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Optical Industrial Metrology - Background

Industrial Quality Control

• Manufactured parts for automotive, aeronautic, 
energy sectors

• Dimensional/positional measurements: Definition of 
dimension/position & tolerance

Instrument: 3D laser scanner

• User-defined parametrization of scanning conditions

• Point Cloud generation

Software: M3 metrological software

• Point cloud processing

• Measurement using two methods (complete Point 
Cloud / geometry definition points)
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Measurement Workflow

Step 1: Preliminary analysis of the object under study & selection of laser setup
➢ scanning parameters & laser orientation

Step 2: Configuration of scanning 
conditions & generation of Point Cloud
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Measurement Workflow

Step 3: Point cloud preprocessing
➢ Outlier removal
➢ Noise filtering
➢ Surface Segmentation

Step 4: Dimensional/positional measurement
➢ Method#1 (CONSTRUCT) (Geometry definition points)
➢ Method#2 (EXTRACT) complete Point Cloud

ISO 10360
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Use case description

Use Case 1: Measurement plan parameter optimization

Objective: Optimization of scanning parameters, to achieve minimum
error/uncertainty in dimensional measurement

Use Case 2: Point Cloud optimization

Objective: Optimization of the 3D point cloud in terms of quality & size
• Size: minimum # of points sufficient to perform accurate 

measurement, & preserve shape/geometry information
• Quality: Point cloud denoising / filtering / segmentation

Issues:
• Results depend 

on metrologist’s 
experience 
(inconsistency of 
results)

• Wasted time on 
iterative analysis, 
each project from 
scratch

Accelerate/Facilitate 
Step 1: Preliminary 

analysis

Accelerate/Facilitate Steps 3&4: 
Point Cloud pre-processing & 
Dimensional measurement
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Initial Approach: Supervised Learning Setting 

Objective: Model instrument’s anisotropic accuracy
➢ in response to different surface orientations
➢ in relation to scanning parameters

Approach: Supervised Regression task
➢ Prediction of error in Point capturing
➢ Access to Ground Truth needed

Method: Use measurements of Calibrated artifacts
➢ Actual dimensions precisely known (~1μm), i.e. 

actual ≈ nominal
➢ Validated shape perfection
➢ Ground Truth: actual Point positions located on 

artifact’s nominal surface

Nominal     => dimension in CAD design
Actual => true dimension
Measured  => dimension estimated by 

measurement

calibrated non-calibrated

Point Measurement deviation (error):
PointDev = measured - nominaltarget variable
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Data Sources Description

16mm 20mm

1. Lateral Density low (50), medium (75), high (100)
2. Scan Direction Density low (2), medium (5), high (10)
3. Exposure time low (0.6), medium (0.8), high (1.0)

Source orientation 𝐿 𝐿 = constant (Sphere & Plane)

𝐿1, 𝐿2 = constant & symmetrical wrt axis (Cylinder) 

Detector (CMOS) viewing direction 𝑉 𝑉 at 30˚ wrt 𝐿 (rotate over axis of movement)
Vertical distance 𝑍𝑙 ≈ 90𝑚𝑚 𝑍𝑙 = constant for all measurements

Sphere Cylinder Plane

Diameter Diameter Distance to laser

30mm 15mm
4mm 

x 
4mm
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Data Sources Description

𝐿

𝑉

Y

Z

30˚

𝐿

Head moves along Y-axis at constant Z

Y

Z

X

Rotary Head of Optical System

𝐿 = Laser Source orientation vector

𝑉 = Detector (CMOS) viewing direction
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Data Sources Description

Scanning Parameters: Lateral Density

50 75 100

Increasing point density along each line (lateral direction)
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Data Sources Description

Scanning Parameters: Scan Direction Density

2
5

10

Decreasing point density in the direction of movement (sparse lines)

..increasing velocity of rotary head movement
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Data pre-processing

Statistical outlier 
removal

➢Based on distance to 
nearest neighbors 
(number of NN, std)

