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IepiAnyn

H napovoa Statpifr mpaypateveTal TOAVOUOYEVT] KAl apald TOAVWVUULIKA GLOTHHATA
a6 OewpPNTIKNA KAl LITOAOYLATIKY drtoPn. AVTH N epyacia mepLéxel 5V0 SLAPOPETIKOVG
TPOTIOUG CLOYETLONG TIVAKWY UE TTOAVWVUULKA CLUOTHUATA PE TPOTIO TTIOV EKUETOA-
AeveTal T doun ™G apaldTNTag TOVG. IIPpWTOV, SIVOLUE ULA OLKOYEVELD ULKTWV
LTTOSLALPETEWVY TIOL LKAVOTIOLOUV Tov TUT0 Canny-Emiris yla Tov vmoAoylopd tng
apatig anaioi@ovoag Kat TAPEXEL ULO OLKOYEVELA TIIVAKWY TWV 00wV TO Huéyedog
umopel va pewwBel ypnolpomowwvtag tnv AmAnoTtn mpocéyylon o€ avtdv Tov TUTO.
AeVTEPOV, EMEKTEIVOVUE TNV KATACKELY TWV HOPPWV Sylvester aTnv mepintwaon ULag
OUOANRG TOPLKAG TTOLKIAOTNTAG TTOV LKAVOTIOLEL Lot opLopévn L8LoTnTa. TEAOG, UEAETANE
TN ox€on LETAEV TNG TOAV-0U0YEVOLG KavovikoTnTag Castelnuovo-Mumford kat twv
Bdoewv Grobner e TpATO TTOL PAG ETLTPETEL VA KATAVO GOV UE TTOLEG E{val OL EAAYLOTOL
Babuol otig Bdoelg Grobner evog 18ewb0UG, G€ YEVIKEG GUVTETAYUEVEG X PN OLUOTTOLWVTAG
™V avtioTpo@nBabuov Ae€ikoypa@ky Stdtagn povwvoupwyv. IIpocBétovue mapa-
Setypata oe epapuoyeg omwg oe YnoAoylotik] Opaon kat Fewpetpikn Lyxediaon,
uaci pe Tov kwdwka JULIA oplouyévwy amd TG VAOTTOLHOELG.

Abstract

This thesis deals with multihomogeneous and sparse polynomial systems from
the theoretical and computational point of view. This work contains two different
ways of associating matrices to polynomial systems in a way that exploits their
sparsity structure. Firstly, we give a family of mixed subdivisions that satisfy the
Canny-Emiris formula for the computation of the sparse resultant, providing a fam-
ily of matrices whose size can be reduced using the greedy approach to this for-
mula. Secondly, we extend the construction of Sylvester forms to the case of a
smooth toric variety satisfying a certain property. Finally, we study the relation
between the multigraded Castelnuovo-Mumford regularity and Grébner bases in a
way that allows us to understand which are the minimal bi-degrees in a Grobner
bases of an ideal, in generic coordinates using the degree reverse lexicographical
monomial order. We add examples in applications such as Computer Vision and
Geometric Design, together with JULIA code of some of the implementations.
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Chapter 1

Introduction

Systems of polynomial equations appear everywhere in science and engineering.
Making computations with them, finding their zeros or handling the different pos-
sible representations of their solution set is a vast area for research, which we
can comprise under the name of computational algebraic geometry [CLO98; MS21;
Sch03]. A smooth communication between the theoretical mathematics coming
from commutative algebra and the knowledge of the insights of each application
has been producing a vast number of advances over the last centuries. We can list
some of the areas where these advances have been relevant.

» Geometric modelling: Transforming poly-
nomial maps into implicit equations is a
fundamental problem of computer-aided
design (see Figure 1.1). This problem can
be seen from the point of view of spar- '
sity [BCDO3]. One might also want to com-
pute directly with the parametric form and Figure 1.1: Implicit surface of a map
study its topology [Kat+22]. On the other given by three bilinear forms.
hand, Bezier surfaces play a central role in
the manipulation of the algebraic objects and they can also be seen from the
perspective of toric geometry [CC20; Kra02].

» Biology: In chemical reaction network analysis, parameter-dependent sys-
tems arise when modeling the steady states of dynamical systems associated
with the networks [Fel20]. Studying these parameters can be helpful to de-
termine the number of steady states, especially when deciding whether the
system has a unique solution over the real positive numbers [BDG18; FHPE23;
Con+17]. These systems can also exhibit some toric structure [Cra+09].

» Kinematics: Polynomial systems are often used to parametrize the move-
ments of a robotic arm. In this area, the typical tasks involve eliminating the
parameters [Emi+06] or seeking geometric descriptions of the solution set to



avoid the singularities of these systems [Le+23]. Paradoxical behaviours may
arise if the space of mobility of the arm has more dimension than one could

expect from the equations [Sch21]. .

» Computer vision: Many polynomial
systems arising in vision consist of
matching problems between snapshots
captured by cameras (see Figure 1.2).
Usually, thousands of polynomial sys-
tems have to be simultaneously solved
[Duf+18; Kuk13] so small differences
in the computations will be helpful in Figure 1.2: A single point A expressed
the final result. As one thinks of the from tW/O different camera positions,
cameras as linear projections, interest- with a, o’ being the images. The condi-
. . . . tion of both images corresponding to A
ing algebraic objects with sparse struc- ¢ expressed as a polynomial system.
ture (Chow forms [0T19], distortion va-
rieties [Kil+16]...) arise.

» Physics: A-hypergeometric systems arise naturally in the study of Euler in-
tegrals in particle physics. The structure of the Newton polytope that we will
discuss in this thesis is closely attached to these systems and their sparse struc-
ture [MHMT23].

» Other applications include multivariate cryptography [CG20; CG23; FVP08],
coding theory [JA11; Sop13], optimization [Laul4], topological data analysis
[Sch22], game theory [PS22] or algebraic statistics [Sul18].

Finding different representations of the solution set, eliminating variables from
the system or solving polynomial systems with a finite number of solutions are com-
putationally hard problems: the complexity of the algorithms will, in general, grow
exponentially in the number of variables. Therefore, if we want to find robust and
efficient algorithms, we cannot just tell the computer ”solve this” and expect it
to respond in reasonable time: we ought to look at the structure of those polyno-
mials and see if we manage to find better algorithms that take advantage of the
properties of each family of systems. On the other hand, understanding the struc-
ture of the polynomials from the point of view of commutative algebra or algebraic
geometry is an interesting problem on its own. In this thesis, we focus on the sparse
(or toric) structure of polynomial systems and propose some novel constructions
that intend to describe and exploit such structure.

