
NextGenerationEU

Funded by the
European Union

CN1 - Spoke 6

An Algorithmic Introduction to LR B-splines
Francesco Patrizi Picture: Acropolis Athens, Greece

A tool for adaptive approximations

Quasi-Interpolation, Meteor Crater, AZ Wind streamlines around a telescope

1 / 39

A tool for adaptive approximations

Quasi-Interpolation, Meteor Crater, AZ Wind streamlines around a telescope

Created by the vikings

T. Dokken T. Lyche K. F. Pettersen

1 / 39

A tool for adaptive approximations

Quasi-Interpolation, Meteor Crater, AZ Wind streamlines around a telescope

Created by the vikings

T. Dokken T. Lyche K. F. Pettersen
1 / 39

Recalling univariate B-splines
(Local) Knot Vector: Given a degree p, ttt = tttp with |tttp| = p + 2 with repetitions

t1 = · · · = tm1︸ ︷︷ ︸
max p+1 times

< tm1+1 = · · · = tm1+m2︸ ︷︷ ︸
max p+1 times

< · · ·

Univariate B-spline: Given a degree p, the B-spline of degree p is defined recursively:

B[ttt](t) =
t − t1

tp+1 − t1
B[t1, . . . , tp+1](t) +

tp+2 − t

tp+2 − t2
B[t2, . . . , tp+2](t),

where each time a fraction with zero denominator appears, it is taken as zero. The initial
B-splines of degree 0 are defined as

B[ti , ti+1](t) :=

1 if ti ≤ t < ti+1;

0 otherwise;

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 / 39

Recalling univariate B-splines
(Local) Knot Vector: Given a degree p, ttt = tttp with |tttp| = p + 2 with repetitions

t1 = · · · = tm1︸ ︷︷ ︸
max p+1 times

< tm1+1 = · · · = tm1+m2︸ ︷︷ ︸
max p+1 times

< · · ·

Univariate B-spline: Given a degree p, the B-spline of degree p is defined recursively:

B[ttt](t) =
t − t1

tp+1 − t1
B[t1, . . . , tp+1](t) +

tp+2 − t

tp+2 − t2
B[t2, . . . , tp+2](t),

where each time a fraction with zero denominator appears, it is taken as zero. The initial
B-splines of degree 0 are defined as

B[ti , ti+1](t) :=

1 if ti ≤ t < ti+1;

0 otherwise;

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 / 39

Recalling univariate B-splines
(Local) Knot Vector: Given a degree p, ttt = tttp with |tttp| = p + 2 with repetitions

t1 = · · · = tm1︸ ︷︷ ︸
max p+1 times

< tm1+1 = · · · = tm1+m2︸ ︷︷ ︸
max p+1 times

< · · ·

Univariate B-spline: Given a degree p, the B-spline of degree p is defined recursively:

B[ttt](t) =
t − t1

tp+1 − t1
B[t1, . . . , tp+1](t) +

tp+2 − t

tp+2 − t2
B[t2, . . . , tp+2](t),

where each time a fraction with zero denominator appears, it is taken as zero. The initial
B-splines of degree 0 are defined as

B[ti , ti+1](t) :=

1 if ti ≤ t < ti+1;

0 otherwise;

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 / 39

Recalling univariate B-splines

p = 2, ttt = (1, 2, 3, 4)

B[ttt](t) =

0 t /∈ [1, 4],
1
2 t

2 − t + 1
2 1 ≤ t < 2,

−t2 + 1
2 t −

11
2 2 ≤ t < 3,

1
2 t

2 − 4t + 8 3 ≤ t ≤ 4.
1 2 3 4

Properties:

▶ B[ttt] ≥ 0,

▶ suppB[ttt] = [t1, tp+2],

▶ B[ttt]|[ti ,ti+1) ∈ Πp,

▶ B[ttt] is Cp−mi -continuous at ti ,

▶ locally linearly independent,

▶ form a partition of unity.

3 / 39

Recalling univariate B-splines

p = 2, ttt = (1, 2, 3, 4)

B[ttt](t) =

0 t /∈ [1, 4],
1
2 t

2 − t + 1
2 1 ≤ t < 2,

−t2 + 1
2 t −

11
2 2 ≤ t < 3,

1
2 t

2 − 4t + 8 3 ≤ t ≤ 4.
1 2 3 4

Properties:

▶ B[ttt] ≥ 0,

▶ suppB[ttt] = [t1, tp+2],

▶ B[ttt]|[ti ,ti+1) ∈ Πp,

▶ B[ttt] is Cp−mi -continuous at ti ,

▶ locally linearly independent,

▶ form a partition of unity.

3 / 39

Recalling univariate B-splines

p = 2, ttt = (1, 2, 3, 4)

B[ttt](t) =

0 t /∈ [1, 4],
1
2 t

2 − t + 1
2 1 ≤ t < 2,

−t2 + 1
2 t −

11
2 2 ≤ t < 3,

1
2 t

2 − 4t + 8 3 ≤ t ≤ 4.
1 2 3 4

Properties:

▶ B[ttt] ≥ 0,

▶ suppB[ttt] = [t1, tp+2],

▶ B[ttt]|[ti ,ti+1) ∈ Πp,

▶ B[ttt] is Cp−mi -continuous at ti ,

▶ locally linearly independent,

▶ form a partition of unity.

3 / 39

Recalling univariate B-splines

p = 2, ttt = (1, 2, 3, 4)

B[ttt](t) =

0 t /∈ [1, 4],
1
2 t

2 − t + 1
2 1 ≤ t < 2,

−t2 + 1
2 t −

11
2 2 ≤ t < 3,

1
2 t

2 − 4t + 8 3 ≤ t ≤ 4.
1 2 3 4

Properties:

▶ B[ttt] ≥ 0,

▶ suppB[ttt] = [t1, tp+2],

▶ B[ttt]|[ti ,ti+1) ∈ Πp,

▶ B[ttt] is Cp−mi -continuous at ti ,

▶ locally linearly independent,

▶ form a partition of unity.

3 / 39

Recalling univariate B-splines

p = 2, ttt = (1, 2, 3, 4)

B[ttt](t) =

0 t /∈ [1, 4],
1
2 t

2 − t + 1
2 1 ≤ t < 2,

−t2 + 1
2 t −

11
2 2 ≤ t < 3,

1
2 t

2 − 4t + 8 3 ≤ t ≤ 4.
1 2 3 4

Properties:

▶ B[ttt] ≥ 0,

▶ suppB[ttt] = [t1, tp+2],

▶ B[ttt]|[ti ,ti+1) ∈ Πp,

▶ B[ttt] is Cp−mi -continuous at ti ,

▶ locally linearly independent,

▶ form a partition of unity.

3 / 39

Recalling univariate B-splines

p = 2, ttt = (1, 2, 3, 4)

B[ttt](t) =

0 t /∈ [1, 4],
1
2 t

2 − t + 1
2 1 ≤ t < 2,

−t2 + 1
2 t −

11
2 2 ≤ t < 3,

1
2 t

2 − 4t + 8 3 ≤ t ≤ 4.
1 2 3 4

Properties:

▶ B[ttt] ≥ 0,

▶ suppB[ttt] = [t1, tp+2],

▶ B[ttt]|[ti ,ti+1) ∈ Πp,

▶ B[ttt] is Cp−mi -continuous at ti ,

▶ locally linearly independent,

▶ form a partition of unity.

3 / 39

Recalling univariate B-splines

p = 2, ttt = (1, 2, 3, 4)

B[ttt](t) =

0 t /∈ [1, 4],
1
2 t

2 − t + 1
2 1 ≤ t < 2,

−t2 + 1
2 t −

11
2 2 ≤ t < 3,

1
2 t

2 − 4t + 8 3 ≤ t ≤ 4.
1 2 3 4

Properties:

▶ B[ttt] ≥ 0,

▶ suppB[ttt] = [t1, tp+2],

▶ B[ttt]|[ti ,ti+1) ∈ Πp,

▶ B[ttt] is Cp−mi -continuous at ti ,

▶ locally linearly independent,

▶ form a partition of unity.

3 / 39

Recalling univariate B-splines

p = 2, ttt = (1, 2, 3, 4)

B[ttt](t) =

0 t /∈ [1, 4],
1
2 t

2 − t + 1
2 1 ≤ t < 2,

−t2 + 1
2 t −

11
2 2 ≤ t < 3,

1
2 t

2 − 4t + 8 3 ≤ t ≤ 4.
1 2 3 4

Properties:

▶ B[ttt] ≥ 0,

▶ suppB[ttt] = [t1, tp+2],

▶ B[ttt]|[ti ,ti+1) ∈ Πp,

▶ B[ttt] is Cp−mi -continuous at ti ,

▶ locally linearly independent,

▶ form a partition of unity.

3 / 39

Knot Insertion
Knot Insertion: Suppose we insert a knot t̂ → ttt. We obtain two knot vectors ttt1 and ttt2,
considering the first and the last p + 2 knots respectively in (t1, . . . , t̂, . . . , tp+2). Then

B[ttt] = α1B[ttt1] + α2B[ttt2] with α1, α2 ∈ (0, 1]

B[ttt]

t1 t2 tp+1 tp+2

4 / 39

Knot Insertion
Knot Insertion: Suppose we insert a knot t̂ → ttt. We obtain two knot vectors ttt1 and ttt2,
considering the first and the last p + 2 knots respectively in (t1, . . . , t̂, . . . , tp+2). Then

B[ttt] = α1B[ttt1] + α2B[ttt2] with α1, α2 ∈ (0, 1]

B[ttt]

t1 t2 t̂ tp+1 tp+2

B[ttt1] B[ttt2]

5 / 39

B-splines on Tensor Meshes
Given a tensor mesh N and a bidegree (p1, p2) (for instance (2, 2)),
let NB be a subcollection of meshlines in N forming a sub-grid of p1 + 2 vertical lines and
p2 + 2 horizontal lines.

x1 x2 x3 xp1+2
y1

y2

y3

yp2+2

6 / 39

B-splines on Tensor Meshes
Given a tensor mesh N and a bidegree (p1, p2) (for instance (2, 2)),
let NB be a subcollection of meshlines in N forming a sub-grid of p1 + 2 vertical lines and
p2 + 2 horizontal lines.

x1 x2 x3 xp1+2
y1

y2

y3

yp2+2

6 / 39

B-splines on Tensor Meshes
Given a tensor mesh N and a bidegree (p1, p2) (for instance (2, 2)),
let NB be a subcollection of meshlines in N forming a sub-grid of p1 + 2 vertical lines and
p2 + 2 horizontal lines.

x1 x2 x3 xp1+2
y1

y2

y3

yp2+2

Such vertical and horizontal lines can be parametrized as {xi} × [y1, yp2+2] and

[x1, xp1+2]× {yj} with xxx := (xi)
p1+2
i=1 and yyy = (yj)

p2+2
j=1 .

6 / 39

B-splines on Tensor Meshes
xxx and yyy are knot vectors on top on which we define univariate B-splines of degrees p1 and p2.

B[t1, . . . , tp+2](t) =
t − t1

tp+1 − t1
B[t2, . . . , tp+2](t) +

tp+2 − t

tp+2 − t2
B[t1, . . . , tp+1](t).

tensorize−−−−−→

7 / 39

B-splines on Tensor Meshes
xxx and yyy are knot vectors on top on which we define univariate B-splines of degrees p1 and p2.

B[t1, . . . , tp+2](t) =
t − t1

tp+1 − t1
B[t2, . . . , tp+2](t) +

tp+2 − t

tp+2 − t2
B[t1, . . . , tp+1](t).

tensorize−−−−−→

7 / 39

B-splines on Tensor Meshes
xxx and yyy are knot vectors on top on which we define univariate B-splines of degrees p1 and p2.

B[t1, . . . , tp+2](t) =
t − t1

tp+1 − t1
B[t2, . . . , tp+2](t) +

tp+2 − t

tp+2 − t2
B[t1, . . . , tp+1](t).

tensorize−−−−−→

7 / 39

B-splines of Minimal Support
Each NB corresponds to a B-spline B defined on N.
If no line in N\NB traverses int(suppB) then we say that B has minimal support on N.

N

NB

no minimal support on N

8 / 39

B-splines of Minimal Support
Each NB corresponds to a B-spline B defined on N.
If no line in N\NB traverses int(suppB) then we say that B has minimal support on N.

N

NB

no minimal support on N

8 / 39

B-splines of Minimal Support
Each NB corresponds to a B-spline B defined on N.
If no line in N\NB traverses int(suppB) then we say that B has minimal support on N.

N

NB

no minimal support on N

8 / 39

B-splines of Minimal Support
Each NB corresponds to a B-spline B defined on N.
If no line in N\NB traverses int(suppB) then we say that B has minimal support on N.

N

NB

minimal support on N

We call B-spline set on N the set of all the minimal support B-splines on N.

8 / 39

B-splines of Minimal Support
Each NB corresponds to a B-spline B defined on N.
If no line in N\NB traverses int(suppB) then we say that B has minimal support on N.

N

NB

minimal support on N

We call B-spline set on N the set of all the minimal support B-splines on N.
8 / 39

Knot insertion
Assume B[xxx ,yyy] no minimal support on N because of a vertical line at x = x̂ with x̂ /∈ xxx .