➢ inliers: red
➢outliers: grey
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Data pre-processing & Feature Extraction

Estimation of normal 

vectors 𝑵 =
𝑵𝒙,𝑵𝒚,𝑵𝒛

➢ surface orientation at 
each point

➢Based on nearest 
neighbors within a 
given radius (number 
of NN, radius)

Ensure alignment                
of normal vectors !
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Data Sources Description

z

x

Calculation of the target variable

at point P:

P(X, Y, Z) = measured point coordinates

𝑃′ 𝑋𝑛𝑜𝑚, 𝑌𝑛𝑜𝑚, 𝑍𝑛𝑜𝑚 = projected point coordinates 

(nominal surface)

|CP| = R = measured point radial distance (spheres)

(cylinder: axial, plane: vertical)

|CP’| = Rnom = nominal radial distance = Nominal Radius

PointDev = |P’P| = R – Rnom

= point deviation from nominal surface

y

P (X, Y, Z)

P’ (𝑿𝒏𝒐𝒎, 𝒀𝒏𝒐𝒎, 𝒁𝒏𝒐𝒎)

C (0, 0, 0)



𝐿 = Laser Source orientation vector

𝑉 = Detector (CMOS) viewing direction

at point P:

𝑁 = 𝑁𝑥,𝑁𝑦,𝑁𝑧 = surface orientation

෢𝐼𝑛𝑐 = incidence angle of light on surface

෣𝑉𝑖𝑒𝑤𝐴𝑛𝑔 = 𝑣𝑖𝑒𝑤𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 𝑓𝑟𝑜𝑚 𝐶𝑀𝑂𝑆

𝑅𝑠 = Vertical distance to laser source
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Data Sources Description

𝐿

𝑉

z

x

y

𝑁

P (X, Y, Z)

෢𝐼𝑛𝑐 = 𝑎𝑟𝑐𝑐𝑜𝑠
𝑁. 𝐿′

𝑁 . 𝐿′

෢𝑰𝒏𝒄
𝑁

𝐿’

𝑁

෣𝑽𝒊𝒆𝒘𝑨𝒏𝒈

෣𝑉𝑖𝑒𝑤𝐴𝑛𝑔 = 𝑎𝑟𝑐𝑐𝑜𝑠
𝑁. 𝑉

𝑁 . 𝑉

𝑉′

≈ 90mm

Rs = 90mm - Z
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Data Sources Description

−𝐿

𝑉

Z

X

𝐿 = Laser Source orientation vector = 𝐼, 𝐽, 𝐾

𝑉 = Detector (CMOS) viewing direction = 𝐼, 𝐽′, 𝐾

at point P:

𝑁 = 𝑁𝑥,𝑁𝑦,𝑁𝑧 = surface orientation

𝑂𝑟𝑖= 𝑁 - 𝐿 = [OriX, OriY, OriZ] 

= Orientation difference vector (surface & laser)

𝑂𝑟𝑖𝐶𝑀𝑂𝑆= 𝑁 - 𝑉 = Orientation difference vector 

(surface & CMOS sensor)

OriYcmos = Ny – J’

෣𝐴𝑛𝑔 = 4-quadrant angle
Y

𝑁

P (X, Y, Z)

𝑂𝑟𝑖= 𝑁 − 𝐿𝑁

𝑁

෣𝐴𝑛𝑔 = 𝑎𝑟𝑐𝑡𝑎𝑛2𝑑 𝑁 × 𝐿,𝑁. 𝐿

𝐿

−𝑉

𝑂𝑟𝑖𝐶𝑀𝑂𝑆= 𝑁 − 𝑉

𝑁

𝑁 × 𝐿
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Data exploration & Analysis

➢ Errors in point 
capture tend to be 
negative

➢ Instrument tends to 
under-estimate the 
dimension of 
objects

Studying the behavior of the instrument

Mean Point Error
-0.024 ± 0.053 mm
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Data exploration & Analysis