Newton polytopes and projective toric varieties When we look at a polynomial,
only a finite number amongst its coefficients will be nonzero. Thus, using only the
monomials with nonzero coefficient provides a shortcut to understand the struc-
ture of polynomial equations. Namely, every F' € Clz,...,x,] is of the form:

F:Zubmb bez" ab=abr. . .ab (by,... b,) € 2"



with a finite number of nonzero coefficients u, € C. The exponents b appearing
in a polynomial F form a finite subset .4 C Z", which we refer as the supports of
F. The convex hull of the set of supports in R" are named the Newton polytope
A = conv(A).

From the point of view of algebraic geometry, we would like to understand
the solution set of a polynomial system from the algebra described by these poly-
nomials. Namely, the solution set of a system given by polynomials Fi,...,F,. €
Clx1,...,z,] over a subset K C Cis:

Vin(F1, ..., F) = {(@1,...,%n) € K" Fy(®@1,...,7,) =0foralli=1,...,r}. (1.1)

The usual candidates for K in the above applications are the complex numbers C,
the nonzero complex numbers C* = C— {0}, the real numbers R or the real positive
numbers R . A possible way of introducing the connection between the structure
of the Newton polytopes and the geometry of polynomial systems is stating the
famous theorem of Bernstein-Khovanskii-Kushnirenko that counts the number of
solutions over C* in terms of the mixed volume of the polytopes [Ber75; Kus75].

Theorem. Given a polynomial system
FL=--=F,=0 (1.2)

of n equations and n variables, with finitely many zeros and Newton polytopes
Ay,...,A, C R", the number of solutions of this system in (C*)" (counting multi-
plicity) is bounded above by the mixed volume of the polytopes,

MV(Aq, ..., A,)

which is the coefficient of ¢; - - - ¢, in the polynomial Vol(t;A; + --- + ¢,4,). This
bound is attained for a general choice of the coefficients of Fi,. .., F,.

The beauty of this theorem expresses the type of results that have motivated
many lines of research in the last decades (and, actually, centuries): the geometry
of the solution set is related to the properties of the Newton polytopes! Therefore,
studying the relations between algebra, geometry and combinatorics underlying to
a polynomial system is a very wide and interesting mathematical challenge.

The generic conditions for the number of solutions over (C*)™ to be exactly the
mixed volume can be found in [HS95; Roj94]. On the other hand, if the previous
bound is not attained, we can see that the “missing” solutions lie in a certain variety,
which is defined from the Newton polytopes of the system. For simplicity, consider
A to be Newton polytope of all the polynomials in the system (1.2) and let A =
ANZ" = {mi,...,ms} be the lattice points in this polytope. Then, we can look at
the following map:

B (C) = P51 b= (b ) — (E™ e ) (1.3)



and consider the variety X defined by the Zariski closure of the image of ® 4. One
can see that the natural action of the torus (C*)” on itself extends to an action on
Xa, providing the name projective toric variety [CLS12]. The theory that motivates
the use of this type of relations between polytopes (as well as other combinato-
rial objects) and the geometry of polynomial systems is known as toric geometry
and goes back to the seminal works of Danilov, Demazure or Khovanskii [Dan78;
Dem?70; Kho77].

Revisiting the problem of the "missing” solutions of the polynomial system
F =-..=F, =0,we can find a version of the Bernstein-Khovanskii-Kushnirenko
[Tel22; GKZ94; R0j96] theorem considering the solutions in X after homogeniz-
ing the system with respect to this toric variety: if the homogeneous system still
has a finite number of solutions, this number is exactly the mixed volume. This
homogeneization can also be described in terms of the Newton polytopes. The so-
lutions of this new homogeneous polynomial system which do not lie in (C*)" are
in the lower dimensional orbits of the action of (C*)" in XA and are often refered
as ”solutions at infinity”.

The construction above demonstrates the suitability of using toric varieties to
analyze the geometry of polynomial systems. However, the paradigm of trying to
exploit the combinatorial structure underlying to polynomial systems exceeds the
definition that we provided. In general, any variety X at which the torus (C*)"
is in correspondence with an open dense subset of X and the natural action of
torus (C*)™ extends to the rest of the variety is called toric (not even necessarily
projective). The ideals defining these varieties are prime and binomial [ES96] and
appear in many applications. The ubiquity of this type of structures allows us to
claim that the world is toric [MS21].

The point of view of looking at the solutions set from the perspective of the
Newton polytope allows us to classify polynomial systems in the following three
categories (see Fig. 1.3):

» Dense (or homogeneous) polynomial systems: The simplest case of study
are dense polynomial systems, in which we allow all the monomials up to
a certain degree d to have a nonzero coefficient. In this case, the Newton
polytopes are simplices and homogenizing means adding a new variable z,
and multiplying every monomial by a power of z, until all the monomials
have degree d. Most of the results presented in this thesis were already well-
established for this type of systems. In this case, the underlying projective
toric variety is the projective space P".

» Multihomogeneous polynomial systems: In a slightly more general case, we
can group the variables x4, ..., z, into r families for » > 1 and consider polyno-
mial systems in which the degree of the monomials with respect to each group
of variables does not exceed a certain tuple of degrees (d, ..., d,). In this case,
we homogenize by adding one variable for each group of variables and the
underlying projective toric variety is the multiprojective space P™ x --- x P"r.



This intermediate case is present in numerous applications. Some of the com-
putational problems that we will adress have already been widely studied for
the multihomogeneous case. However, some other studies, specially those
dealing with the relation between the multigraded Castelnuovo-Mumford reg-
ularity and Grobner bases, are already quite intricate in this case, and the
literature is more scarce.

» Sparse polynomial systems: In the most general case, we only fix the New-
ton polytopes of the polynomial system, and thus allow any of the monomials
corresponding to lattice points in the polytope to have a nonzero coefficient.
If the Newton polytopes of the system are Aq,..., A, the toric variety that we
consider is associated to the polytope A = "', A;, as in (1.3). In the flavour
of the Bernstein-Khovanskii-Kushnirenko theorem, the combinatorics of the
polytopes takes a very interesting role in the description of the properties of
these systems. For instance, the homogenization can described in terms of the
Newton polytopes; see (2.21).

Type of systems Newton polytope Polynomials Underlying compact space

Dense polynomial systems . . 1+z+28 +y+y?+9y2+9° P»
[ = ]
L ]
Multihomogeneous polynomial systems — e 1+a+y+ay+y?+y’e P ox - x P
L]
L I ]
Sparse polynomial systems —e l+z+y+ay+y? A projective toric variety

Figure 1.3: Exploiting the Newton polytope structure of polynomial systems is advantageous for com-
putations.