B[xxx ,yyy]

x1 x2 x3 x4

y1

y2

y3

y4

x̂

9 / 39

Knot insertion
Assume B[xxx ,yyy] no minimal support on N because of a vertical line at x = x̂ with x̂ /∈ xxx .

B[xxx ,yyy]

x1 x2 x3 x4

y1

y2

y3

y4

x̂

9 / 39

Knot insertion
Assume B[xxx ,yyy] no minimal support on N because of a vertical line at x = x̂ with x̂ /∈ xxx .

B[xxx ,yyy]

x1 x2 x3 x4

y1

y2

y3

y4

x̂

= α1·

B[xxx1,yyy]

x11 x12 x14x13

y1

y2

y3

y4

+ α2·

B[xxx2,yyy]

x24x21 x23x22

y1

y2

y3

y4

with α1, α2 ∈ (0, 1].

B[xxx ,yyy] is expressed in terms of B-splines of minimal support on N.

9 / 39

Knot insertion
Assume B[xxx ,yyy] no minimal support on N because of a vertical line at x = x̂ with x̂ /∈ xxx .

B[xxx ,yyy]

x1 x2 x3 x4

y1

y2

y3

y4

x̂

= α1·

B[xxx1,yyy]

x11 x12 x14x13

y1

y2

y3

y4

+ α2·

B[xxx2,yyy]

x24x21 x23x22

y1

y2

y3

y4

with α1, α2 ∈ (0, 1]. B[xxx ,yyy] is expressed in terms of B-splines of minimal support on N.

9 / 39

LR meshes and LR B-splines
Let N be a tensor mesh and B be the set of (minimal support) B-splines on N.
We insert a new line γ, traversing the support of at least one B-spline B ∈ B.

By construction B has not minimal support on the new mesh N′ = N ∪ γ. By knot insertion
we replace B with the B-splines B1 and B2 of minimal support on N′. This operation creates
a new set B′ of minimal support B-splines on N′.

10 / 39

LR meshes and LR B-splines
Let N be a tensor mesh and B be the set of (minimal support) B-splines on N.
We insert a new line γ, traversing the support of at least one B-spline B ∈ B.

By construction B has not minimal support on the new mesh N′ = N ∪ γ. By knot insertion
we replace B with the B-splines B1 and B2 of minimal support on N′. This operation creates
a new set B′ of minimal support B-splines on N′.

10 / 39

LR meshes and LR B-splines
Let N be a tensor mesh and B be the set of (minimal support) B-splines on N.
We insert a new line γ, traversing the support of at least one B-spline B ∈ B.

By construction B has not minimal support on the new mesh N′ = N ∪ γ. By knot insertion
we replace B with the B-splines B1 and B2 of minimal support on N′. This operation creates
a new set B′ of minimal support B-splines on N′.

10 / 39

LR meshes and LR B-splines
Let N be a tensor mesh and B be the set of (minimal support) B-splines on N.
We insert a new line γ, traversing the support of at least one B-spline B ∈ B.

= α1· + α2·

By construction B has not minimal support on the new mesh N′ = N ∪ γ. By knot insertion
we replace B with the B-splines B1 and B2 of minimal support on N′. This operation creates
a new set B′ of minimal support B-splines on N′.

10 / 39

LR meshes and LR B-splines
LR mesh N′ (recursive definition):

It is either

▶ a tensor mesh,

▶ obtained by insertion of a new line from the LR mesh N, traversing at least one support.

LR B-spline set B′ (recursive definition): It is either

▶ the B-spline set on N′ if N′ is a tensor mesh,

▶ an update via knot insertion of the LR B-spline set B on N.

LR mesh N′ (iterative definition): N′ = NN with{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-spline set B′ (iterative definition): B′ = BN with{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

11 / 39

LR meshes and LR B-splines
LR mesh N′ (recursive definition): It is either

▶ a tensor mesh,

▶ obtained by insertion of a new line from the LR mesh N, traversing at least one support.

LR B-spline set B′ (recursive definition): It is either

▶ the B-spline set on N′ if N′ is a tensor mesh,

▶ an update via knot insertion of the LR B-spline set B on N.

LR mesh N′ (iterative definition): N′ = NN with{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-spline set B′ (iterative definition): B′ = BN with{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

11 / 39

LR meshes and LR B-splines
LR mesh N′ (recursive definition): It is either

▶ a tensor mesh,

▶ obtained by insertion of a new line from the LR mesh N, traversing at least one support.

LR B-spline set B′ (recursive definition): It is either

▶ the B-spline set on N′ if N′ is a tensor mesh,

▶ an update via knot insertion of the LR B-spline set B on N.

LR mesh N′ (iterative definition): N′ = NN with{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-spline set B′ (iterative definition): B′ = BN with{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

11 / 39

LR meshes and LR B-splines
LR mesh N′ (recursive definition): It is either

▶ a tensor mesh,

▶ obtained by insertion of a new line from the LR mesh N, traversing at least one support.

LR B-spline set B′ (recursive definition):

It is either

▶ the B-spline set on N′ if N′ is a tensor mesh,

▶ an update via knot insertion of the LR B-spline set B on N.

LR mesh N′ (iterative definition): N′ = NN with{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-spline set B′ (iterative definition): B′ = BN with{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

11 / 39

LR meshes and LR B-splines
LR mesh N′ (recursive definition): It is either

▶ a tensor mesh,

▶ obtained by insertion of a new line from the LR mesh N, traversing at least one support.

LR B-spline set B′ (recursive definition): It is either

▶ the B-spline set on N′ if N′ is a tensor mesh,

▶ an update via knot insertion of the LR B-spline set B on N.

LR mesh N′ (iterative definition): N′ = NN with{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-spline set B′ (iterative definition): B′ = BN with{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

11 / 39

LR meshes and LR B-splines
LR mesh N′ (recursive definition): It is either

▶ a tensor mesh,

▶ obtained by insertion of a new line from the LR mesh N, traversing at least one support.

LR B-spline set B′ (recursive definition): It is either

▶ the B-spline set on N′ if N′ is a tensor mesh,

▶ an update via knot insertion of the LR B-spline set B on N.

LR mesh N′ (iterative definition): N′ = NN with{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-spline set B′ (iterative definition): B′ = BN with{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

11 / 39

LR meshes and LR B-splines
LR mesh N′ (recursive definition): It is either

▶ a tensor mesh,

▶ obtained by insertion of a new line from the LR mesh N, traversing at least one support.

LR B-spline set B′ (recursive definition): It is either

▶ the B-spline set on N′ if N′ is a tensor mesh,

▶ an update via knot insertion of the LR B-spline set B on N.

LR mesh N′ (iterative definition):

N′ = NN with{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-spline set B′ (iterative definition): B′ = BN with{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

11 / 39

LR meshes and LR B-splines
LR mesh N′ (recursive definition): It is either

▶ a tensor mesh,

▶ obtained by insertion of a new line from the LR mesh N, traversing at least one support.

LR B-spline set B′ (recursive definition): It is either

▶ the B-spline set on N′ if N′ is a tensor mesh,

▶ an update via knot insertion of the LR B-spline set B on N.

LR mesh N′ (iterative definition): N′ = NN with

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-spline set B′ (iterative definition): B′ = BN with{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

11 / 39

LR meshes and LR B-splines
LR mesh N′ (recursive definition): It is either

▶ a tensor mesh,

▶ obtained by insertion of a new line from the LR mesh N, traversing at least one support.

LR B-spline set B′ (recursive definition): It is either

▶ the B-spline set on N′ if N′ is a tensor mesh,

▶ an update via knot insertion of the LR B-spline set B on N.

LR mesh N′ (iterative definition): N′ = NN with{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-spline set B′ (iterative definition): B′ = BN with{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

11 / 39

LR meshes and LR B-splines
LR mesh N′ (recursive definition): It is either

▶ a tensor mesh,

▶ obtained by insertion of a new line from the LR mesh N, traversing at least one support.

LR B-spline set B′ (recursive definition): It is either

▶ the B-spline set on N′ if N′ is a tensor mesh,

▶ an update via knot insertion of the LR B-spline set B on N.

LR mesh N′ (iterative definition): N′ = NN with{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-spline set B′ (iterative definition):

B′ = BN with{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

11 / 39

LR meshes and LR B-splines
LR mesh N′ (recursive definition): It is either

▶ a tensor mesh,

▶ obtained by insertion of a new line from the LR mesh N, traversing at least one support.

LR B-spline set B′ (recursive definition): It is either

▶ the B-spline set on N′ if N′ is a tensor mesh,

▶ an update via knot insertion of the LR B-spline set B on N.

LR mesh N′ (iterative definition): N′ = NN with{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-spline set B′ (iterative definition): B′ = BN with

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

11 / 39

LR meshes and LR B-splines
LR mesh N′ (recursive definition): It is either

▶ a tensor mesh,

▶ obtained by insertion of a new line from the LR mesh N, traversing at least one support.

LR B-spline set B′ (recursive definition): It is either

▶ the B-spline set on N′ if N′ is a tensor mesh,

▶ an update via knot insertion of the LR B-spline set B on N.

LR mesh N′ (iterative definition): N′ = NN with{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-spline set B′ (iterative definition): B′ = BN with{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.
11 / 39

LR meshes and LR B-splines
Partition of Unity Weights: sum of the knot insertion coefficients

= α1· + α2·

= β1· + β2·

The PoU weight for

B =

is wB = α1 + β1.

Remark: If not specified otherwise, we consider internal meshlines of multiplicity 1 and
boundary meshlines of multiplicity pk + 1, for k = 1, 2, for vertical and horizontal meshlines
respectively.
Remark: Meshline insertion ordering can often be changed. However, the final LR B-spline
set is well defined because independent of such insertion ordering.

12 / 39

LR meshes and LR B-splines
Partition of Unity Weights: sum of the knot insertion coefficients

= α1· + α2·

= β1· + β2·

The PoU weight for

B =

is wB = α1 + β1.

Remark: If not specified otherwise, we consider internal meshlines of multiplicity 1 and
boundary meshlines of multiplicity pk + 1, for k = 1, 2, for vertical and horizontal meshlines
respectively.
Remark: Meshline insertion ordering can often be changed. However, the final LR B-spline
set is well defined because independent of such insertion ordering.

12 / 39

LR meshes and LR B-splines
Partition of Unity Weights: sum of the knot insertion coefficients

= α1· + α2·

= β1· + β2·

The PoU weight for

B =

is wB = α1 + β1.

Remark: If not specified otherwise, we consider internal meshlines of multiplicity 1 and
boundary meshlines of multiplicity pk + 1, for k = 1, 2, for vertical and horizontal meshlines
respectively.

Remark: Meshline insertion ordering can often be changed. However, the final LR B-spline
set is well defined because independent of such insertion ordering.

12 / 39

LR meshes and LR B-splines
Partition of Unity Weights: sum of the knot insertion coefficients

= α1· + α2·

= β1· + β2·

The PoU weight for

B =

is wB = α1 + β1.

Remark: If not specified otherwise, we consider internal meshlines of multiplicity 1 and
boundary meshlines of multiplicity pk + 1, for k = 1, 2, for vertical and horizontal meshlines
respectively.
Remark: Meshline insertion ordering can often be changed. However, the final LR B-spline
set is well defined because independent of such insertion ordering.

12 / 39

LR meshes and LR B-splines
Remark: Not all meshes with local lines are LR meshes

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

Not LR mesh LR mesh

13 / 39

LR meshes and LR B-splines
Remark: Not all meshes with local lines are LR meshes

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

Not LR mesh LR mesh

13 / 39

LR meshes and LR B-splines
Remark: Secondary splits may be needed.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, ,

(b) B0

14 / 39

LR meshes and LR B-splines
Remark: Secondary splits may be needed.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, ,

(b) B0

14 / 39

LR meshes and LR B-splines
Remark: Secondary splits may be needed.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, ,

(b) B0

14 / 39

LR meshes and LR B-splines
Remark: Secondary splits may be needed.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, ,

(b) B0

14 / 39

LR meshes and LR B-splines
Remark: Secondary splits may be needed.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , ,

(b) B1

14 / 39

LR meshes and LR B-splines
Remark: Secondary splits may be needed.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , ,

(b) B1

14 / 39

LR meshes and LR B-splines
Remark: Secondary splits may be needed.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , ,

(b) B1

14 / 39

LR meshes and LR B-splines
Remark: Secondary splits may be needed.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , , ,

(b) B2

14 / 39

LR meshes and LR B-splines
Remark: Secondary splits may be needed.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , , ,

(b) B2

14 / 39

LR meshes and LR B-splines
Remark: Secondary splits may be needed.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , , ,

(b) B2

14 / 39

LR meshes and LR B-splines
Remark: Secondary splits may be needed.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , , ,

,

(b) B3

14 / 39

LR meshes and LR B-splines
Remark: Secondary splits may be needed.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , , ,

,

(b) B3

14 / 39

LR meshes and LR B-splines
Remark: Secondary splits may be needed.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , , ,

,

(b) B3

14 / 39

LR meshes and LR B-splines
Remark: Secondary splits may be needed.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , , ,

, ,

(b) B3

14 / 39

LR meshes and LR B-splines
Remark: Secondary splits may be needed.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , , ,

, ,

(b) B3

14 / 39

LR meshes and LR B-splines
Remark: Secondary splits may be needed.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , , ,

, , ,

(b) B4

14 / 39

LR meshes and LR B-splines
Remark: LR B-spline set ̸= Minimal Support B-spline set.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , , ,

,

(b) B3

15 / 39

LR meshes and LR B-splines
Remark: LR B-spline set ̸= Minimal Support B-spline set.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , , ,

,

(b) B3

15 / 39

LR meshes and LR B-splines
Remark: LR B-spline set ̸= Minimal Support B-spline set.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , , ,

,

(b) B3

15 / 39

LR meshes and LR B-splines
Remark: LR B-spline set ̸= Minimal Support B-spline set.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , , ,

,

(b) B3

15 / 39

LR meshes and LR B-splines
Remark: LR B-spline set ̸= Minimal Support B-spline set.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , , ,

, , ,

(b) B4

15 / 39

LR meshes and LR B-splines
Remark: LR B-spline set ⊊⊊⊊ Minimal Support B-spline set.