Investigating (anti)correlations 
amongst features

➢ Scanning parameters (Lateral 
Density, Direction Density, Exposure 
Time) are not related to the target 
variable, Point measurement error 
(PointDev)

➢ The z-component of the normal 
vector (Nz) and the orientation 
difference vector (oriZ) show minor 
correlation to PointDev

➢ Strong correlations are due to 
calculation formulas or bias induced 
by specific geometries (sphere & 
cylinder)
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Data exploration & Analysis

➢ Statistical 
distribution of 
points: captures 
well actual surface

➢ Mean of radial 
distribution: good 
estimate of actual 
radius

➢ Both methods 
under-estimate 
sphere radius, 
method EXTRACT 
(Point Cloud) 
performs worse
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Data exploration & Analysis

➢ Statistical point 
distribution: well 
below actual 
surface

➢ Mean of 
distribution: bad 
estimate of radius

➢ Method EXTRACT 
(Point Cloud) 
under-estimates 
radius

➢ Method 
CONSTRUCT 
(Geometry 
Definition points) 
performs better
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Data exploration & Analysis

➢ Statistical point 
distribution: below 
actual surface

➢ Mean of point 
radial distribution: 
good estimate of 
radius

➢ Both methods 
consistently under-
estimate radius, 
Method EXTRACT 
(Point Cloud) 
performs better

➢ Cylinder captured 
better with high 
Lateral Density
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Machine Learning Pipeline

Step 1
• Random selection of N points/point cloud

• Feature & target scaling to [0, 1] interval 

Step 2
• Selection of algorithms (SVM, MLP, Decision Tree, Random Forest)

• Wide hyper-parameter grid

Step 3
• Randomized Grid search cross-validation

• Nested Cross-Validation scheme (10 fold)

Step 4
• Optimal model retrieval based on 

mean validation scores
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Model training, optimization & Validation

Nested Cross-Validation scheme
Self-consistent methodology to train/optimize models & assess their performance 
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Model intuition – Support Vector Machine (SVM)

➢ Finds Optimal separating hyperplane 
(decision surface) for linearly separable 
patterns

➢ Optimal Hyperplane => maximum 
margin

➢ Support vectors => data points closest to 
the decision surface (points most 
difficult to discriminate – specify 
optimum location of decision surface)

➢ Extend to not linearly separable 
patterns: transformations of original 
data into new space – Kernel function

Hyper-parameter 
C controls margin
Large C => small 
margin

H-parameter 
kernel controls 
kernel function



Model intuition - Decision Tree 

➢ Splits data points to maximize 
information gain (minimize impurity) 
in the resulting data partitions

➢ Optimal partitions contain as much 
as possible information and less 
randomness

m
ax

 d
e

p
th

Root node

Leaf nodes

Decision 
nodes

Hyper-parameters (regression)
➢ max_depth: maximum depth of the tree (max # of decision levels)
➢ splitter: strategy to perform splits (“best”, “random”)
➢ split_criterion: function to measure quality of split 

(“squared_error”, …)
➢ min_samples_split: minimum # of samples to split decision nodes
➢ min_samples_leaf: minimum # of samples at leaf nodes



Model intuition - Multi-layer Perceptron (MLP)

➢ Sequentially transforms input into higher 
dimensional spaces: samples can be discriminated 

➢ Neuron: basic unit of computation, receives 
inputs & weights (for each input)

➢ At each neuron: inputs combined in a weighted 
sum

➢ If weighted sum exceeds predefined threshold: 
neuron activation, output production

➢ Threshold represented by activation function

Hyper-parameters 
➢ hidden_layer_sizes: the number of neurons in each 

hidden layer
➢ activation: Activation function(“logistic”, “relu”…)
➢ solver: the algorithm for weight optimization (“sgd”, 

“adam”, …)
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ML Experimental results – Model performance

Optimal SVM model
Hyperparameters = {

kernel: RBF,
C: 10.0}

Predictions on spheres
Large deviations from actual
Flat distribution

Predictions on cylinder
better approximation of truth

MAE (mm) MAPE (%)