Symbolic methods for computing with polynomial systems The computational
tools that we consider in this thesis belong to the category of symbolic methods.
These methods comprise algorithms that output the solution as the result of a se-
ries of computations that consider the variables and coefficients as symbols. On
the other hand, the coefficients of polynomial systems coming from scientific ap-
plications are usually represented as floating point numbers and thus, they may
come with numerical errors that have to be taken into account. The compacity of
projective toric varieties is also advantageous in this case as small perturbations
in the coefficients will not derive in big differences in the solution set. The details
on numerical algebraic geometry exceed the scope of this thesis and the expertise
of the author. For a thorough exposition on the relation of the discussed methods
with numerical analysis, we refer to [SWO05].



The methods that we consider are elimination matrices and Grobner bases. Of
course, the methods of algebraic computation are much broader and interact with
each other in many ways. However, in this thesis we stick to the basic idea that
having a good understanding of these two methods and how they relate to the ge-
ometry of polynomial systems will provide a general knowledge on their structure,
specially in the case of systems with a finite number of solutions.

» Elimination matrices: A classical approach towards non-linear algebra is lin-
earization, this is, the exploitation of linear algebra methods (gaussian elimi-
nation, eigenvalues, eigenvectors...) after transforming a problem given by a
polynomial system into a linear one. A possible way to make such transfor-

mation is the following: consider a polynomial system F; = --- = F, =0ina
ring S = Clzy,...,z,] of degrees di, ..., d, i.e.
Fi = Z ui7a$a = 1, e, T (14)
deg(z*)<d;

Consider the polynomial ideal I ¢ S generated by F1,. .., F,. and the polyno-
mial map M defined as:

M:S" =S (Gh,...,Gr) = Y GiF;. (1.5)
=0

This map is a very natural way to present the algebra of the polynomial sys-
tem: a polynomial G € S belongs to the ideal 7, if and only if, G is in the image
of M. Moreover, once we consider a degree v € Z>max4,, the previous map is
transformed into a map between vector spaces:

n

M, : ®j_1S<y—dq, = S<v (G1,...,Gp) = Y GiFi (1.6)
1=0

where S<, is the vector space spanned by all the monomials of degree lower
or equal than ». The map M, is a map between two vector spaces and thus,
by employing the degree v, we have turned a non-linear structure of poly-
nomials into a linear problem. The matrix M, associated with the map M,
in monomial bases appeared for the first time in the study of resultants by
Sylvester [Syl18] and Macaulay [MacO03]. For this reason, it is often refered as
the Macaulay (or Sylvester-Macaulay) matrix.

Example. Consider the following three polynomials in C[z1, x2):
Fy= 1—$1+$% Fy :2+$1+2$11‘2+1‘%—21‘% Fo=1—214+ 2

of degrees 2,2 and 1, respectively. If » = 3, the Macaulay matrix M, is the



following:

1 m 2} 23 x9 1m0 23790 23 123 3
[l -1 1 0 0 0 0 1 0 O]
r1Fpl0 1 -1 1 0 0 0o 0 1 0
|0 0 0 0 1 -1 1 0 0 1
Fl2 1 -2 0 0 2 0 1 0 0
©Fi|0 2 1 -2 0 0 2 0 1 0
F|0 0 0 0 2 1 2 0 -2 1
Fll -1 0 0 1 0 0O 0 0 0
|0 1 -1 0 0 1 0 0 0 0
xFf0 0 0 0 1 -1 0 1 0 0
2|0 0 1 -1 0 0 1 0 1 0
rizeFl0 0 0 0 O 1 -1 1 0 0
3FR0 0 0 0 0 0 0o 1 -1 1

The matrix-based constructions offer the advantage of universality in coeffi-
cients: once the degrees of the polynomials are fixed (or, more broadly, the
Newton polytopes), the coefficients can be specialized to any values, and the
matrix construction remains the same. Consequently, extracting properties
of the solution set via these matrices relies solely on identifying the degrees
v at which the geometric properties of the system can be retrieved. This ver-
satility enables us to employ these matrices in solving various computational
problems effectively.

Motivated by the applications in geometric modelling and the theory of re-
sultants, we can consider the case where there are n + 1 polynomials in n
variables and find degrees v at which the matrices M, such that we recover
the following two properties: i) their corank is positive when we specialize
to systems that have a solution (over the corresponding projective toric vari-
ety) and i) if the specialized system is 0-dimensional (i.e. has a finite number
of solutions), then the corank is precisely this number of solutions, counting
multiplicities [Bus06; EM99; Tel20]. If the degree is big enough (v > 0), the
matrix M, always has both properties and thus, the focus usually relies in
trying to find the smallest » with those properties.

Once we have fixed v, we can use M, to eliminate variables from a polyno-
mial system or find the solutions of 0-dimensional systems. To describe how to
perform those operations, we can turn to conventional methods involving re-
sultants or eigenvalue methods. We outline the description of these methods
for the case of dense polynomial systems, but the tecniques we will describe
also follow in the multihomogeneous and sparse cases; see [CLO98, Chapter
3, Chapter 8] for a longer and more precise description.

- Resultant-based methods: As we mentioned above, the Macaulay matrix
appeared in the first place in the study of resultants, which considers the
case of n + 1 polynomials Fy,...,F, € Clzy,...,x,] of degrees dy,...,d,.



For general values of the coefficients, these systems will not have any so-
lution in C. A powerful tool for elimination is to find a polynomial in the
coefficients of the system whose zeros provide precisely those systems
that have solutions. This polynomial is known as the resultant of the sys-
tem, i.e.

Res(Fy,...,F,) =0 <= Fy=---=F, =0has a solution in C".

The resultant depends only on the degrees of Fy,..., F,, so we can de-
note it as Resy,  4,. These polynomials can be very useful for solving
systems with a finite number of solutions. Namely, if we are given a sys-

tem F1,..., F, with a finite number of solutions, we can introduce an ad-
ditional linear polynomial F' = ug + wiz1 + - -- + u,x, and consider the
resultant of F, F,..., F,. If the system F; = --- = F,, = 0 has no solutions

at infinity, the resultant decomposes as:

TEV(cxyn (£1,--,Fn)

where C is a nonzero constant and yz is the algebraic multiplicity of the
point 7 in the variety Vic«)»(F1, ..., F,,) [CLO98, Chapter 3].