LR mesh:

{
Ni+1 = Ni ∪ γi γi new line, traversing at least one support
N0 tensor mesh,

LR B-splines:

{
Bi+1 = (Bi\Bi (γi)) +K(Bi (γi)) Bi (γi) := B-splines in Bi traversed by γi
B0 tensor B-splines on N0

with K all the refinements via knot insertion needed to have minimal supports.

(a) current mesh

, , , ,

, , ,

(b) B4

15 / 39

Minimum Span Refinement strategy

Input: Bunch of boxes where a larger error is committed is some sense.
For each of such boxes

1. Among all the LR B-splines on that box, select those with smallest support
(semi-perimeter),

2. Pick one randomly and insert a cross centered at the box to split it in 4.

, , , ,

, , ,

16 / 39

Minimum Span Refinement strategy

Input: Bunch of boxes where a larger error is committed is some sense.
For each of such boxes

1. Among all the LR B-splines on that box, select those with smallest support
(semi-perimeter),

2. Pick one randomly and insert a cross centered at the box to split it in 4.

, , , ,

, , ,

16 / 39

Minimum Span Refinement strategy

Input: Bunch of boxes where a larger error is committed is some sense.
For each of such boxes

1. Among all the LR B-splines on that box, select those with smallest support
(semi-perimeter),

2. Pick one randomly and insert a cross centered at the box to split it in 4.

, , , ,

, , ,

16 / 39

Minimum Span Refinement strategy

Input: Bunch of boxes where a larger error is committed is some sense.
For each of such boxes

1. Among all the LR B-splines on that box, select those with smallest support
(semi-perimeter),

2. Pick one randomly and insert a cross centered at the box to split it in 4.

, , , ,

, , ,

16 / 39

Minimum Span Refinement strategy

Input: Bunch of boxes where a larger error is committed is some sense.
For each of such boxes

1. Among all the LR B-splines on that box, select those with smallest support
(semi-perimeter),

2. Pick one randomly and insert a cross centered at the box to split it in 4.

, , , ,

, , ,

16 / 39

Minimum Span Refinement strategy

Input: Bunch of boxes where a larger error is committed is some sense.
For each of such boxes

1. Among all the LR B-splines on that box, select those with smallest support
(semi-perimeter),

2. Pick one randomly and insert a cross centered at the box to split it in 4.

, , , ,

, , ,

16 / 39

Minimum Span Refinement strategy

Input: Bunch of boxes where a larger error is committed is some sense.
For each of such boxes

1. Among all the LR B-splines on that box, select those with smallest support
(semi-perimeter),

2. Pick one randomly and insert a cross centered at the box to split it in 4.

, , , ,

, , ,

16 / 39

Minimum Span Refinement strategy

Input: Bunch of boxes where a larger error is committed is some sense.
For each of such boxes

1. Among all the LR B-splines on that box, select those with smallest support
(semi-perimeter),

2. Pick one randomly and insert a cross centered at the box to split it in 4.

, , , ,

, , ,

16 / 39

Minimum Span Refinement strategy: Examples

17 / 39

Full Span Refinement strategy

Input: Bunch of boxes where a larger error is committed is some sense.
For each of such boxes

1. Select all the LR B-splines on that box,

2. Insert a cross centered at the box and long enough to traverse all of such LR B-splines.

, , , ,

, , ,

18 / 39

Full Span Refinement strategy

Input: Bunch of boxes where a larger error is committed is some sense.
For each of such boxes

1. Select all the LR B-splines on that box,

2. Insert a cross centered at the box and long enough to traverse all of such LR B-splines.

, , , ,

, , ,

18 / 39

Full Span Refinement strategy

Input: Bunch of boxes where a larger error is committed is some sense.
For each of such boxes

1. Select all the LR B-splines on that box,

2. Insert a cross centered at the box and long enough to traverse all of such LR B-splines.

, , , ,

, , ,

18 / 39

Full Span Refinement strategy

Input: Bunch of boxes where a larger error is committed is some sense.
For each of such boxes

1. Select all the LR B-splines on that box,

2. Insert a cross centered at the box and long enough to traverse all of such LR B-splines.

, , , ,

, , ,

18 / 39

Full Span Refinement strategy

Input: Bunch of boxes where a larger error is committed is some sense.
For each of such boxes

1. Select all the LR B-splines on that box,

2. Insert a cross centered at the box and long enough to traverse all of such LR B-splines.

, , , ,

, , ,

18 / 39

Full Span Refinement strategy

Input: Bunch of boxes where a larger error is committed is some sense.
For each of such boxes

1. Select all the LR B-splines on that box,

2. Insert a cross centered at the box and long enough to traverse all of such LR B-splines.

, , , ,

, , ,

18 / 39

Full Span Refinement strategy

Input: Bunch of boxes where a larger error is committed is some sense.
For each of such boxes

1. Select all the LR B-splines on that box,

2. Insert a cross centered at the box and long enough to traverse all of such LR B-splines.

, , , ,

, , ,

18 / 39

Full Span Refinement strategy: Examples

19 / 39

Structured Mesh Refinement strategy

Input: Bunch of LR B-splines where a larger error is committed is some sense.
For each of such LR B-splines

1. Split in 4 all the boxes in their tensor mesh

20 / 39

Structured Mesh Refinement strategy

Input: Bunch of LR B-splines where a larger error is committed is some sense.
For each of such LR B-splines

1. Split in 4 all the boxes in their tensor mesh

20 / 39

Structured Mesh Refinement strategy

Input: Bunch of LR B-splines where a larger error is committed is some sense.
For each of such LR B-splines

1. Split in 4 all the boxes in their tensor mesh

20 / 39

Structured Mesh Refinement strategy

Input: Bunch of LR B-splines where a larger error is committed is some sense.
For each of such LR B-splines

1. Split in 4 all the boxes in their tensor mesh

20 / 39

Structured Mesh Refinement strategy

Input: Bunch of LR B-splines where a larger error is committed is some sense.
For each of such LR B-splines

1. Split in 4 all the boxes in their tensor mesh

20 / 39

Structured Mesh Refinement strategy

Input: Bunch of LR B-splines where a larger error is committed is some sense.
For each of such LR B-splines

1. Split in 4 all the boxes in their tensor mesh

20 / 39

Structured Mesh Refinement strategy

Input: Bunch of LR B-splines where a larger error is committed is some sense.
For each of such LR B-splines

1. Split in 4 all the boxes in their tensor mesh

20 / 39

Structured Mesh Refinement strategy

Input: Bunch of LR B-splines where a larger error is committed is some sense.
For each of such LR B-splines

1. Split in 4 all the boxes in their tensor mesh

20 / 39

Structured Mesh Refinement strategy: Examples

21 / 39

The Linear Dependence Problem
Unfortunately, linear dependence relations may arise in the LR B-spline set.

720 · = 108 · + 135 ·

+ 108 · + 268 ·

+ 324 · + 360 ·

+ 108 ·

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

Minimum Span, Full Span and Structured Mesh may have linear dependence
Conjecture: the latter only for (p1, p2) ≥ (4, 4).

22 / 39

The Linear Dependence Problem
Unfortunately, linear dependence relations may arise in the LR B-spline set.

720 · = 108 · + 135 ·

+ 108 · + 268 ·

+ 324 · + 360 ·

+ 108 ·

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

Minimum Span, Full Span and Structured Mesh may have linear dependence
Conjecture: the latter only for (p1, p2) ≥ (4, 4).

22 / 39

The Linear Dependence Problem
Unfortunately, linear dependence relations may arise in the LR B-spline set.

720 · = 108 · + 135 ·

+ 108 · + 268 ·

+ 324 · + 360 ·

+ 108 ·

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

Minimum Span, Full Span and Structured Mesh may have linear dependence
Conjecture: the latter only for (p1, p2) ≥ (4, 4).

22 / 39

Seek and Destroy Linear Dependence: Peeling Algorithm
Remark: In every box we span the polynomial space Πppp ⇒ each box is in at least
(p1 + 1)(p2 + 1) = dimΠppp LR B-spline supports.

Overloaded box: box contained in more than (p1 + 1)(p2 + 1) LR B-spline supports.

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

10
10
10
10
9
9
9
9
9
9
9
9
10
10
10
10

9

10

10

9

10
11
12
12
10
10
10
10
10
10
10
10
12
12
11
10

10
10
10
11
11
11
9
9
9
9
9
9
9
9
11
11
11
10
10
10

9

9

9

9

10
11
11
11
10
10
9
9
9
9
9
9
9
9
10
10
11
11
11
10

10
12
11
10
10
10
9
9
9
9
9
9
9
9
10
10
10
11
12
10

9

9

10
12
11
10
10
11
10
9
9
9
9
9
9
10
11
10
10
11
12
10

9
10
9
9
9
10
10
9

9
10
10
9
9
9
10
9

9

9

9

9

9

9

9
10
9
9
9
9
9
9

9
9
9
9
9
9
10
9

9
10
9
9
9
9

9
9
9
9
10
9

9

9

9

9

9

9

9
10
9
9
9
9

9
9
9
9
10
9

9
10
9
9
9
9

9
9
9
9
10
9

9

9

9

9

9

9

9

9

9
10
9
9
9
9

9
9
9
9
10
9

9
10
9
9
9
9
9
9

9
9
9
9
9
9
10
9

9

9

9

9

9
10
9
9
9
10
10
9

9
10
10
9
9
9
10
9

10
12
11
10
9
10
10
9
9
9
9
9
9
10
10
9
10
11
12
10

9

9

9

9

10
12
11
10
9
9
9
9
9
9
9
9
9
9
9
9
10
11
12
10

10
11
11
11
9
9
9
9
9
9
9
9
9
9
9
9
11
11
11
10

9

9

10
10
10
11
10
10
9
9
9
9
9
9
9
9
10
10
11
10
10
10

10
11
10
10
9
9
9
9
9
9
9
9
10
10
11
10

9

10

10

9

9

9

10
10
9
9
9
10
10
10
10
10
10
9
9
9
10
10

9
10
10
10
10
10
10
9

9

9

9

9

9

9

9

9

9
9
9
9
9
9
9
9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

Overloaded LR B-spline: all the boxes
in its support are overloaded.

 Only overloaded LR B-splines can be in
a linear dependence relation.

 A linear dependence relation needs at
least 2 functions.

⇒ If a box is just in one overloaded LR
B-spline B, then B cannot be part of a
linear dependence relation.

23 / 39

Seek and Destroy Linear Dependence: Peeling Algorithm
Remark: In every box we span the polynomial space Πppp ⇒ each box is in at least
(p1 + 1)(p2 + 1) = dimΠppp LR B-spline supports.

Overloaded box: box contained in more than (p1 + 1)(p2 + 1) LR B-spline supports.

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

10
10
10
10
9
9
9
9
9
9
9
9
10
10
10
10

9

10

10

9

10
11
12
12
10
10
10
10
10
10
10
10
12
12
11
10

10
10
10
11
11
11
9
9
9
9
9
9
9
9
11
11
11
10
10
10

9

9

9

9

10
11
11
11
10
10
9
9
9
9
9
9
9
9
10
10
11
11
11
10

10
12
11
10
10
10
9
9
9
9
9
9
9
9
10
10
10
11
12
10

9

9

10
12
11
10
10
11
10
9
9
9
9
9
9
10
11
10
10
11
12
10

9
10
9
9
9
10
10
9

9
10
10
9
9
9
10
9

9

9

9

9

9

9

9
10
9
9
9
9
9
9

9
9
9
9
9
9
10
9

9
10
9
9
9
9

9
9
9
9
10
9

9

9

9

9

9

9

9
10
9
9
9
9

9
9
9
9
10
9

9
10
9
9
9
9

9
9
9
9
10
9

9

9

9

9

9

9

9

9

9
10
9
9
9
9

9
9
9
9
10
9

9
10
9
9
9
9
9
9

9
9
9
9
9
9
10
9

9

9

9

9

9
10
9
9
9
10
10
9

9
10
10
9
9
9
10
9

10
12
11
10
9
10
10
9
9
9
9
9
9
10
10
9
10
11
12
10

9

9

9

9

10
12
11
10
9
9
9
9
9
9
9
9
9
9
9
9
10
11
12
10

10
11
11
11
9
9
9
9
9
9
9
9
9
9
9
9
11
11
11
10

9

9

10
10
10
11
10
10
9
9
9
9
9
9
9
9
10
10
11
10
10
10

10
11
10
10
9
9
9
9
9
9
9
9
10
10
11
10

9

10

10

9

9

9

10
10
9
9
9
10
10
10
10
10
10
9
9
9
10
10

9
10
10
10
10
10
10
9

9

9

9

9

9

9

9

9

9
9
9
9
9
9
9
9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

Overloaded LR B-spline: all the boxes
in its support are overloaded.

