$$\mathbb{S}(\mathbb{N}) := \begin{cases} f : \mathbb{R}^2 \to \mathbb{R} : \text{supp } f \subseteq \Omega, \\ f|_\beta \text{ is a polynomial of bidegree } \boldsymbol{p} \text{ in any } \beta \text{ box of } \mathbb{N}, \\ f \in C^{p_{3-k}-\mu(\gamma)}\text{-continuous across } \gamma \in \mathbb{N} \text{ in the } k\text{th direction.} \end{cases}$$

 ${\mathcal N}$ mesh with local insertions (not necessarily LR mesh)

$$\mathbb{S}(\mathbb{N}) := \begin{cases} f : \mathbb{R}^2 \to \mathbb{R} : \text{supp} f \subseteq \Omega, \\ f|_\beta \text{ is a polynomial of bidegree } \boldsymbol{p} \text{ in any } \beta \text{ box of } \mathbb{N}, \\ f \in C^{p_{3-k}-\mu(\gamma)}\text{-continuous across } \gamma \in \mathbb{N} \text{ in the } k\text{th direction.} \end{cases}$$

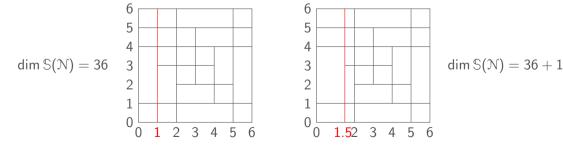
Dimension formula: In general combinartorial part + homological part. The homological part makes it parametrization-dependent \Rightarrow Unstable O



 $\ensuremath{\mathbb{N}}$ mesh with local insertions (not necessarily LR mesh)

$$\mathbb{S}(\mathbb{N}) := \begin{cases} f : \mathbb{R}^2 \to \mathbb{R} : \text{supp} f \subseteq \Omega, \\ f|_\beta \text{ is a polynomial of bidegree } \boldsymbol{p} \text{ in any } \beta \text{ box of } \mathbb{N}, \\ f \in C^{p_{3-k}-\mu(\gamma)} \text{-continuous across } \gamma \in \mathbb{N} \text{ in the } k\text{th direction.} \end{cases}$$

Dimension formula: In general combinartorial part + homological part. The homological part makes it parametrization-dependent \Rightarrow Unstable S

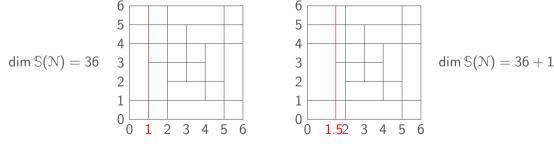


On LR meshes only combinatorial ③.

 $\mathcal N$ mesh with local insertions (not necessarily LR mesh)

$$\mathbb{S}(\mathbb{N}) := \begin{cases} f : \mathbb{R}^2 \to \mathbb{R} : \text{supp} f \subseteq \Omega, \\ f|_\beta \text{ is a polynomial of bidegree } \boldsymbol{p} \text{ in any } \beta \text{ box of } \mathbb{N}, \\ f \in C^{p_{3-k}-\mu(\gamma)}\text{-continuous across } \gamma \in \mathbb{N} \text{ in the } k\text{th direction.} \end{cases}$$

Dimension formula: In general combinartorial part + homological part. The homological part makes it parametrization-dependent \Rightarrow Unstable S



On LR meshes only combinatorial O. HB, THB, LR, $\ldots \subseteq \mathbb{S}(\mathcal{N})$.

Comparison Adaptivity:

Adaptivity: Local Refinement

Adaptivity: Local Refinement + Change Region at any time

Adaptivity: Local Refinement + Change Region at any time

Grading:

THE REPORT OF TH

Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements

Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness:

Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space S(N).

Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space $\mathbb{S}(\mathcal{N})$.

Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space $\mathbb{S}(\mathcal{N})$.

Marking:

 function-based: refine those LR B-splines contributing more to the error,

Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space $\mathbb{S}(\mathcal{N})$.

Marking:

 function-based: refine those LR B-splines contributing more to the error,

▶ box-based: refine those boxes in which a larger error is committed.

Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space $\mathbb{S}(\mathcal{N})$.

Marking:

 function-based: refine those LR B-splines contributing more to the error,

▶ box-based: refine those boxes in which a larger error is committed.

Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space $\mathbb{S}(\mathcal{N})$.

Marking:

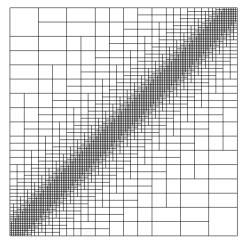
 function-based: refine those LR B-splines contributing more to the error,

▶ box-based: refine those boxes in which a larger error is committed.

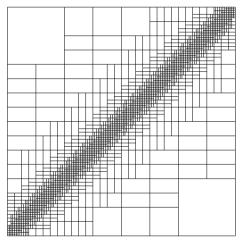
	(Loc.) Lin. Ind.	Adaptivity	Grading	Completeness	Marking
N_2S_2 strategy	✓	✓	×	?	function-based
Hierarchical	Under Assumptions*	×	~	✓	box-based
Effective Grading	✓	~	✓	✓	box-based

*fix maximal resolution and region of refinement *a priori* **Conjecture:** Local Linear Independence \Rightarrow Completeness.