Another possibility could be to consider Fi,..., F,, as polynomials in the
variables x1,...,x,_1 whose coefficients are polynomials in z,. Then,
Resy" , (F1,...,F,) is a polynomial in z,, whose roots are precisely the
xn-components of the roots of the system; see also [CLO98, Chapter 3].
This tecnique makes resultants very useful for eliminating variables from
polynomial systems, independently of the dimension of the solution set.
However, if the polynomial system F; = --- = F,, = 0 has components of
positive dimension, the resultant will vanish identically when evaluated
to the coefficients of the system (which depend on 4, ..., z,_;) difficult-
ing the recovery of the solutions. This problem can be treated with some
techniques [Can90; Pog24; Roj97], but still remains a challenge of the use
of resultants.

Resultants are naturally attached to the linearization method above: if
M,, 1s an elimination matrix, the resultant can be computed as the great-
est common divisor of the nonzero maximal minors of M, considered as
polynomials in the coefficients, i.e.

Resg, .4, = gcd(Nonzero maximal minors of M,).

In the best case, the matrix M, is already square and one has a deter-
minantal formula Res;, 4, = det(M, ). For instance, this is the case of
the classical Sylvester matrix for the resultant of two polynomials in one
variable [Syl18]. However, M, is usually not square, and computing the
greatest common divisor of the maximal minors of the matrix can be
quite challenging. Instead, we can just note that Res;, 4 divides the

8



determinant of every nonzero maximal minor of M,. Therefore, a stan-
dard way to find formulas for the resultant is considering the ratio of two
determinants:

_ det(H)

~ det(€)

where H is a maximal submatrix of M, with nonzero determinant. The
matrix £ might correspond to a submatrix of # [Mac03; CE95] or to an-
other matrix closely related to M,,. For instance, it is common to consider
the resultant as a determinant of a complex (such as the Koszul complex
[GKZ94] or the Weyman complex [WZ92]). The computations for solv-
ing 0-dimensional systems or eliminating variables can be performed di-
rectly with the matrix A, but one has to take into account the presence
of the factor det(€) whose vanishing at the coefficients of the system is a
potential inconvenient.

Resq,,....d,

There are other formulas for computing the resultant in which the entries
of the matrix can be other polynomials in the coefficients. Examples of
such formulas appear in the very classical works of Bézout [Bez79], Dixon
[Dix09] or Morley and Coble [MC27]. Most of these formulas follow from
the basic idea of adding inertia forms [Hur13], i.e. polynomials in the
saturation of the given ideal. The literature for computing these forms in
different degrees includes the works of Hurwitz, Mertens, Van der Waer-
den and Zariski [Zar37].

All in all, the search for more compact formulas for the resultant, spe-
cially in its more sparse versions, is a very extense area of research at
which the work of this thesis aims to contribute [Jou97; EM12; Ben+21;
CDS97; DE03; EM99; D’A01; GKZ94; Ben+21; SZ94].

Other types of resultants also become interesting if one wants to exploit
further structure of polynomial systems with the purpose of algebraic
elimination. Here, we can mention the special cases of residual resul-
tants [Bus01; EM01] and subresultants [D]J05; ADTGV09; Sza08].

e Figenvalue methods: In the same line of trying to exploit the linear al-
gebra associated to polynomial computations, one can also recover the
solutions of a 0-dimensional polynomial system as the eigenvalues of a
matrix. Namely, if A is the (finite) algebra C[z4,...,z,]/(F1,. .., F,), then
one can consider a polynomial F € Clzy,...,x,] and the multiplication
map:

-F
mp: A— A.

A classical result, firstly due to Stickelberger [Cox21] but developed in the
modern language by Auzinger and Stetter [AS88], states that the eigenval-
ues of the map my correspond to the evaluations of F' at the solutions of
the polynomial system F; = --- = F, = 0. Under good numerical con-
ditions, this result can be very advantageous from the point of view fast
computations.



In seeking ways to construct the maps m g, one method involves finding
a basis for A and subsequently multiplying this basis by F. However, the
challenge arises when determining the representation of this multiplica-
tion result in the basis of A. To streamline this process, a more efficient
strategy is to consider the maximal minors of the elimination matrices H
associated with the system Fi,..., F,,, F and considering the Schur com-
plement construction. This means writing the matrix 7 as:

9y — (Mn M12)
Moy Moo

where last rows and columns associated to the polynomial F. Then, the
multiplication map can be constructed as:

mp = My — MMy, Ma,.

Another similar construction from exploiting the cokernel of the matrix
M,,. Namely, if M, is an elimination matrix, a cokernel matrix A/, has
rank equal to the number of solutions. Therefore, the multiplication maps
mp can be recovered as nonzero maximal submatrices of

No(MF)"

where M’ (at degree v) is the Macaulay matrix formed solely by the poly-
nomial F [Ben22; BT21].

» Grobner bases: Finding generators of an ideal 7 with good properties is an
intrinsic problem to multivariate non-linear algebra. A classical way to intro-
duce the need for good basis of the ideal 7 is deciding whether a homogeneous
polynomial F € Clzy,...,z,] belongs to the ideal generated by Fi,...,F, €
(C[l‘l, PN ,$n].

In the univariate case, this can be done through the divison algorithm and
noting that for any polynomial G € C|z], any polynomial F with deg(F) >
deg(G) can be written as:

F=GQ+R

where deg(R) < deg(G). In this case, R is zero, if and only if, F belongs to the
ideal generated by G.

However, in the multivariate case, we could find ways to write the polynomial
F as: i
F=) GiFi+R
=1

where R # 0 but F belongs to the ideal generated by Fi, ..., F,. Imposing de-
gree conditions in R is usually not sufficient for using R to decide whether F
belongs to the ideal generated by Fi,..., F, [CLO98, Chapter 1]. As we men-
tioned in the case of matrices, the problem that we are treating can be decided
by checking whether the polynomial F belongs to the image of the Macaulay
map.

10



Example. Consider the ideal generated by the following homogeneous poly-
nomials in Clzy, z2]:

F1:1—331+.%‘%+15% Fo=1—214+ 29

which geometrically consists of two points in C2. In some applications, it is
relevant to check whether a polynomial 7' (or some power of it) belongs to the
ideal generated by F; and F, as it allows to decide whether these polynomials
vanish at these two points.

As an example, we consider F = 1 + 2? + 22 and v = 2, we can consider
Macaulay matrix M,:

:1:% T1x9 33% r1 a9 1
Fi[1 0 1 -1 0 1
1y | —1 1 0 1 0 0
xoFy | 0 -1 1 0 1 0f.
|0 0 0O 1 -1 1
Fl1 0 1 0 0 1

If F is a combination of the polynomials F; and F5, then the last row of the
matrix (in blue) is a combination of the rest of rows and thus, the above matrix
cannot be of full rank. An effective way to check the rank of the matrix is
to perform Gaussian elimination and transform the matrix to a row echelon
form. If we consider the row echelon form of the first rows of the matrix in
the previous example (associated to Fy, F») , we get:

1:% T1T2 :E% r1 a9 1

Fi[1 0 1 -1 0 1

z1Fo+ 1|0 1 1 0 1

(x1 +x2)Fa + F»| 0 0 2 0 1 1
F> |0 0 o 1 -1 1

F—F —F|0 0 0 O 1 -1

With this form, we can write the row associated to F so that it has zeros in
the rows of the pivots associated to the Gaussian elimination (in purple). This
implies that F' can be written as:

F=F+F,+Rwhere R=1z9 — 1.