Mean Validation 
score

0.026 ± 0.002 3.24 ± 0.03

Mean Test score 0.028 ± 0.004 3.4 ± 0.1
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ML Experimental results – Visualize predictions
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ML Experimental results – Visualize predictions
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Model Explanations - Feature Importance methods

Permutation Feature Importance

➢ Permute each feature by random shuffle of values
➢ Compute the decrease in model performance scores
➢ Repeat N times 
➢ Calculate mean decrease & std in performance scores

Computed independently for 
each feature …
Permutation Importance scores 
do not add up to 1
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Model Explanations

Features with high effect on model’s output:

➢Rs = Distance to laser source
➢oriZ = z-component of Orientation 

difference vector 
➢ Inc = Incidence angle

Very low 
importance scores      

< 7%
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Model Explanations

Features with high effect on 
model’s output:

➢Rs = Distance to laser source
➢K = z-component of laser 

source direction

➢ Features Rs, K have ~8-10 
times higher importance than 
the rest

➢ Features Rs, K have significant 
impact on model’s 
predictions: 35-40%
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Model Explanations - Feature Attribution methods

SHAP – SHapley Additive exPlanations

➢Based on Shapley values from 
cooperative game theory

➢ Shapley quantifies the contribution 
of each player to the outcome of 
the game, considering every 
possible coalition of players

➢ SHAP quantifies the contribution 
each feature brings to each 
prediction of the ML model, 
considering all possible 
combinations of input features

➢Builds one predictive model per 
combination of features, sequentially 
including more features: estimates the 
marginal contribution of each feature 
to the final outcome

➢Aggregation of local explanations: 
global picture!
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Model Explanations

Retrieve Support Vectors (SV):

➢90-100 SVs per Point Cloud
➢Training samples per Point 

Cloud = 100
➢ SVs ≈ training samples!
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Model Explanations – Global surrogate

|--- Rs <= 84.55
|   |--- Rs <= 79.99
|   |   |--- value: [-0.03]
|   |--- Rs >  79.99
|   |   |--- value: [-0.01]
|--- Rs >  84.55
|   |--- Rs <= 92.35
|   |   |--- value: [-0.03]
|   |--- Rs >  92.35
|   |   |--- value: [-0.07]

Decision Tree to explain trained SVM
➢Depth = 2
➢MAE = 0.014 (mm)

Decision 
Rules 
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Model Explanations – Global Surrogate

|--- Rs <= 84.55
|   |--- Rs <= 79.99
|   |   |--- oriY <= -0.39
|   |   |   |--- value: [-0.02]
|   |   |--- oriY >  -0.39
|   |   |   |--- value: [-0.04]
|   |--- Rs >  79.99
|   |   |--- oriZ <= -0.21
|   |   |   |--- value: [-0.02]
|   |   |--- oriZ >  -0.21
|   |   |   |--- value: [-0.01]
|--- Rs >  84.55
|   |--- Rs <= 92.35
|   |   |--- oriZ <= 0.09
|   |   |   |--- value: [-0.03]
|   |   |--- oriZ >  0.09
|   |   |   |--- value: [-0.06]
|   |--- Rs >  92.35
|   |   |--- Rs <= 93.87
|   |   |   |--- value: [-0.07]
|   |   |--- Rs >  93.87
|   |   |   |--- value: [-0.11]

Decision Tree to explain trained SVM
➢Depth = 3
➢MAE = 0.012 (mm)

Decision Rules 
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Conclusions – Next Steps

Prediction of point-wise measurement accuracy
➢Extraction of additional features
➢More measurements needed (different geometries, fine granulation of scanning 

parameters) 
➢Repeat experiments for concave/complex geometries (different laser setup)

Relate point deviations to the target of the measurement
➢ Use Open3D to fit nominal geometries, calculate dimension & estimate uncertainty

New problem statement
➢Unsupervised / semi-supervised learning methods
➢Model data on graphs & apply Graph ML techniques

Thank you for your attention!
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