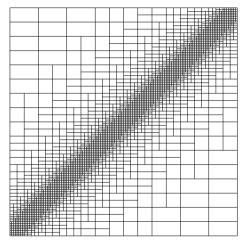
From a refinement localized on a diagonal we switch to the other diagonal to form an "X".



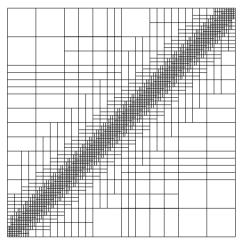
EG: Adaptivity & Grading



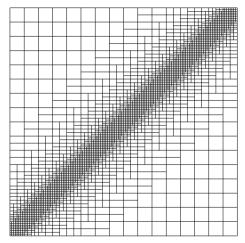
From a refinement localized on a diagonal we switch to the other diagonal to form an "X".



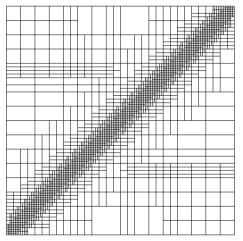
EG: Adaptivity & Grading



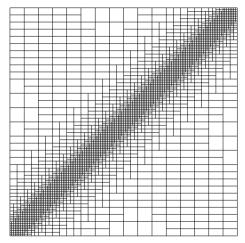
From a refinement localized on a diagonal we switch to the other diagonal to form an "X".



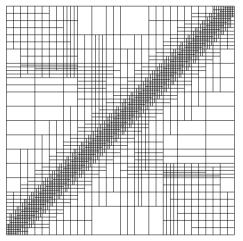
EG: Adaptivity & Grading



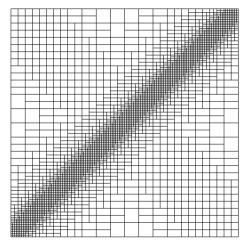
From a refinement localized on a diagonal we switch to the other diagonal to form an "X".



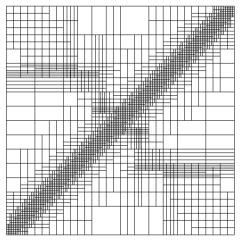
EG: Adaptivity & Grading



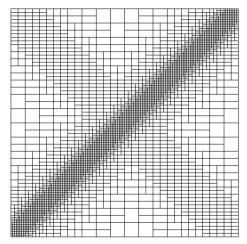
From a refinement localized on a diagonal we switch to the other diagonal to form an "X"



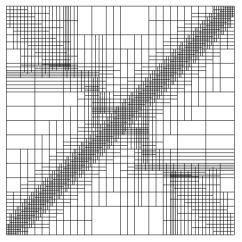
EG: Adaptivity & Grading



From a refinement localized on a diagonal we switch to the other diagonal to form an "X"

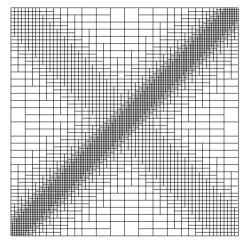


EG: Adaptivity & Grading

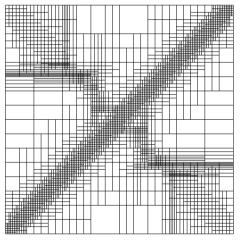


N₂S₂: Adaptivity but no Grading

From a refinement localized on a diagonal we switch to the other diagonal to form an "X"

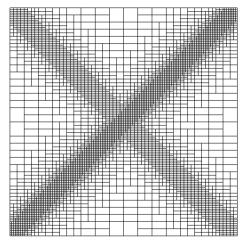


EG: Adaptivity & Grading

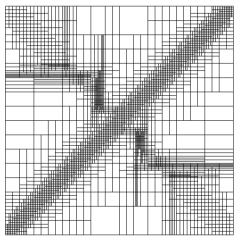


N₂S₂: Adaptivity but no Grading

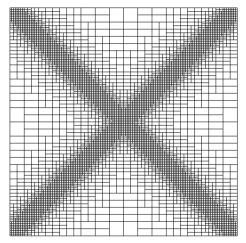
From a refinement localized on a diagonal we switch to the other diagonal to form an "X".



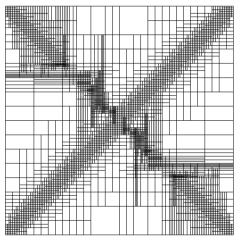
EG: Adaptivity & Grading



From a refinement localized on a diagonal we switch to the other diagonal to form an "X".



EG: Adaptivity & Grading



References

- Bressan, A. (2013). Some properties of LR-splines. CAGD, 30(8), 778-794. Bressan, A., & Jüttler, B. (2015). A hierarchical construction of LR meshes in 2D. CAGD, 37, 9-24. Dokken, T., Lyche, T., & Pettersen, K. F. (2013). Polynomial splines over locally refined box-partitions. CAGD, 30(3), 331-356. Johannessen, K. A., Kvamsdal, T., & Dokken, T. (2014). Isogeometric analysis using LR B-splines. CMAME, 269, 471-514. Patrizi, F. (2022). Effective grading refinement for locally linearly independent LR B-splines. BIT Numerical Mathematics. 1-20.
 - Patrizi, F., & Dokken, T. (2020). *Linear* dependence of bivariate Minimal Support and Locally Refined B-splines over LR-meshes. CAGD, 77, 101803.
 - Patrizi, F., Manni, C., Pelosi, F., & Speleers, H. (2020). Adaptive refinement with locally linearly independent LR B-splines: Theory and applications. CMAME, 369, 113230.