The condition of imposing that none of the monomials associated to the terms
of R divides the monomials associated to the pivots, is the key for guarantee-
ing that R # 0 implies that F is not a combination of F; and F,. However,
writing the matrix in the previous form depends on the order of the monomi-
als corresponding to the columns.

This order must come from a total order in the monomials. If the monomial
order is multiplicative (i.e. 2 < 25, implies that %27 < z°z" for every triple

11



of monomials 2%, 2%, 27 € S), then the pivots of the gaussian elimination in the
matrices M, for all » € Z form a monomial ideal in S.

By the Hilbert basis theorem [CLO98, Chapter 1], this is a finitely generated
ideal generated by all the initial terms in the ideal /. Note that once we fixed
the order, the process of choosing the pivots of the gaussian elimination con-
sists on being able to choose the initial terms (or leading terms) for each poly-
nomial 7, i.e. finding the highest term of F with respect to the monomial
order, denoted as in(F'). Thus, the previous ideal corresponds to

in(l)=(in(F) Fel)
which is known as the initial ideal.

Definition. A Grobner basis [Buc65] of I is a set of generators of 7 such that
their initial terms generate the initial ideal in(7). The Grobner basis is called
minimal if the set of initial terms is a minimal set of generators of /.

Employing Grobner bases is very advantageous in many senses: many of the
algebraic operations that one can try to perform with 7 can be performed first
inin(7), and then lifted to I; see [Sch80] for the case of computing syzygies (2.2)
of I using the initial ideal.

In the best case, the computations are independent of which monomial order
we are choosing, getting universal Grobner bases. However, this is not the
general case and choosing of a good monomial order can be important. The
following two monomial orders are specially important when using Grobner
bases in algebraic elimination.

Definition. The degree lexicographical monomial order takes two different
monomials z°, 2" € C[z1,...,z,] where b, € Z" and orders z° <o z¥, if and
only if,

deg(+") < deg(«") or deg(z") = deg(+") and the first entry of ¥’ — b is positive.
The degree reverse lexicographical considers z* <pg, 2%, if and only if,

deg(z") < deg(«") or deg(z") = deg(+") and the last entry of ¥’ — b is negative.

In the case of the degree lexicographical monomial monomial order elimi-
nate variables in an easy way. Usually, if one wants to eliminate the variables
x1,...,z; the ideal to consider (elimination ideal) is:

I = Iﬂ(C[azH_l,...,xn}.

Then, if Gy 1s a degree lexicographical Grobner basis of I, the set G; = Giex N
Clziy1, ..., x,) 1s @ Grobner basis of I;. With this, one can also solve polynomial
systems with a finite number of solutions by successively finding the zeros of
univariate polynomials generating each of the elimination ideals.

12



Regarding the methods to compute Grobner bases, the Buchberger algorithm
[Buc65] is the most used method to find them. This algorithm consists on
choosing two generators F,G € I and consider the least common multiple
of their initial forms. With this, one can consider the S-polynomial:

lcm(in(F),in(G))G _lem(in(F),in(G))

SIEG) = — 1) n(F)

F.

Once this is done, one can consider the residue of dividing the S-polynomial
in the given set of generators and add this residue as a new generator. A well-
known result in commutative algebra (Hilbert’s syzygy theorem) implies that
the algorithm consisting of repeatedly adding these elements terminantes and
provides a Grobner basis.

The introduction of Grobner bases through gaussian elimination in Macaulay
matrices is not arbitrary. Some variants of the Buchberger’s algorithm [Fau99;
Fau02] try to reduce the computational workload through using the Macaulay
matrices with the minimal possible unnecessary calculations of S-pairs. Find-
ing the best strategy for choosing the S-pairs is a problem which has aroused
a large number of studies [LL91; Gio+91; Tra96].

Furthermore, the elimination algorithm discussed in the preceding sections
relies on employing the lexicographical order. However, employing other or-
ders may lead to shorter computation times. Therefore, another interesting
problem is to find algorithms for transforming a Grébner basis with respect
to any monomial order into a lexicographical one; see [Fau+93].

The methods of elimination that we described above are rather standard. There
is a wide literature on how to exploit the multihomogeneous or sparse structure for
polynomial systems both for the case of elimination matrices [Emi14; Stu94; BT21;
DJ]S22] and for Grobner bases [BFT18; FSS14; FM17]. In this thesis, we will focus in
the measure of the degrees involved in the Grobner bases computations as measure
of the complexity of using these methods, specially in the case of multihomoeneous
and sparse polynomial systems. For the case of matrices, the main focus of this the-
sisis to find v (corresponding to a multi-degree or a Newton polytope) such that M,
is an elimination matrix of the smallest possible size.

For the above description, we choose monomial bases for the vector spaces in
(1.5) as it is coherent with the idea of exploiting the the monomial structure given
by the Newton polytopes. However; it is not difficult to find computational prob-
lems for which this paradigm is not sufficient. For instance, in computer-aided
design, the Bernstein basis [MRRO5] is commonly employed. Additionally, various
other bases have been proposed for different purposes [BPT23; MT14; MTVB18] for
other notable cases. The use of methods of computational algebra that do not rely
Grobner bases and depend on other combinatorial constructions has been a topic
of discussion [CLM22] in the last years.
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Grdbner base

Figure 1.4: Some methods of computation. This thesis deals with elimination matrices and Grobner
bases.

Homotopy

A third family of methods (which we will not discuss in this thesis) related
to polynomial computations consists on deforming an initial system with known
solutions to the given target system [VVC94; MS87; HS95], providing the homotopy
continuation method. These methods have many advantages and also exploit the
underlying algebraic structure of the solutions; see [Duf+18; Duf+21; BT18]. All in
all, we can situate the studies of this thesis in the green region of Figure 1.4.

In the above descriptions, we assumed that the field over which we aim to
find the solutions is C, which algebraically closed. However, many of the problems
appearing in applications require finding solutions in the field of real numbers R
or other fields of positive characteristic. However, another big family of methods
applied to real algebraic geometry also exploit the representations of matrices and
Grobner bases that we will discuss; see [BPR06] for more details on real algebraic
geometry.