 Only overloaded LR B-splines can be in
a linear dependence relation.

 A linear dependence relation needs at
least 2 functions.

⇒ If a box is just in one overloaded LR
B-spline B, then B cannot be part of a
linear dependence relation.

23 / 39

Seek and Destroy Linear Dependence: Peeling Algorithm
Remark: In every box we span the polynomial space Πppp ⇒ each box is in at least
(p1 + 1)(p2 + 1) = dimΠppp LR B-spline supports.

Overloaded box: box contained in more than (p1 + 1)(p2 + 1) LR B-spline supports.

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

10
10
10
10
9
9
9
9
9
9
9
9
10
10
10
10

9

10

10

9

10
11
12
12
10
10
10
10
10
10
10
10
12
12
11
10

10
10
10
11
11
11
9
9
9
9
9
9
9
9
11
11
11
10
10
10

9

9

9

9

10
11
11
11
10
10
9
9
9
9
9
9
9
9
10
10
11
11
11
10

10
12
11
10
10
10
9
9
9
9
9
9
9
9
10
10
10
11
12
10

9

9

10
12
11
10
10
11
10
9
9
9
9
9
9
10
11
10
10
11
12
10

9
10
9
9
9
10
10
9

9
10
10
9
9
9
10
9

9

9

9

9

9

9

9
10
9
9
9
9
9
9

9
9
9
9
9
9
10
9

9
10
9
9
9
9

9
9
9
9
10
9

9

9

9

9

9

9

9
10
9
9
9
9

9
9
9
9
10
9

9
10
9
9
9
9

9
9
9
9
10
9

9

9

9

9

9

9

9

9

9
10
9
9
9
9

9
9
9
9
10
9

9
10
9
9
9
9
9
9

9
9
9
9
9
9
10
9

9

9

9

9

9
10
9
9
9
10
10
9

9
10
10
9
9
9
10
9

10
12
11
10
9
10
10
9
9
9
9
9
9
10
10
9
10
11
12
10

9

9

9

9

10
12
11
10
9
9
9
9
9
9
9
9
9
9
9
9
10
11
12
10

10
11
11
11
9
9
9
9
9
9
9
9
9
9
9
9
11
11
11
10

9

9

10
10
10
11
10
10
9
9
9
9
9
9
9
9
10
10
11
10
10
10

10
11
10
10
9
9
9
9
9
9
9
9
10
10
11
10

9

10

10

9

9

9

10
10
9
9
9
10
10
10
10
10
10
9
9
9
10
10

9
10
10
10
10
10
10
9

9

9

9

9

9

9

9

9

9
9
9
9
9
9
9
9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

Overloaded LR B-spline: all the boxes
in its support are overloaded.

 Only overloaded LR B-splines can be in
a linear dependence relation.

 A linear dependence relation needs at
least 2 functions.

⇒ If a box is just in one overloaded LR
B-spline B, then B cannot be part of a
linear dependence relation.

23 / 39

Seek and Destroy Linear Dependence: Peeling Algorithm
Remark: In every box we span the polynomial space Πppp ⇒ each box is in at least
(p1 + 1)(p2 + 1) = dimΠppp LR B-spline supports.

Overloaded box: box contained in more than (p1 + 1)(p2 + 1) LR B-spline supports.

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

10
10
10
10
9
9
9
9
9
9
9
9
10
10
10
10

9

10

10

9

10
11
12
12
10
10
10
10
10
10
10
10
12
12
11
10

10
10
10
11
11
11
9
9
9
9
9
9
9
9
11
11
11
10
10
10

9

9

9

9

10
11
11
11
10
10
9
9
9
9
9
9
9
9
10
10
11
11
11
10

10
12
11
10
10
10
9
9
9
9
9
9
9
9
10
10
10
11
12
10

9

9

10
12
11
10
10
11
10
9
9
9
9
9
9
10
11
10
10
11
12
10

9
10
9
9
9
10
10
9

9
10
10
9
9
9
10
9

9

9

9

9

9

9

9
10
9
9
9
9
9
9

9
9
9
9
9
9
10
9

9
10
9
9
9
9

9
9
9
9
10
9

9

9

9

9

9

9

9
10
9
9
9
9

9
9
9
9
10
9

9
10
9
9
9
9

9
9
9
9
10
9

9

9

9

9

9

9

9

9

9
10
9
9
9
9

9
9
9
9
10
9

9
10
9
9
9
9
9
9

9
9
9
9
9
9
10
9

9

9

9

9

9
10
9
9
9
10
10
9

9
10
10
9
9
9
10
9

10
12
11
10
9
10
10
9
9
9
9
9
9
10
10
9
10
11
12
10

9

9

9

9

10
12
11
10
9
9
9
9
9
9
9
9
9
9
9
9
10
11
12
10

10
11
11
11
9
9
9
9
9
9
9
9
9
9
9
9
11
11
11
10

9

9

10
10
10
11
10
10
9
9
9
9
9
9
9
9
10
10
11
10
10
10

10
11
10
10
9
9
9
9
9
9
9
9
10
10
11
10

9

10

10

9

9

9

10
10
9
9
9
10
10
10
10
10
10
9
9
9
10
10

9
10
10
10
10
10
10
9

9

9

9

9

9

9

9

9

9
9
9
9
9
9
9
9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

Overloaded LR B-spline: all the boxes
in its support are overloaded.

 Only overloaded LR B-splines can be in
a linear dependence relation.

 A linear dependence relation needs at
least 2 functions.

⇒ If a box is just in one overloaded LR
B-spline B, then B cannot be part of a
linear dependence relation.

23 / 39

Seek and Destroy Linear Dependence: Peeling Algorithm
Remark: In every box we span the polynomial space Πppp ⇒ each box is in at least
(p1 + 1)(p2 + 1) = dimΠppp LR B-spline supports.

Overloaded box: box contained in more than (p1 + 1)(p2 + 1) LR B-spline supports.

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

10
10
10
10
9
9
9
9
9
9
9
9
10
10
10
10

9

10

10

9

10
11
12
12
10
10
10
10
10
10
10
10
12
12
11
10

10
10
10
11
11
11
9
9
9
9
9
9
9
9
11
11
11
10
10
10

9

9

9

9

10
11
11
11
10
10
9
9
9
9
9
9
9
9
10
10
11
11
11
10

10
12
11
10
10
10
9
9
9
9
9
9
9
9
10
10
10
11
12
10

9

9

10
12
11
10
10
11
10
9
9
9
9
9
9
10
11
10
10
11
12
10

9
10
9
9
9
10
10
9

9
10
10
9
9
9
10
9

9

9

9

9

9

9

9
10
9
9
9
9
9
9

9
9
9
9
9
9
10
9

9
10
9
9
9
9

9
9
9
9
10
9

9

9

9

9

9

9

9
10
9
9
9
9

9
9
9
9
10
9

9
10
9
9
9
9

9
9
9
9
10
9

9

9

9

9

9

9

9

9

9
10
9
9
9
9

9
9
9
9
10
9

9
10
9
9
9
9
9
9

9
9
9
9
9
9
10
9

9

9

9

9

9
10
9
9
9
10
10
9

9
10
10
9
9
9
10
9

10
12
11
10
9
10
10
9
9
9
9
9
9
10
10
9
10
11
12
10

9

9

9

9

10
12
11
10
9
9
9
9
9
9
9
9
9
9
9
9
10
11
12
10

10
11
11
11
9
9
9
9
9
9
9
9
9
9
9
9
11
11
11
10

9

9

10
10
10
11
10
10
9
9
9
9
9
9
9
9
10
10
11
10
10
10

10
11
10
10
9
9
9
9
9
9
9
9
10
10
11
10

9

10

10

9

9

9

10
10
9
9
9
10
10
10
10
10
10
9
9
9
10
10

9
10
10
10
10
10
10
9

9

9

9

9

9

9

9

9

9
9
9
9
9
9
9
9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

Overloaded LR B-spline: all the boxes
in its support are overloaded.

 Only overloaded LR B-splines can be in
a linear dependence relation.

 A linear dependence relation needs at
least 2 functions.

⇒ If a box is just in one overloaded LR
B-spline B, then B cannot be part of a
linear dependence relation.

23 / 39

Seek and Destroy Linear Dependence: Peeling Algorithm
Remark: In every box we span the polynomial space Πppp ⇒ each box is in at least
(p1 + 1)(p2 + 1) = dimΠppp LR B-spline supports.

Overloaded box: box contained in more than (p1 + 1)(p2 + 1) LR B-spline supports.

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

10
10
10
10
9
9
9
9
9
9
9
9
10
10
10
10

9

10

10

9

10
11
12
12
10
10
10
10
10
10
10
10
12
12
11
10

10
10
10
11
11
11
9
9
9
9
9
9
9
9
11
11
11
10
10
10

9

9

9

9

10
11
11
11
10
10
9
9
9
9
9
9
9
9
10
10
11
11
11
10

10
12
11
10
10
10
9
9
9
9
9
9
9
9
10
10
10
11
12
10

9

9

10
12
11
10
10
11
10
9
9
9
9
9
9
10
11
10
10
11
12
10

9
10
9
9
9
10
10
9

9
10
10
9
9
9
10
9

9

9

9

9

9

9

9
10
9
9
9
9
9
9

9
9
9
9
9
9
10
9

9
10
9
9
9
9

9
9
9
9
10
9

9

9

9

9

9

9

9
10
9
9
9
9

9
9
9
9
10
9

9
10
9
9
9
9

9
9
9
9
10
9

9

9

9

9

9

9

9

9

9
10
9
9
9
9

9
9
9
9
10
9

9
10
9
9
9
9
9
9

9
9
9
9
9
9
10
9

9

9

9

9

9
10
9
9
9
10
10
9

9
10
10
9
9
9
10
9

10
12
11
10
9
10
10
9
9
9
9
9
9
10
10
9
10
11
12
10

9

9

9

9

10
12
11
10
9
9
9
9
9
9
9
9
9
9
9
9
10
11
12
10

10
11
11
11
9
9
9
9
9
9
9
9
9
9
9
9
11
11
11
10

9

9

10
10
10
11
10
10
9
9
9
9
9
9
9
9
10
10
11
10
10
10

10
11
10
10
9
9
9
9
9
9
9
9
10
10
11
10

9

10

10

9

9

9

10
10
9
9
9
10
10
10
10
10
10
9
9
9
10
10

9
10
10
10
10
10
10
9

9

9

9

9

9

9

9

9

9
9
9
9
9
9
9
9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

Overloaded LR B-spline: all the boxes
in its support are overloaded.

 Only overloaded LR B-splines can be in
a linear dependence relation.

 A linear dependence relation needs at
least 2 functions.

⇒ If a box is just in one overloaded LR
B-spline B, then B cannot be part of a
linear dependence relation.