The Castelnuovo-Mumford regularity and the complexity of computing with
Grobner bases. Aswe discussed in the description of algebraic elimination meth-
ods, the degree involved in computations serves as a important measure of their
complexity. Adopting this perspective offers the advantage of exploiting the alge-
braic structure of the polynomial system, providing an effective communication
between computational and commutative algebra. In the case of dense polynomial
systems., the Castelnuovo-Mumford regularity [MB66] arises as a bound for the de-
grees implicated in these computations.

Definition. Let S = C[zy,...,z,] be a polynomial ring, let I ¢ S be an ideal and let
m € Z. The ideal I is called m-regular if the degrees of its j-th syzygies (Betti num-

14



bers) are bounded above by m + j. The Castelnuovo-Mumford regularity reg(7) is
the minimal m such that I is m-regular; see Chapter 2 for a review on commutative
algebra.

From the point of view of commutative algebra, this invariant also reflects
many interesting properties of 7, through its relation with local cohomology mod-
ules [EG84]. As it bounds the degrees of the syzygies, the regularity of in(7) bounds
the degrees in a Grobner basis of 7, i.e.

max{degrees of the minimal generators of in(7)} < reg(in(/)).

Moreover, a relation between the computations made with the initial ideal and the
algebraic structure of I arises by noticing that

reg(l) <reg(in(I)).

Due to the difficulty of determining, in general, the degrees at which the Grébner
basis is generated, Bayer and Stillman [BS87a] provided a criterion to determine
when computations at degrees higher than reg(7) are redundant, or dependent on
the monomial order. Their criterion enlightened the following two ideas:

- Choosing the degree reverse lexicographical monomial order [Eis95, 1 15.2]
is advisable to minimize the size of the degrees involved in the computa-
tions. This idea had already appeared in the work of Lazard [Laz83] or Trinks
[Tri78].

- Considering a generic linear change of coordinates in the ideal is also recom-
mended. In other words, one should compute with the generic initial ideal
gin(7) as defined by Galligo in [Gal74], instead of in([7).

Most computer algebra systems incorporate these two concepts. The algebraic
explanation for the answer of Bayer and Stillman follows from the fact that, under
these two assumptions, the complexity of computing Grobner bases relies solely on
the Castelnuovo-Mumford regularity of 7, and not of its initial ideal. Namely, under
the assumption of using the degree reverse lexicographical monomial order, they
proved the equalities

max{degrees of the minimal generators of gin(7)} = reg(gin(7)) =reg(l). (1.7)

As a consequence, the Castelnuovo-Mumford regularity describes tightly the com-
plexity of computing with Gréobner bases.

Unfortunately, the bounds for the regularity appearing in the works of Giusti
[Giu84] and Galligo [Gal79] are doubly exponential.

Theorem. Let I C C[zy,...,z,] be an ideal, which is generated by polynomials of
degree < d.
reg(l) < (2d)*"
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These bounds cannot be imporoved, as shown by a famous example due to
Mayr and Meyer [MM82]. For this reason, performing computations by Grobner-
based methods is discarded by many different problems of non-linear algebra. How-
ever, under general assumptions in the polynomials, the bounds for the regular-
ity can be a better than this case. For instance, if one takes generic polynomials
fi,..-, fr € Clz1,...,2,), they form a regular sequence [Par10]. Namely, for each
r € {2,...,r}, f» is a nonzero divisor in C|x1,...,x,]/(f1,..., fr—1). For these se-
quences, the minimal free resolution is given by the Koszul complex providing the
following value for the Castelnuovo-Mumford regularity.

Theorem. (Macaulay bound) If T = (f1, ..., f-) is a regular sequence, then

reg(l)=dy+---+d, —7r+ 1.

This bound also explains the relation between the Castelnuovo-Mumford regu-
larity and elimination matrices. Forr = n+1,v = dy+- - - +d,, —n is the first degree at
which M, is an elimination matrix. Moreover, this is precisely the degree at which
the classical resultant formula of Macaulay [Mac03] can be built.

In terms of solving 0-dimensional polynomial systems through using the coker-
nel for extrating the solutions as eigenvalues of a matrix, it is also possible to show
that the first degree at which one can do that is the Castelnuovo-Mumford regular-
ity [TMVB17]. Overall, the Castelnuovo-Mumford regularity, extensively studied
in commutative algebra, governs the complexity of computations using the meth-
ods outlined above in the dense case. A key objective of the research described in
this thesis is to establish invariants that clarify and characterize the complexity of
computations in the multihomogeneous and sparse cases.

Contributions The contributions of this thesis are based in the three following
papers, which will appear in journals and have been presented in international
conferences.

» The Canny-Emiris formula [CE22; CE23]: The choice of the minor of M, pro-
viding the resultant formulas in the sparse case comes from a combinatorial
rule given by Canny and Emiris [CE93] which resembles the classical formula
of Macaulay for the dense multivariate resultant [Mac03]. In this formula, the
rows of the minor correspond to lattice points in a translation of the polytope
A=YT,A

B=7Z"N(A+9) (1.8)

where ¢ is a generic translation vector. Providing a mixed subdivsion on A
corresponds to matching the rows and some of the columns of M, and giving
a maximal minor of this matrix. The mixed subdivision also indicates the
rows and columns that form the matrix appearing in the denominator of the
formula.
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A proof of this formula was given by D’Andrea, Sombra and Jerénimo [D]S22]
under certain hypotheses. In [CE22], we gave a family of subdivisions satis-
fying these hypotheses. Moreover, different possible algorithms for dealing
with the lattice points may provide smaller matrices.

We considered using the greedy algorithm proposed by Canny and Peder-
sen [CP93] for the previous family of subdivisions under suitable hypotheses
on the Newton polytopes (n-zonotopes and multihomogeneous systems) and
characterized combinatorially the lattice points of B labeling the rows and
columns of these matrices. We also provide a JULIA implementation of the
Canny-Emiris formula based in the above combinatorial characterization.

Toric sylvester forms [BC22]: For dense polynomial systems, it is possible
to reduce the size of the elimination matrices M, to the cost of introducing
forms in the saturation 7%t = (I : m*), where I is the ideal generated by the
homogeneous polynomials and m is the irrelevant ideal of P" [Jou97]. The con-
struction of these forms consists on noticing that under suitable hypotheses
on v, the module (7%2t/1), is free and explicitly finding a basis in terms of some
elements of /2" known as Sylvester forms. With these, we can transform the
matrices of (1.5) to:

My : (@8 S(—a;) ® ST = S), (Go,....Guily) = Y GiF+ > 1,sylv, (1.9)
=0 neLT

for some set of indices 7 labeling the basis of (7%3/I),. This construction was
extended first to the multiprojective case in [BCN22] and we reproduced it for
any smooth projective toric variety satisfying a certain hypothesis [BC22]. As
a consequence of this construction, we also found novel formulas for comput-
ing sparse resultants and toric residues.