23 / 39

Seek and Destroy Linear Dependence: Peeling Algorithm
Peeling Algorithm

1 Create the set BO of overloaded LR B-splines;

2 Let EO be the boxes of the LR B-splines in BO ;

3 for every box in EO do
4 Identify the set BO

1 ⊆ BO of those having a box

covered by no other LR B-splines in BO ;

5 if BO\BO
1 = ∅ then

6 linear independence, break.
7 else
8 if BO

1 = ∅ then
9 break, but might have linear dependence

10 BO ← BO\BO
1 ;

11 Go to 2;

24 / 39

Seek and Destroy Linear Dependence: Peeling Algorithm
Peeling Algorithm

1 Create the set BO of overloaded LR B-splines;

2 Let EO be the boxes of the LR B-splines in BO ;

3 for every box in EO do
4 Identify the set BO

1 ⊆ BO of those having a box

covered by no other LR B-splines in BO ;

5 if BO\BO
1 = ∅ then

6 linear independence, break.
7 else
8 if BO

1 = ∅ then
9 break, but might have linear dependence

10 BO ← BO\BO
1 ;

11 Go to 2;

24 / 39

Seek and Destroy Linear Dependence: Peeling Algorithm
Peeling Algorithm

1 Create the set BO of overloaded LR B-splines;

2 Let EO be the boxes of the LR B-splines in BO ;

3 for every box in EO do
4 Identify the set BO

1 ⊆ BO of those having a box

covered by no other LR B-splines in BO ;

5 if BO\BO
1 = ∅ then

6 linear independence, break.
7 else
8 if BO

1 = ∅ then
9 break, but might have linear dependence

10 BO ← BO\BO
1 ;

11 Go to 2;

24 / 39

Seek and Destroy Linear Dependence: Peeling Algorithm
Peeling Algorithm

1 Create the set BO of overloaded LR B-splines;

2 Let EO be the boxes of the LR B-splines in BO ;

3 for every box in EO do
4 Identify the set BO

1 ⊆ BO of those having a box

covered by no other LR B-splines in BO ;

5 if BO\BO
1 = ∅ then

6 linear independence, break.
7 else
8 if BO

1 = ∅ then
9 break, but might have linear dependence

10 BO ← BO\BO
1 ;

11 Go to 2;

24 / 39

Seek and Destroy Linear Dependence: Peeling Algorithm
Peeling Algorithm

1 Create the set BO of overloaded LR B-splines;

2 Let EO be the boxes of the LR B-splines in BO ;

3 for every box in EO do
4 Identify the set BO

1 ⊆ BO of those having a box

covered by no other LR B-splines in BO ;

5 if BO\BO
1 = ∅ then

6 linear independence, break.
7 else
8 if BO

1 = ∅ then
9 break, but might have linear dependence

10 BO ← BO\BO
1 ;

11 Go to 2;

24 / 39

Seek and Destroy Linear Dependence: Peeling Algorithm++
Peeling Algorithm

1 Create the set BO of overloaded LR B-splines;

2 Let EO be the boxes of the LR B-splines in BO ;

3 for every box in EO do
4 Identify the set BO

1 ⊆ BO of those having a box

covered by no other LR B-splines in BO ;

5 if BO\BO
1 = ∅ then

6 linear independence, break.
7 else
8 if BO

1 = ∅ then
9 break, but might have linear dependence

10 BO ← BO\BO
1 ;

11 Go to 2;

Peeling Algorithm++

1 Create the set BO of overloaded LR B-splines;

2 Let EO be the boxes of the LR B-splines in BO ;

3 Let VO be the T-vertices of the LR B-splines in BO ;

4 for every box in EO do
5 Identify the set BO

1 ⊆ BO of those having a box

covered by no other LR B-splines in BO ;

6 for every T-vertex vvv in VO do
7 If vvv is only in one B ∈ BO , add B to BO

1 ;

8 if |BO\BO
1 |<<< 8 then

9 linear independence, break.
10 else
11 if BO

1 = ∅ then
12 break, but might have linear dependence

13 BO ← BO\BO
1 ;

14 Go to 2;

Conjecture: Peeling Algorithm++ sorts out all cases, if BO
1 = ∅ then there is a linear

dependece relation.

25 / 39

Seek and Destroy Linear Dependence: Peeling Algorithm++
Peeling Algorithm

1 Create the set BO of overloaded LR B-splines;

2 Let EO be the boxes of the LR B-splines in BO ;

3 for every box in EO do
4 Identify the set BO

1 ⊆ BO of those having a box

covered by no other LR B-splines in BO ;

5 if BO\BO
1 = ∅ then

6 linear independence, break.
7 else
8 if BO

1 = ∅ then
9 break, but might have linear dependence

10 BO ← BO\BO
1 ;

11 Go to 2;

Peeling Algorithm++

1 Create the set BO of overloaded LR B-splines;

2 Let EO be the boxes of the LR B-splines in BO ;

3 Let VO be the T-vertices of the LR B-splines in BO ;

4 for every box in EO do
5 Identify the set BO

1 ⊆ BO of those having a box

covered by no other LR B-splines in BO ;

6 for every T-vertex vvv in VO do
7 If vvv is only in one B ∈ BO , add B to BO

1 ;

8 if |BO\BO
1 |<<< 8 then

9 linear independence, break.
10 else
11 if BO

1 = ∅ then
12 break, but might have linear dependence

13 BO ← BO\BO
1 ;

14 Go to 2;

Conjecture: Peeling Algorithm++ sorts out all cases, if BO
1 = ∅ then there is a linear

dependece relation.

25 / 39

Seek and Destroy Linear Dependence: Peeling Algorithm++
Peeling Algorithm

1 Create the set BO of overloaded LR B-splines;

2 Let EO be the boxes of the LR B-splines in BO ;

3 for every box in EO do
4 Identify the set BO

1 ⊆ BO of those having a box

covered by no other LR B-splines in BO ;

5 if BO\BO
1 = ∅ then

6 linear independence, break.
7 else
8 if BO

1 = ∅ then
9 break, but might have linear dependence

10 BO ← BO\BO
1 ;

11 Go to 2;

Peeling Algorithm++

1 Create the set BO of overloaded LR B-splines;

2 Let EO be the boxes of the LR B-splines in BO ;

3 Let VO be the T-vertices of the LR B-splines in BO ;

4 for every box in EO do
5 Identify the set BO

1 ⊆ BO of those having a box

covered by no other LR B-splines in BO ;

6 for every T-vertex vvv in VO do
7 If vvv is only in one B ∈ BO , add B to BO

1 ;

8 if |BO\BO
1 |<<< 8 then

9 linear independence, break.
10 else
11 if BO

1 = ∅ then
12 break, but might have linear dependence

13 BO ← BO\BO
1 ;

14 Go to 2;

Conjecture: Peeling Algorithm++ sorts out all cases, if BO
1 = ∅ then there is a linear

dependece relation. 25 / 39

Local linear independence and N2S property
On the other hand, local linear independence has been characterized by Bressan and Jüttler.

Local linear independence: ∄ open set A ⊆ Ω :
∑
B∈B

αAB|A = 0, with αA not all zero,

⇔

No overloading: ∀ cell in the mesh β, #{B ∈ B : β ∈ suppB} = (p1 + 1)(p2 + 1),

⇔

Non-Nested-Support (N2S) property of the mesh:

⌢ ⌣

∄B1,B2 such that suppB2 ⊆ suppB1.

How do we build LR meshes with the N2S property?

26 / 39

Local linear independence and N2S property
On the other hand, local linear independence has been characterized by Bressan and Jüttler.

Local linear independence: ∄ open set A ⊆ Ω :
∑
B∈B

αAB|A = 0, with αA not all zero,

⇔

No overloading: ∀ cell in the mesh β, #{B ∈ B : β ∈ suppB} = (p1 + 1)(p2 + 1),

⇔

Non-Nested-Support (N2S) property of the mesh:

⌢ ⌣

∄B1,B2 such that suppB2 ⊆ suppB1.

How do we build LR meshes with the N2S property?

26 / 39

Local linear independence and N2S property
On the other hand, local linear independence has been characterized by Bressan and Jüttler.

Local linear independence: ∄ open set A ⊆ Ω :
∑
B∈B

αAB|A = 0, with αA not all zero,
⇔

No overloading: ∀ cell in the mesh β, #{B ∈ B : β ∈ suppB} = (p1 + 1)(p2 + 1),

⇔

Non-Nested-Support (N2S) property of the mesh:

⌢ ⌣

∄B1,B2 such that suppB2 ⊆ suppB1.

How do we build LR meshes with the N2S property?

26 / 39

Local linear independence and N2S property
On the other hand, local linear independence has been characterized by Bressan and Jüttler.

Local linear independence: ∄ open set A ⊆ Ω :
∑
B∈B

αAB|A = 0, with αA not all zero,
⇔

No overloading: ∀ cell in the mesh β, #{B ∈ B : β ∈ suppB} = (p1 + 1)(p2 + 1),

⇔

Non-Nested-Support (N2S) property of the mesh:

⌢ ⌣

∄B1,B2 such that suppB2 ⊆ suppB1.

How do we build LR meshes with the N2S property?

26 / 39

Local linear independence and N2S property
On the other hand, local linear independence has been characterized by Bressan and Jüttler.

Local linear independence: ∄ open set A ⊆ Ω :
∑
B∈B

αAB|A = 0, with αA not all zero,
⇔

No overloading: ∀ cell in the mesh β, #{B ∈ B : β ∈ suppB} = (p1 + 1)(p2 + 1),

⇔

Non-Nested-Support (N2S) property of the mesh:

⌢ ⌣

∄B1,B2 such that suppB2 ⊆ suppB1.

How do we build LR meshes with the N2S property?
26 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
1. select the LR B-spline contributing more to the approximation error (in some sense),

2. split in 4 all the boxes in their supports (i.e., insert new meshlines),

bidegree (2,2)

27 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
1. select the LR B-spline contributing more to the approximation error (in some sense),
2. split in 4 all the boxes in their supports (i.e., insert new meshlines),

bidegree (2,2)

27 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
1. select the LR B-spline contributing more to the approximation error (in some sense),
2. split in 4 all the boxes in their supports (i.e., insert new meshlines),

bidegree (2,2)

27 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
1. select the LR B-spline contributing more to the approximation error (in some sense),
2. split in 4 all the boxes in their supports (i.e., insert new meshlines),

bidegree (2,2)

27 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
1. select the LR B-spline contributing more to the approximation error (in some sense),
2. split in 4 all the boxes in their supports (i.e., insert new meshlines),

bidegree (2,2)

27 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
1. select the LR B-spline contributing more to the approximation error (in some sense),
2. split in 4 all the boxes in their supports (i.e., insert new meshlines),

bidegree (2,2)

27 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
1. select the LR B-spline contributing more to the approximation error (in some sense),
2. split in 4 all the boxes in their supports (i.e., insert new meshlines),

bidegree (2,2)

27 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
1. select the LR B-spline contributing more to the approximation error (in some sense),
2. split in 4 all the boxes in their supports (i.e., insert new meshlines),

final mesh (no N2S property)

27 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
1. select the LR B-spline contributing more to the approximation error (in some sense),
2. split in 4 all the boxes in their supports (i.e., insert new meshlines),

final mesh (no N2S property)

recall, NOT OK:

27 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
1. select the LR B-spline contributing more to the approximation error (in some sense),
2. split in 4 all the boxes in their supports (i.e., insert new meshlines),
3. modify the boundary of the region where the refinement is applied
4. apply the LR B-splines generation algorithm to refine the space.

 B-splines defined on a plain tensor mesh
are locally linearly independent. The
meshes generated with 1.–2. are locally
tensor meshes far from the boundary of
the region where the refinement is applied.

⇒ The LR B-splines defined in these zones of
the mesh behave like the standard
B-splines, and therefore are locally linearly
independent.

27 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
1. select the LR B-spline contributing more to the approximation error (in some sense),
2. split in 4 all the boxes in their supports (i.e., insert new meshlines),
3. modify the boundary of the region where the refinement is applied
4. apply the LR B-splines generation algorithm to refine the space.

 B-splines defined on a plain tensor mesh
are locally linearly independent. The
meshes generated with 1.–2. are locally
tensor meshes far from the boundary of
the region where the refinement is applied.

⇒ The LR B-splines defined in these zones of
the mesh behave like the standard
B-splines, and therefore are locally linearly
independent.

27 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
1. select the LR B-spline contributing more to the approximation error (in some sense),
2. split in 4 all the boxes in their supports (i.e., insert new meshlines),
3. modify the boundary of the region where the refinement is applied
4. apply the LR B-splines generation algorithm to refine the space.

 B-splines defined on a plain tensor mesh
are locally linearly independent. The
meshes generated with 1.–2. are locally
tensor meshes far from the boundary of
the region where the refinement is applied.

⇒ The LR B-splines defined in these zones of
the mesh behave like the standard
B-splines, and therefore are locally linearly
independent.

27 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
1. select the LR B-spline contributing more to the approximation error (in some sense),
2. split in 4 all the boxes in their supports (i.e., insert new meshlines),
3. modify the boundary of the region where the refinement is applied
4. apply the LR B-splines generation algorithm to refine the space.

 B-splines defined on a plain tensor mesh
are locally linearly independent. The
meshes generated with 1.–2. are locally
tensor meshes far from the boundary of
the region where the refinement is applied.

⇒ The LR B-splines defined in these zones of
the mesh behave like the standard
B-splines, and therefore are locally linearly
independent.

27 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
1. select the LR B-spline contributing more to the approximation error (in some sense),
2. split in 4 all the boxes in their supports (i.e., insert new meshlines),
3. modify the boundary of the region where the refinement is applied
4. apply the LR B-splines generation algorithm to refine the space.

, , ,

, .

27 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
1. select the LR B-spline contributing more to the approximation error (in some sense),
2. split in 4 all the boxes in their supports (i.e., insert new meshlines),
3. modify the boundary of the region where the refinement is applied
4. apply the LR B-splines generation algorithm to refine the space.

, , ,

, .

27 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
1. select the LR B-spline contributing more to the approximation error (in some sense),
2. split in 4 all the boxes in their supports (i.e., insert new meshlines),
3. modify the boundary of the region where the refinement is applied
4. apply the LR B-splines generation algorithm to refine the space.

, , ,

, .

27 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
1. select the LR B-spline contributing more to the approximation error (in some sense),
2. split in 4 all the boxes in their supports (i.e., insert new meshlines),
3. modify the boundary of the region where the refinement is applied
4. apply the LR B-splines generation algorithm to refine the space.

, , , ,

, , .

27 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
Example: degree (2, 2).

28 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
Example: degree (2, 2).

28 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
Example: degree (2, 2).

28 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
Example: degree (2, 2).

28 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
Example: degree (2, 2).

28 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
Example: degree (2, 2).

28 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
Example: degree (2, 2).

28 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
Example: degree (2, 2).

28 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
Example: degree (2, 2).

28 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement
Example: degree (2, 2).

28 / 39

Non-Nested Support Structured (N2S2) Mesh Refinement

Hierarchical LR-Mesh Costruction
Shadow Map:

A bunch of boxes in a tensor mesh N, the horizontal shadow of A, SA is the
superset obtained moving the boundary outward of p1 more boxes in the horizontal direction.

30 / 39

Hierarchical LR-Mesh Costruction
Shadow Map: A bunch of boxes in a tensor mesh N, the horizontal shadow of A, SA is the
superset obtained moving the boundary outward of p1 more boxes in the horizontal direction.

30 / 39

Hierarchical LR-Mesh Costruction
Shadow Map: A bunch of boxes in a tensor mesh N, the horizontal shadow of A, SA is the
superset obtained moving the boundary outward of p1 more boxes in the horizontal direction.

30 / 39

Hierarchical LR-Mesh Costruction
Shadow Map: A bunch of boxes in a tensor mesh N, the horizontal shadow of A, SA is the
superset obtained moving the boundary outward of p1 more boxes in the horizontal direction.

• Nℓ+1 tensor mesh obtained bisecting the boxes of Nℓ in one direction alternately on ℓ,
• Ω = Ω0 ⊇ . . . ⊇ Ωm sequence of nested domains with Ωℓ union of boxes in Nℓ,

Hierarchical LR-mesh:
m⋃
ℓ=0

{β boxes of Nℓ inside Ωℓ\Ωℓ+1}

Theorem: If Ωℓ ⊇ SΩℓ+1 for every ℓ then the Hierarchical
LR-mesh has the N2S property.
1. select the refinement region and max resolution m,

2. select the boxes in the supports of the tensor product B-splines on
Nm touching the region,

3. embed this new region inside Nm−1 which is coarser in one direction,

4. compute the shadow along the coarser direction in Nm−1,

5. select the boxes enclosed in this new boundary,

6. repeat 3.–5. for coarser meshes switching the shadow direction until
the mesh is complete.

30 / 39

Hierarchical LR-Mesh Costruction
Shadow Map: A bunch of boxes in a tensor mesh N, the horizontal shadow of A, SA is the
superset obtained moving the boundary outward of p1 more boxes in the horizontal direction.

• Nℓ+1 tensor mesh obtained bisecting the boxes of Nℓ in one direction alternately on ℓ,
• Ω = Ω0 ⊇ . . . ⊇ Ωm sequence of nested domains with Ωℓ union of boxes in Nℓ,

Hierarchical LR-mesh:
m⋃
ℓ=0

{β boxes of Nℓ inside Ωℓ\Ωℓ+1}

Theorem: If Ωℓ ⊇ SΩℓ+1 for every ℓ then the Hierarchical
LR-mesh has the N2S property.
1. select the refinement region and max resolution m,

2. select the boxes in the supports of the tensor product B-splines on
Nm touching the region,

3. embed this new region inside Nm−1 which is coarser in one direction,

4. compute the shadow along the coarser direction in Nm−1,

5. select the boxes enclosed in this new boundary,

6. repeat 3.–5. for coarser meshes switching the shadow direction until
the mesh is complete.

30 / 39

Hierarchical LR-Mesh Costruction
Shadow Map: A bunch of boxes in a tensor mesh N, the horizontal shadow of A, SA is the
superset obtained moving the boundary outward of p1 more boxes in the horizontal direction.

• Nℓ+1 tensor mesh obtained bisecting the boxes of Nℓ in one direction alternately on ℓ,
• Ω = Ω0 ⊇ . . . ⊇ Ωm sequence of nested domains with Ωℓ union of boxes in Nℓ,

Hierarchical LR-mesh:
m⋃
ℓ=0

{β boxes of Nℓ inside Ωℓ\Ωℓ+1}

Theorem: If Ωℓ ⊇ SΩℓ+1 for every ℓ then the Hierarchical
LR-mesh has the N2S property.

1. select the refinement region and max resolution m,

2. select the boxes in the supports of the tensor product B-splines on
Nm touching the region,

3. embed this new region inside Nm−1 which is coarser in one direction,

4. compute the shadow along the coarser direction in Nm−1,

5. select the boxes enclosed in this new boundary,

6. repeat 3.–5. for coarser meshes switching the shadow direction until
the mesh is complete.

30 / 39

Hierarchical LR-Mesh Costruction
Shadow Map: A bunch of boxes in a tensor mesh N, the horizontal shadow of A, SA is the
superset obtained moving the boundary outward of p1 more boxes in the horizontal direction.

• Nℓ+1 tensor mesh obtained bisecting the boxes of Nℓ in one direction alternately on ℓ,
• Ω = Ω0 ⊇ . . . ⊇ Ωm sequence of nested domains with Ωℓ union of boxes in Nℓ,

Hierarchical LR-mesh:
m⋃
ℓ=0

{β boxes of Nℓ inside Ωℓ\Ωℓ+1}

Theorem: If Ωℓ ⊇ SΩℓ+1 for every ℓ then the Hierarchical
LR-mesh has the N2S property.
1. select the refinement region and max resolution m,

2. select the boxes in the supports of the tensor product B-splines on
Nm touching the region,

3. embed this new region inside Nm−1 which is coarser in one direction,

4. compute the shadow along the coarser direction in Nm−1,

5. select the boxes enclosed in this new boundary,

6. repeat 3.–5. for coarser meshes switching the shadow direction until
the mesh is complete.

30 / 39

Hierarchical LR-Mesh Costruction
Shadow Map: A bunch of boxes in a tensor mesh N, the horizontal shadow of A, SA is the
superset obtained moving the boundary outward of p1 more boxes in the horizontal direction.

• Nℓ+1 tensor mesh obtained bisecting the boxes of Nℓ in one direction alternately on ℓ,
• Ω = Ω0 ⊇ . . . ⊇ Ωm sequence of nested domains with Ωℓ union of boxes in Nℓ,

Hierarchical LR-mesh:
m⋃
ℓ=0

{β boxes of Nℓ inside Ωℓ\Ωℓ+1}

Theorem: If Ωℓ ⊇ SΩℓ+1 for every ℓ then the Hierarchical
LR-mesh has the N2S property.
1. select the refinement region and max resolution m,

2. select the boxes in the supports of the tensor product B-splines on
Nm touching the region,

3. embed this new region inside Nm−1 which is coarser in one direction,

4. compute the shadow along the coarser direction in Nm−1,

5. select the boxes enclosed in this new boundary,

6. repeat 3.–5. for coarser meshes switching the shadow direction until
the mesh is complete.

30 / 39

Hierarchical LR-Mesh Costruction
Shadow Map: A bunch of boxes in a tensor mesh N, the horizontal shadow of A, SA is the
superset obtained moving the boundary outward of p1 more boxes in the horizontal direction.

• Nℓ+1 tensor mesh obtained bisecting the boxes of Nℓ in one direction alternately on ℓ,
• Ω = Ω0 ⊇ . . . ⊇ Ωm sequence of nested domains with Ωℓ union of boxes in Nℓ,

Hierarchical LR-mesh:
m⋃
ℓ=0

{β boxes of Nℓ inside Ωℓ\Ωℓ+1}

Theorem: If Ωℓ ⊇ SΩℓ+1 for every ℓ then the Hierarchical
LR-mesh has the N2S property.
1. select the refinement region and max resolution m,

2. select the boxes in the supports of the tensor product B-splines on
Nm touching the region,

3. embed this new region inside Nm−1 which is coarser in one direction,

4. compute the shadow along the coarser direction in Nm−1,

5. select the boxes enclosed in this new boundary,

6. repeat 3.–5. for coarser meshes switching the shadow direction until
the mesh is complete.

30 / 39

Hierarchical LR-Mesh Costruction
Shadow Map: A bunch of boxes in a tensor mesh N, the horizontal shadow of A, SA is the
superset obtained moving the boundary outward of p1 more boxes in the horizontal direction.

• Nℓ+1 tensor mesh obtained bisecting the boxes of Nℓ in one direction alternately on ℓ,
• Ω = Ω0 ⊇ . . . ⊇ Ωm sequence of nested domains with Ωℓ union of boxes in Nℓ,

Hierarchical LR-mesh:
m⋃
ℓ=0

{β boxes of Nℓ inside Ωℓ\Ωℓ+1}

Theorem: If Ωℓ ⊇ SΩℓ+1 for every ℓ then the Hierarchical
LR-mesh has the N2S property.
1. select the refinement region and max resolution m,

2. select the boxes in the supports of the tensor product B-splines on
Nm touching the region,

3. embed this new region inside Nm−1 which is coarser in one direction,

4. compute the shadow along the coarser direction in Nm−1,

5. select the boxes enclosed in this new boundary,

6. repeat 3.–5. for coarser meshes switching the shadow direction until
the mesh is complete.

30 / 39

Hierarchical LR-Mesh Costruction
Shadow Map: A bunch of boxes in a tensor mesh N, the horizontal shadow of A, SA is the
superset obtained moving the boundary outward of p1 more boxes in the horizontal direction.

• Nℓ+1 tensor mesh obtained bisecting the boxes of Nℓ in one direction alternately on ℓ,
• Ω = Ω0 ⊇ . . . ⊇ Ωm sequence of nested domains with Ωℓ union of boxes in Nℓ,

Hierarchical LR-mesh:
m⋃
ℓ=0

{β boxes of Nℓ inside Ωℓ\Ωℓ+1}

Theorem: If Ωℓ ⊇ SΩℓ+1 for every ℓ then the Hierarchical
LR-mesh has the N2S property.
1. select the refinement region and max resolution m,

2. select the boxes in the supports of the tensor product B-splines on
Nm touching the region,

3. embed this new region inside Nm−1 which is coarser in one direction,

4. compute the shadow along the coarser direction in Nm−1,

5. select the boxes enclosed in this new boundary,

6. repeat 3.–5. for coarser meshes switching the shadow direction until
the mesh is complete.

30 / 39

Hierarchical LR-Mesh Costruction
Shadow Map: A bunch of boxes in a tensor mesh N, the horizontal shadow of A, SA is the
superset obtained moving the boundary outward of p1 more boxes in the horizontal direction.

• Nℓ+1 tensor mesh obtained bisecting the boxes of Nℓ in one direction alternately on ℓ,
• Ω = Ω0 ⊇ . . . ⊇ Ωm sequence of nested domains with Ωℓ union of boxes in Nℓ,

Hierarchical LR-mesh:
m⋃
ℓ=0

{β boxes of Nℓ inside Ωℓ\Ωℓ+1}

Theorem: If Ωℓ ⊇ SΩℓ+1 for every ℓ then the Hierarchical
LR-mesh has the N2S property.
1. select the refinement region and max resolution m,

2. select the boxes in the supports of the tensor product B-splines on
Nm touching the region,

3. embed this new region inside Nm−1 which is coarser in one direction,

4. compute the shadow along the coarser direction in Nm−1,

5. select the boxes enclosed in this new boundary,

6. repeat 3.–5. for coarser meshes switching the shadow direction until
the mesh is complete.

30 / 39

Hierarchical LR-Mesh Costruction
Shadow Map: A bunch of boxes in a tensor mesh N, the horizontal shadow of A, SA is the
superset obtained moving the boundary outward of p1 more boxes in the horizontal direction.

• Nℓ+1 tensor mesh obtained bisecting the boxes of Nℓ in one direction alternately on ℓ,
• Ω = Ω0 ⊇ . . . ⊇ Ωm sequence of nested domains with Ωℓ union of boxes in Nℓ,

Hierarchical LR-mesh:
m⋃
ℓ=0

{β boxes of Nℓ inside Ωℓ\Ωℓ+1}

Theorem: If Ωℓ ⊇ SΩℓ+1 for every ℓ then the Hierarchical
LR-mesh has the N2S property.
1. select the refinement region and max resolution m,

2. select the boxes in the supports of the tensor product B-splines on
Nm touching the region,

3. embed this new region inside Nm−1 which is coarser in one direction,

4. compute the shadow along the coarser direction in Nm−1,

5. select the boxes enclosed in this new boundary,

6. repeat 3.–5. for coarser meshes switching the shadow direction until
the mesh is complete.

30 / 39

Hierarchical LR-Mesh Costruction
Shadow Map: A bunch of boxes in a tensor mesh N, the horizontal shadow of A, SA is the
superset obtained moving the boundary outward of p1 more boxes in the horizontal direction.

• Nℓ+1 tensor mesh obtained bisecting the boxes of Nℓ in one direction alternately on ℓ,
• Ω = Ω0 ⊇ . . . ⊇ Ωm sequence of nested domains with Ωℓ union of boxes in Nℓ,

Hierarchical LR-mesh:
m⋃
ℓ=0

{β boxes of Nℓ inside Ωℓ\Ωℓ+1}

Theorem: If Ωℓ ⊇ SΩℓ+1 for every ℓ then the Hierarchical
LR-mesh has the N2S property.
1. select the refinement region and max resolution m,

2. select the boxes in the supports of the tensor product B-splines on
Nm touching the region,

3. embed this new region inside Nm−1 which is coarser in one direction,

4. compute the shadow along the coarser direction in Nm−1,

5. select the boxes enclosed in this new boundary,

6. repeat 3.–5. for coarser meshes switching the shadow direction until
the mesh is complete.