Multigraded Castelnuovo-Mumford regularity and Grobner bases [Ben+24]:
From the perspective of commutative algebra, it is rather well-established
that the generalization of the Castelnuovo-Mumford regularity that preserves
many of the good geometric properties of the dense case was provided by
Maclagan and Smith [MS04]. An important part of my research was devoted
to studying the relation between Grobner bases and multigraded Castelnuovo-
Mumford regularity in the multihomogeneous case, i.e. X5, = P" x---xP"". In
this case, the generic change of coordinates must preserve the grading, prov-
ing the multi-generic initial ideal. Unlike in the classical case, the relative
order of the variables of different degree plays a very relevant role.

In this context, we established bounds on the degrees involving the degree re-
verse lexicographical Grobner basis for an multihomogeneous ideal and com-
pared our results with other type of descriptions appearing in the literature
[ACDNOO; RomO01]. In our work, the central object in the relation between reg-
ularity and initial ideals is provided by a partial regularity region described
in terms of local cohomology.
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The results that appear in the rest of chapters comprise most of the results
and ideas appearing in [CE22; CE23; BC22]. However, there are a few results which
are not contained in any of these papers. These are Theorem 2.12, which presents a
slight modification of the existence of the bigeneric ideal; Corollary 4.1, which gives
a family of toric varieties which satisfy the o-positive property and Theorem 5.10,
regarding the bound on the cohomological dimension. Moreover, in the section
of computations, the package of Sylvester forms had not appeared in any of the
articles. The manuscript is structured as follows:

» In Chapter 2, alist of preliminaries from commutative algebra, toric geometry,
sparse resultants and multigraded regularity are presented.

» In Chapter 3, we present the results regarding the Canny-Emiris formula, the
greedy algorithm and the study of the case of n-zonotopes and multihomoge-
neous systems. We also added a chapter on how to refine mixed subdivisions
using tropical geometry.

» In Chapter 4, we have listed all the results regarding toric Sylvester form:s,
hybrid elimination matrices and the applications in the computation of sparse
resultants and toric residues.

» In Chapter 5, we listed the results regarding multigraded Castelnuovo-Mumford
regularity and its relation with Grobner bases, specifically with multigeneric
initial ideals. In this chapter, we give a special focus to the partial regularity
region and its properties.

» In Chapter 6, we aplpy some of our constructions to problems in geometric
modelling and computer vision, such as finding the implicit equation of a ra-
tional surface or the 5-point problem. Moreover, we describe some of the
JULIA code that we developed as implementation of the results in the chap-
ters 3 and 4.

» In Chapter 7, we list a long series of open problems or interesting questions
that were discovered during the research.
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Chapter 2

Preliminaries

In this chapter, we review all the results that are required for the presentation of
our contributions. Some of the results of this section are quite standard in commu-
tative algebra and algebraic geometry and can be found in the books of Eisenbud
[Eis95] and Hartshorne [Har77], to which every student in these areas is familiar.
On the other hand, some knowledge on toric geometry is also required for the state-
ments and proofs in the next sections. Our main reference for that topic is the
book of Cox, Little and Schenck [CLS12]. In the introduction, we already provided
a quick review on Grobner bases, resultants and regularity. However, in this sec-
tion we also provide the concrete definitions of the sparse resultants [CLO98] and
generic initial ideals [Gre98], which are required in the contributions. The results
of Bayer and Stillman [BS87a] which we aimed to generalize to the multigraded
setting are also reviewed. In the last section, we also discuss the topic of the multi-
graded Castelnuovo-Mumford regularity, which is very relevant to the results in
Chapter 5.

1. Aspects of commutative algebra and algebraic geometry

In this first preliminaries section, we review aspects of commutative algebra and
algebraic geometry that are relevant to the further developments of the thesis.

Polynomial ideals and affine varieties. Letk be a field and let R = K[z, ..., 2]
be a polynomial ring.

Definition 2.1. A (left) R-module M is an abelian group (M, +) with an action () :
R x M — M satisfying that for every z,y € R and m,n € M:

- (frg) =z fra-g
-ty f=a-fry-f
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-y f)=ay- f
- 1-f=f
A (left) R-submodule N c M is a subgroup of M which is closed under the action

of R. A morphism of R-modules is a map § : M — N preserving all the above
properties. An R-module M is free of dimension r if it is isomorphic to R".

In particular, when encoding the structure of polynomial systems, we are in-
terested in a precise type of modules called ideals.
Definition 2.2. A polynomial ideal I C R is a submodule of R, considered as an

R-module with the multiplication as an action over itself.

The Hilbert basis Theorem [Eis95, Chapter 1, Theorem 1.2] implies that polyno-
mial rings over a field are noetherian, i.e. every ascending chain of ideals stabilizes.
As a consequence, every polynomial ideal / C R has a finite number of generators.
The following constructions are quite standard when one works with polynomial
ideals.

Definition 2.3. Let I, J C R be two polynomial ideals.

- The sum I + J is the ideal generated by the sums f + g where f € T and g € J.

- The intersection I N J is the ideal generated by the polynomials that belong to
I'and J.

- The product I.J of two ideals is the ideal generated by fg where f € I and
geJ.

- For k € Z>1, the power ideal I* is recursively defined as I* = (I*~1)I, where
I = R.

- The radical /T the ideal generated by the polynomials f € R such that f* ¢ I
for some k € Z>.

- The colon ideal I : J is the ideal generated by the polynomials f € R such that
f-JcCl.

- The saturation of I with respect to I, I : J*, is the ideal generated by the
polynomials f € R such that f - J* C I for some k € Z>.

- An ideal I is prime if for every pair of polynomials f,g € R such that fg € I,
then either f € Tor g € I.

- Anideal I is primary if for every pair of polynomials f,g € R such that fg € I,
then either f € I or g* € I for some k € Z>;.
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Theorem 2.1. [Eis95, Theorem 3.10] Let I C R be a polynomial ideal. Then, there
are primary ideals Qq, ..., Q, C R such that:

I=Qin---NQ,

such that for every i € {1,...,7}, Q; » N;%Q; and for every i,j € {1,...,r} such
that i # j, vQi; # /Q;. This decomposition is not unique but the prime ideals
V@1, ..,/Q, are always the same.

Definition 2.4. The set Q,...,Q, is a minimal primary decomposition of I. The
prime ideals /Q; fori € {1,...,r} are called the associated primes of I. The minimal

ideals in /Q; with respect to inclusion are called the minimal primes of I and the
others are called the embedded primes of I.