30 / 39

Hierarchical LR-Mesh Costruction
Shadow Map: A bunch of boxes in a tensor mesh N, the horizontal shadow of A, SA is the
superset obtained moving the boundary outward of p1 more boxes in the horizontal direction.

• Nℓ+1 tensor mesh obtained bisecting the boxes of Nℓ in one direction alternately on ℓ,
• Ω = Ω0 ⊇ . . . ⊇ Ωm sequence of nested domains with Ωℓ union of boxes in Nℓ,

Hierarchical LR-mesh:
m⋃
ℓ=0

{β boxes of Nℓ inside Ωℓ\Ωℓ+1}

Theorem: If Ωℓ ⊇ SΩℓ+1 for every ℓ then the Hierarchical
LR-mesh has the N2S property.
1. select the refinement region and max resolution m,

2. select the boxes in the supports of the tensor product B-splines on
Nm touching the region,

3. embed this new region inside Nm−1 which is coarser in one direction,

4. compute the shadow along the coarser direction in Nm−1,

5. select the boxes enclosed in this new boundary,

6. repeat 3.–5. for coarser meshes switching the shadow direction until
the mesh is complete.

30 / 39

Hierarchical LR-Mesh Costruction
Shadow Map: A bunch of boxes in a tensor mesh N, the horizontal shadow of A, SA is the
superset obtained moving the boundary outward of p1 more boxes in the horizontal direction.

• Nℓ+1 tensor mesh obtained bisecting the boxes of Nℓ in one direction alternately on ℓ,
• Ω = Ω0 ⊇ . . . ⊇ Ωm sequence of nested domains with Ωℓ union of boxes in Nℓ,

Hierarchical LR-mesh:
m⋃
ℓ=0

{β boxes of Nℓ inside Ωℓ\Ωℓ+1}

Theorem: If Ωℓ ⊇ SΩℓ+1 for every ℓ then the Hierarchical
LR-mesh has the N2S property.
1. select the refinement region and max resolution m,

2. select the boxes in the supports of the tensor product B-splines on
Nm touching the region,

3. embed this new region inside Nm−1 which is coarser in one direction,

4. compute the shadow along the coarser direction in Nm−1,

5. select the boxes enclosed in this new boundary,

6. repeat 3.–5. for coarser meshes switching the shadow direction until
the mesh is complete.

30 / 39

Hierarchical LR-Mesh Costruction

Effective Grading Refinement Strategy

Refinement macro-step:

1. Given a set of boxes marked for refinement,

2. Collect all the LR B-splines whose support intersects the
marked boxes,

3. Halve the boxes of largest diameter in their support (in
this case all the boxes in the colored region),

N2S reinstatement macro-step:

4. Consider the smallest boxes on the mesh and compute
the shadow of such region (horizontal if square boxes,
vertical if rectangular boxes),

5. Mark for refinement those boxes in the shadow that are
“too large” compared to the boxes in the red region,

6. Halve such larger boxes,

7. Iterate over all the boxes from the smaller to the larger.

32 / 39

Effective Grading Refinement Strategy

Refinement macro-step:

1. Given a set of boxes marked for refinement,

2. Collect all the LR B-splines whose support intersects the
marked boxes,

3. Halve the boxes of largest diameter in their support (in
this case all the boxes in the colored region),

N2S reinstatement macro-step:

4. Consider the smallest boxes on the mesh and compute
the shadow of such region (horizontal if square boxes,
vertical if rectangular boxes),

5. Mark for refinement those boxes in the shadow that are
“too large” compared to the boxes in the red region,

6. Halve such larger boxes,

7. Iterate over all the boxes from the smaller to the larger.

32 / 39

Effective Grading Refinement Strategy

Refinement macro-step:

1. Given a set of boxes marked for refinement,

2. Collect all the LR B-splines whose support intersects the
marked boxes,

3. Halve the boxes of largest diameter in their support (in
this case all the boxes in the colored region),

N2S reinstatement macro-step:

4. Consider the smallest boxes on the mesh and compute
the shadow of such region (horizontal if square boxes,
vertical if rectangular boxes),

5. Mark for refinement those boxes in the shadow that are
“too large” compared to the boxes in the red region,

6. Halve such larger boxes,

7. Iterate over all the boxes from the smaller to the larger.

32 / 39

Effective Grading Refinement Strategy

Refinement macro-step:

1. Given a set of boxes marked for refinement,

2. Collect all the LR B-splines whose support intersects the
marked boxes,

3. Halve the boxes of largest diameter in their support (in
this case all the boxes in the colored region),

N2S reinstatement macro-step:

4. Consider the smallest boxes on the mesh and compute
the shadow of such region (horizontal if square boxes,
vertical if rectangular boxes),

5. Mark for refinement those boxes in the shadow that are
“too large” compared to the boxes in the red region,

6. Halve such larger boxes,

7. Iterate over all the boxes from the smaller to the larger.

32 / 39

Effective Grading Refinement Strategy

Refinement macro-step:

1. Given a set of boxes marked for refinement,

2. Collect all the LR B-splines whose support intersects the
marked boxes,

3. Halve the boxes of largest diameter in their support (in
this case all the boxes in the colored region),

N2S reinstatement macro-step:

4. Consider the smallest boxes on the mesh and compute
the shadow of such region (horizontal if square boxes,
vertical if rectangular boxes),

5. Mark for refinement those boxes in the shadow that are
“too large” compared to the boxes in the red region,

6. Halve such larger boxes,

7. Iterate over all the boxes from the smaller to the larger.

32 / 39

Effective Grading Refinement Strategy

Refinement macro-step:

1. Given a set of boxes marked for refinement,

2. Collect all the LR B-splines whose support intersects the
marked boxes,

3. Halve the boxes of largest diameter in their support (in
this case all the boxes in the colored region),

N2S reinstatement macro-step:

4. Consider the smallest boxes on the mesh and compute
the shadow of such region (horizontal if square boxes,
vertical if rectangular boxes),

5. Mark for refinement those boxes in the shadow that are
“too large” compared to the boxes in the red region,

6. Halve such larger boxes,

7. Iterate over all the boxes from the smaller to the larger.

32 / 39

Effective Grading Refinement Strategy

Refinement macro-step:

1. Given a set of boxes marked for refinement,

2. Collect all the LR B-splines whose support intersects the
marked boxes,

3. Halve the boxes of largest diameter in their support (in
this case all the boxes in the colored region),

N2S reinstatement macro-step:

4. Consider the smallest boxes on the mesh and compute
the shadow of such region (horizontal if square boxes,
vertical if rectangular boxes),

5. Mark for refinement those boxes in the shadow that are
“too large” compared to the boxes in the red region,

6. Halve such larger boxes,

7. Iterate over all the boxes from the smaller to the larger.

32 / 39

Effective Grading Refinement Strategy

Refinement macro-step:

1. Given a set of boxes marked for refinement,

2. Collect all the LR B-splines whose support intersects the
marked boxes,

3. Halve the boxes of largest diameter in their support (in
this case all the boxes in the colored region),

N2S reinstatement macro-step:

4. Consider the smallest boxes on the mesh and compute
the shadow of such region (horizontal if square boxes,
vertical if rectangular boxes),

5. Mark for refinement those boxes in the shadow that are
“too large” compared to the boxes in the red region,

6. Halve such larger boxes,

7. Iterate over all the boxes from the smaller to the larger.

32 / 39

Effective Grading Refinement Strategy

Refinement macro-step:

1. Given a set of boxes marked for refinement,

2. Collect all the LR B-splines whose support intersects the
marked boxes,

3. Halve the boxes of largest diameter in their support (in
this case all the boxes in the colored region),

N2S reinstatement macro-step:

4. Consider the smallest boxes on the mesh and compute
the shadow of such region (horizontal if square boxes,
vertical if rectangular boxes),

5. Mark for refinement those boxes in the shadow that are
“too large” compared to the boxes in the red region,

6. Halve such larger boxes,

7. Iterate over all the boxes from the smaller to the larger.

32 / 39

Effective Grading Refinement Strategy

Refinement macro-step:

1. Given a set of boxes marked for refinement,

2. Collect all the LR B-splines whose support intersects the
marked boxes,

3. Halve the boxes of largest diameter in their support (in
this case all the boxes in the colored region),

N2S reinstatement macro-step:

4. Consider the smallest boxes on the mesh and compute
the shadow of such region (horizontal if square boxes,
vertical if rectangular boxes),

5. Mark for refinement those boxes in the shadow that are
“too large” compared to the boxes in the red region,

6. Halve such larger boxes,

7. Iterate over all the boxes from the smaller to the larger.

32 / 39

Effective Grading Refinement Strategy

Refinement macro-step:

1. Given a set of boxes marked for refinement,

2. Collect all the LR B-splines whose support intersects the
marked boxes,

3. Halve the boxes of largest diameter in their support (in
this case all the boxes in the colored region),

N2S reinstatement macro-step:

4. Consider the smallest boxes on the mesh and compute
the shadow of such region (horizontal if square boxes,
vertical if rectangular boxes),

5. Mark for refinement those boxes in the shadow that are
“too large” compared to the boxes in the red region,

6. Halve such larger boxes,

7. Iterate over all the boxes from the smaller to the larger.

32 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy
Example: degree (2, 2), Triangle → Circle → Square

33 / 39

Effective Grading Refinement Strategy

Comparison

N2S2 10818 LR B-splines HLR 12374 LR B-splines EG 15238 LR B-splines

35 / 39

One word on the spline space
N mesh with local insertions (not necessarily LR mesh)

S(N) :=

f : R2 → R : supp f ⊆ Ω,

f |β is a polynomial of bidegree ppp in any β box of N,

f ∈ Cp3−k−µ(γ)-continuous across γ ∈ N in the kth direction.

 .

Dimension formula: In general combinartorial part + homological part.The homological part
makes it parametrization-dependent ⇒ Unstable ⌢

dimS(N) = 36

0
0

1 2 3 4 5 6

1

2

3

4

5

6

0
0

1.52 3 4 5 6

1

2

3

4

5

6

dimS(N) = 36 + 1

On LR meshes only combinatorial ⌣. HB, THB, LR, . . .⊆ S(N).

36 / 39

One word on the spline space
N mesh with local insertions (not necessarily LR mesh)

S(N) :=

f : R2 → R : supp f ⊆ Ω,

f |β is a polynomial of bidegree ppp in any β box of N,

f ∈ Cp3−k−µ(γ)-continuous across γ ∈ N in the kth direction.

 .

Dimension formula: In general combinartorial part + homological part.

The homological part
makes it parametrization-dependent ⇒ Unstable ⌢

dimS(N) = 36

0
0

1 2 3 4 5 6

1

2

3

4

5

6

0
0

1.52 3 4 5 6

1

2

3

4

5

6

dimS(N) = 36 + 1

On LR meshes only combinatorial ⌣. HB, THB, LR, . . .⊆ S(N).

36 / 39

One word on the spline space
N mesh with local insertions (not necessarily LR mesh)

S(N) :=

f : R2 → R : supp f ⊆ Ω,

f |β is a polynomial of bidegree ppp in any β box of N,

f ∈ Cp3−k−µ(γ)-continuous across γ ∈ N in the kth direction.

 .

Dimension formula: In general combinartorial part + homological part.The homological part
makes it parametrization-dependent

⇒ Unstable ⌢

dimS(N) = 36

0
0

1 2 3 4 5 6

1

2

3

4

5

6

0
0

1.52 3 4 5 6

1

2

3

4

5

6

dimS(N) = 36 + 1

On LR meshes only combinatorial ⌣. HB, THB, LR, . . .⊆ S(N).

36 / 39

One word on the spline space
N mesh with local insertions (not necessarily LR mesh)

S(N) :=

f : R2 → R : supp f ⊆ Ω,

f |β is a polynomial of bidegree ppp in any β box of N,

f ∈ Cp3−k−µ(γ)-continuous across γ ∈ N in the kth direction.

 .

Dimension formula: In general combinartorial part + homological part.The homological part
makes it parametrization-dependent ⇒ Unstable ⌢

dimS(N) = 36

0
0

1 2 3 4 5 6

1

2

3

4

5

6

0
0

1.52 3 4 5 6

1

2

3

4

5

6

dimS(N) = 36 + 1

On LR meshes only combinatorial ⌣. HB, THB, LR, . . .⊆ S(N).

36 / 39

One word on the spline space
N mesh with local insertions (not necessarily LR mesh)

S(N) :=

f : R2 → R : supp f ⊆ Ω,

f |β is a polynomial of bidegree ppp in any β box of N,

f ∈ Cp3−k−µ(γ)-continuous across γ ∈ N in the kth direction.

 .

Dimension formula: In general combinartorial part + homological part.The homological part
makes it parametrization-dependent ⇒ Unstable ⌢

dimS(N) = 36

0
0

1 2 3 4 5 6

1

2

3

4

5

6

0
0

1.52 3 4 5 6

1

2

3

4

5

6

dimS(N) = 36 + 1

On LR meshes only combinatorial ⌣.

HB, THB, LR, . . .⊆ S(N).

36 / 39

One word on the spline space
N mesh with local insertions (not necessarily LR mesh)

S(N) :=

f : R2 → R : supp f ⊆ Ω,

f |β is a polynomial of bidegree ppp in any β box of N,

f ∈ Cp3−k−µ(γ)-continuous across γ ∈ N in the kth direction.

 .

Dimension formula: In general combinartorial part + homological part.The homological part
makes it parametrization-dependent ⇒ Unstable ⌢

dimS(N) = 36

0
0

1 2 3 4 5 6

1

2

3

4

5

6

0
0

1.52 3 4 5 6

1

2

3

4

5

6

dimS(N) = 36 + 1

On LR meshes only combinatorial ⌣. HB, THB, LR, . . .⊆ S(N).
36 / 39

Comparison
Adaptivity:

Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space S(N).

Marking:

▶ function-based: refine those LR B-splines contributing more to the error,

▶ box-based: refine those boxes in which a larger error is committed.

(Loc.) Lin. Ind. Adaptivity Grading Completeness Marking

N2S2 strategy Ë Ë é ? function-based

Hierarchical Under Assumptions∗ é Ë Ë box-based

Effective Grading Ë Ë Ë Ë box-based
∗fix maximal resolution and region of refinement a priori

Conjecture: Local Linear Independence ⇒ Completeness.

37 / 39

Comparison
Adaptivity: Local Refinement

+ Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space S(N).

Marking:

▶ function-based: refine those LR B-splines contributing more to the error,

▶ box-based: refine those boxes in which a larger error is committed.

(Loc.) Lin. Ind. Adaptivity Grading Completeness Marking

N2S2 strategy Ë Ë é ? function-based

Hierarchical Under Assumptions∗ é Ë Ë box-based

Effective Grading Ë Ë Ë Ë box-based
∗fix maximal resolution and region of refinement a priori

Conjecture: Local Linear Independence ⇒ Completeness.

37 / 39

Comparison
Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space S(N).

Marking:

▶ function-based: refine those LR B-splines contributing more to the error,

▶ box-based: refine those boxes in which a larger error is committed.

(Loc.) Lin. Ind. Adaptivity Grading Completeness Marking

N2S2 strategy Ë Ë é ? function-based

Hierarchical Under Assumptions∗ é Ë Ë box-based

Effective Grading Ë Ë Ë Ë box-based
∗fix maximal resolution and region of refinement a priori

Conjecture: Local Linear Independence ⇒ Completeness.

37 / 39

Comparison
Adaptivity: Local Refinement + Change Region at any time

Grading:

Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space S(N).

Marking:

▶ function-based: refine those LR B-splines contributing more to the error,

▶ box-based: refine those boxes in which a larger error is committed.

(Loc.) Lin. Ind. Adaptivity Grading Completeness Marking

N2S2 strategy Ë Ë é ? function-based

Hierarchical Under Assumptions∗ é Ë Ë box-based

Effective Grading Ë Ë Ë Ë box-based
∗fix maximal resolution and region of refinement a priori

Conjecture: Local Linear Independence ⇒ Completeness.

37 / 39

Comparison
Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements

+ Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space S(N).

Marking:

▶ function-based: refine those LR B-splines contributing more to the error,

▶ box-based: refine those boxes in which a larger error is committed.

(Loc.) Lin. Ind. Adaptivity Grading Completeness Marking

N2S2 strategy Ë Ë é ? function-based

Hierarchical Under Assumptions∗ é Ë Ë box-based

Effective Grading Ë Ë Ë Ë box-based
∗fix maximal resolution and region of refinement a priori

Conjecture: Local Linear Independence ⇒ Completeness.

37 / 39

Comparison
Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space S(N).

Marking:

▶ function-based: refine those LR B-splines contributing more to the error,

▶ box-based: refine those boxes in which a larger error is committed.

(Loc.) Lin. Ind. Adaptivity Grading Completeness Marking

N2S2 strategy Ë Ë é ? function-based

Hierarchical Under Assumptions∗ é Ë Ë box-based

Effective Grading Ë Ë Ë Ë box-based
∗fix maximal resolution and region of refinement a priori

Conjecture: Local Linear Independence ⇒ Completeness.

37 / 39

Comparison
Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness:

The LR B-splines span the full ambient spline space S(N).

Marking:

▶ function-based: refine those LR B-splines contributing more to the error,

▶ box-based: refine those boxes in which a larger error is committed.

(Loc.) Lin. Ind. Adaptivity Grading Completeness Marking

N2S2 strategy Ë Ë é ? function-based

Hierarchical Under Assumptions∗ é Ë Ë box-based

Effective Grading Ë Ë Ë Ë box-based
∗fix maximal resolution and region of refinement a priori

Conjecture: Local Linear Independence ⇒ Completeness.

37 / 39

Comparison
Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space S(N).

Marking:

▶ function-based: refine those LR B-splines contributing more to the error,

▶ box-based: refine those boxes in which a larger error is committed.

(Loc.) Lin. Ind. Adaptivity Grading Completeness Marking

N2S2 strategy Ë Ë é ? function-based

Hierarchical Under Assumptions∗ é Ë Ë box-based

Effective Grading Ë Ë Ë Ë box-based
∗fix maximal resolution and region of refinement a priori

Conjecture: Local Linear Independence ⇒ Completeness.

37 / 39

Comparison
Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space S(N).

Marking:

▶ function-based: refine those LR B-splines contributing more to the error,

▶ box-based: refine those boxes in which a larger error is committed.

(Loc.) Lin. Ind. Adaptivity Grading Completeness Marking

N2S2 strategy Ë Ë é ? function-based

Hierarchical Under Assumptions∗ é Ë Ë box-based

Effective Grading Ë Ë Ë Ë box-based
∗fix maximal resolution and region of refinement a priori

Conjecture: Local Linear Independence ⇒ Completeness.

37 / 39

Comparison
Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space S(N).

Marking: ▶ function-based: refine those LR B-splines contributing more to the error,

▶ box-based: refine those boxes in which a larger error is committed.

(Loc.) Lin. Ind. Adaptivity Grading Completeness Marking

N2S2 strategy Ë Ë é ? function-based

Hierarchical Under Assumptions∗ é Ë Ë box-based

Effective Grading Ë Ë Ë Ë box-based
∗fix maximal resolution and region of refinement a priori

Conjecture: Local Linear Independence ⇒ Completeness.

37 / 39

Comparison
Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space S(N).

Marking: ▶ function-based: refine those LR B-splines contributing more to the error,

▶ box-based: refine those boxes in which a larger error is committed.

(Loc.) Lin. Ind. Adaptivity Grading Completeness Marking

N2S2 strategy Ë Ë é ? function-based

Hierarchical Under Assumptions∗ é Ë Ë box-based

Effective Grading Ë Ë Ë Ë box-based
∗fix maximal resolution and region of refinement a priori

Conjecture: Local Linear Independence ⇒ Completeness.

37 / 39

Comparison
Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space S(N).

Marking: ▶ function-based: refine those LR B-splines contributing more to the error,

▶ box-based: refine those boxes in which a larger error is committed.

(Loc.) Lin. Ind. Adaptivity Grading Completeness Marking

N2S2 strategy Ë Ë é ? function-based

Hierarchical Under Assumptions∗ é Ë Ë box-based

Effective Grading Ë Ë Ë Ë box-based
∗fix maximal resolution and region of refinement a priori

Conjecture: Local Linear Independence ⇒ Completeness.

37 / 39

Comparison
Adaptivity: Local Refinement + Change Region at any time

Grading: Shape Regularity: No skinny elements + Local Quasi Uniformity:

no large boxes side by side small boxes

Completeness: The LR B-splines span the full ambient spline space S(N).

Marking: ▶ function-based: refine those LR B-splines contributing more to the error,

▶ box-based: refine those boxes in which a larger error is committed.

(Loc.) Lin. Ind. Adaptivity Grading Completeness Marking

N2S2 strategy Ë Ë é ? function-based

Hierarchical Under Assumptions∗ é Ë Ë box-based

Effective Grading Ë Ë Ë Ë box-based
∗fix maximal resolution and region of refinement a priori

Conjecture: Local Linear Independence ⇒ Completeness. 37 / 39

Comparison of Adaptivity with and without Grading
From a refinement localized on a diagonal we switch to the other diagonal to form an “X”.

EG: Adaptivity & Grading N2S2: Adaptivity but no Grading

38 / 39

Comparison of Adaptivity with and without Grading
From a refinement localized on a diagonal we switch to the other diagonal to form an “X”.

EG: Adaptivity & Grading N2S2: Adaptivity but no Grading

38 / 39

Comparison of Adaptivity with and without Grading
From a refinement localized on a diagonal we switch to the other diagonal to form an “X”.

EG: Adaptivity & Grading N2S2: Adaptivity but no Grading

38 / 39

Comparison of Adaptivity with and without Grading
From a refinement localized on a diagonal we switch to the other diagonal to form an “X”.

EG: Adaptivity & Grading N2S2: Adaptivity but no Grading

38 / 39

Comparison of Adaptivity with and without Grading
From a refinement localized on a diagonal we switch to the other diagonal to form an “X”.

EG: Adaptivity & Grading N2S2: Adaptivity but no Grading

38 / 39

Comparison of Adaptivity with and without Grading
From a refinement localized on a diagonal we switch to the other diagonal to form an “X”.

EG: Adaptivity & Grading N2S2: Adaptivity but no Grading

38 / 39

Comparison of Adaptivity with and without Grading
From a refinement localized on a diagonal we switch to the other diagonal to form an “X”.

EG: Adaptivity & Grading N2S2: Adaptivity but no Grading

38 / 39

Comparison of Adaptivity with and without Grading
From a refinement localized on a diagonal we switch to the other diagonal to form an “X”.

EG: Adaptivity & Grading N2S2: Adaptivity but no Grading

38 / 39

Comparison of Adaptivity with and without Grading
From a refinement localized on a diagonal we switch to the other diagonal to form an “X”.

EG: Adaptivity & Grading N2S2: Adaptivity but no Grading

38 / 39

References
Bressan, A. (2013). Some properties of LR-splines.
CAGD, 30(8), 778-794.

Bressan, A., & Jüttler, B. (2015). A hierarchical
construction of LR meshes in 2D. CAGD, 37, 9-24.

Dokken, T., Lyche, T., & Pettersen, K. F. (2013).
Polynomial splines over locally refined
box-partitions. CAGD, 30(3), 331-356.

Johannessen, K. A., Kvamsdal, T., & Dokken, T.
(2014). Isogeometric analysis using LR B-splines.
CMAME, 269, 471-514.

Patrizi, F. (2022). Effective grading refinement for
locally linearly independent LR B-splines. BIT
Numerical Mathematics, 1-20.

Patrizi, F., & Dokken, T. (2020). Linear
dependence of bivariate Minimal Support and
Locally Refined B-splines over LR-meshes. CAGD,
77, 101803.

Patrizi, F., Manni, C., Pelosi, F., & Speleers, H.
(2020). Adaptive refinement with locally linearly
independent LR B-splines: Theory and
applications. CMAME, 369, 113230.

39 / 39

	anm5:
	5.53:
	5.52:
	5.51:
	5.50:
	5.49:
	5.48:
	5.47:
	5.46:
	5.45:
	5.44:
	5.43:
	5.42:
	5.41:
	5.40:
	5.39:
	5.38:
	5.37:
	5.36:
	5.35:
	5.34:
	5.33:
	5.32:
	5.31:
	5.30:
	5.29:
	5.28:
	5.27:
	5.26:
	5.25:
	5.24:
	5.23:
	5.22:
	5.21:
	5.20:
	5.19:
	5.18:
	5.17:
	5.16:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	anm4:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.128:
	3.127:
	3.126:
	3.125:
	3.124:
	3.123:
	3.122:
	3.121:
	3.120:
	3.119:
	3.118:
	3.117:
	3.116:
	3.115:
	3.114:
	3.113:
	3.112:
	3.111:
	3.110:
	3.109:
	3.108:
	3.107:
	3.106:
	3.105:
	3.104:
	3.103:
	3.102:
	3.101:
	3.100:
	3.99:
	3.98:
	3.97:
	3.96:
	3.95:
	3.94:
	3.93:
	3.92:
	3.91:
	3.90:
	3.89:
	3.88:
	3.87:
	3.86:
	3.85:
	3.84:
	3.83:
	3.82:
	3.81:
	3.80:
	3.79:
	3.78:
	3.77:
	3.76:
	3.75:
	3.74:
	3.73:
	3.72:
	3.71:
	3.70:
	3.69:
	3.68:
	3.67:
	3.66:
	3.65:
	3.64:
	3.63:
	3.62:
	3.61:
	3.60:
	3.59:
	3.58:
	3.57:
	3.56:
	3.55:
	3.54:
	3.53:
	3.52:
	3.51:
	3.50:
	3.49:
	3.48:
	3.47:
	3.46:
	3.45:
	3.44:
	3.43:
	3.42:
	3.41:
	3.40:
	3.39:
	3.38:
	3.37:
	3.36:
	3.35:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.128:
	1.127:
	1.126:
	1.125:
	1.124:
	1.123:
	1.122:
	1.121:
	1.120:
	1.119:
	1.118:
	1.117:
	1.116:
	1.115:
	1.114:
	1.113:
	1.112:
	1.111:
	1.110:
	1.109:
	1.108:
	1.107:
	1.106:
	1.105:
	1.104:
	1.103:
	1.102:
	1.101:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