Let Ay be the affine space of dimension »n over k. We can consider the polyno-
mials f € R as functions f : A} — k.

Definition 2.5. Let I C R be an ideal. The affine variety V(I) is the subset of A}
defined as:

V(I)={pe Ay flp)=0 Vfel}

The sets of the form V(I) are closed under intersections and finite unions.
Therefore, they constitute the closed subsets of a topology in A}, which is known
as the Zariski topology.

Definition 2.6. Let V' C A} be a a subset. The ideal of V is the ideal of polynomials
that vanish in all the points of V, i.e.

I(V)={feR flp)=0 VpeV}

The Zariski closure of an affine subset V' C Ay is the smallest closed subset in the
Zariski topology containing V, i.e. V := V(I(V)).

Theorem 2.2. [Eis95, Theorem 1.6] (Hilbert’s Nullstellensatz) Given an ideal I C R,
L(V(I)) = V1.

In other words, if a polynomial f € R vanishes at all the points of the variety V(I),
then there is k € Z>; such that f* € I. In particulay, if V() = § then 1 € I.

Allin all, there is a correspondence between affine varieties and ideals which
can be summarized in the following features. Let I, J C R be ideals and V, W be
affine varieties.

- Radical ideals are in correspondence with affine varieties.

- Inclusion of ideals I ¢ J corresponds to the reverse inclusion between vari-
eties V(I) D V(J), and viceversa.

21



- The sum of two ideals 7+ is sent to intersection of varieties V(7)NV(J). The in-
tersection of two varieties VN1V is sent to the radical of the sum /I(V') + I(W).

- The product of ideals 7.J corrersponds to the union of affine varieties V(7) U
V(J). Conversely, V U W corresponds to the intersection of ideals I(V) N I(W).

- Considering the colon ideal 7 : J corresponds to considering the Zariski clo-
sure of the set-theoretical difference of varieties V(I) — V(J). Conversely, the
Zariski closure of the set-theoretical difference of two affine varieties V. — W
corrresponds to the ideal I(V') : I(WW).

- If an ideal is prime, then V(7) is irreducible, i.e there is no pair of affine va-
rieties Vi, V, such that V(I) = V; UV, and V(I) # Vi, V. Conversely, if V' is
irreducible, then I(V) is prime.

Definition 2.7. Let I C R be an ideal. The quotient ring R/I is the ring defined by
the classes of equivalence of polynomials through the relation f ~; ¢, if and only
if, f-gel.

The same correspondence between ideals and affine varieties as above can be
described by considering the set of prime ideals of the ring R/I (Spec(R/I)), which
is known as the affine scheme of R/I. The idea of dimension, to which we might
have a geometric intuition, can also be described in terms of this correspondence
between varieties and ideals.

Definition 2.8. The dimension of a variety V is the supremum of all integers »n such
that there is a chain of distinct irreducibe subvarieties Wy c --- c W,, = V.

Definition 2.9. The height of a prime ideal P is the supremum of all integers »n such
that there is a chain of distinct prime ideals P, C --- € P, = P. The Krull dimension
of a ring R is the maximum of all the heights of its prime ideals P ¢ R. The Krull
dimension of the ring R/I coincides with the dimension of the variety V(I).

We end this section with the famous theorem of Noether normalization [Eis95,
Section 8.2.1] which describes an interesting way to look at the dimension of an
ideal.

Theorem 2.3. A set of elements y;,...,y, € R is algebraically independent ele-
ments if there is no nonzero polynomial P € K[y, ...,y such that P(y1,...,ym) = 0.
Let d be the dimension of R/I. For every chain of prime ideals P, C --- C P, of maxi-
mal height in R/, there are algebraically independent elements yi,...,y4 € R such
that R/I such that R/I is a finite module over K[y1,...,yq and P, N K[y1,...,y4] =
(y1,...,y) fori=0,....d.

In the case that R/I is 0-dimensional, this theorem implies that R/ is k-vector
space. The dimension of the vector space corresponds (up to multiplicity) to the
number of points in V(7) [Eis95, Corollary 2.15].
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Graded ideals and projective varieties. In the introduction, we motivated the
need of working with homogeneous polynomial systems and projective varieties.
Next, we provide the basic notions of graded modules and homogeneous polyno-
mial ideals.

Definition 2.10. A ring R is Z"-graded if it can be written as a direct sum R =
®qeczr Rg Where Ry is a finite k-vector space, such that Ry = kand RyRy C Ry 4. An
R-module M is Z"-graded if it can be decomposed as as M = @4z My where M, is a
k-vector space, such that R;My C My, 4. For any Z"-graded module and d,d’ € 7,
the twisted module M (—d) whose graded piece of degree d’ is My .

If M, N be two Z" graded modules, a homomorphism of modules § : M — N is
Z™-graded of degree d € Z" if for every d' € Z", 6(My) C Nytar-

From now on, R is a polynomial ring over a field with »n + 1 variables, i.e. R =
K[zo,...,z,]). The grading in R = K[z, ...,z,] is defined by a map deg : R — Z"
such that deg(1) = 0 and for two polynomials f, g € K[z, ..., z,], one has deg(fg) =
deg(f) + deg(g). Thus, the grading is defined solely by the degrees of the variables
xo, ..., Tn. The vector space R, is spanned by the monomials of degree m.

The grading provided by deg is standard if deg(z;) is an element of the canoni-
cal basis of Z™ fori € {1,...,r}. For instance, the only standard Z-grading considers
all the variables as elements of degree 1.

Definition 2.11. A polynomial f € Rishomogeneous ifit belongsto R, for somed e
Z™. Anideal I ¢ Ris homogeneous if it is generated by homogeneous polynomials.

In the rest of this section, we restrict to the case of the standard Z-grading in
R = Klzo,...,z,). However, once we have defined the setting of toric varieties,
we will show that some of the constructions that appear in the next pages can be
reproduced in that case.

Definition 2.12. The projective space P" is the quotient C**! — {0}/C*, where C*
acts in C"*! — {0} by homotheties A(ay, ..., a,) = (Aao, ..., A\a,) for A € C*.

Polynomial functions are not well-defined over the projective space as they do
not necessarily behave well under the action that defines it. However, the zeros
of homogeneous polynomials are well defined in the projective space. Namely, for
d € Z>oand f € Rq, we have

f(Xag, ..., Aan) = Xf(ag,...,an) (ag,...,a,) € C""1 —{0} XeC*

and so
f(Aag, ..., Aap) =0 <= f(ag,...,an) =0.

This allows us to give the following definition.
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Definition 2.13. Let I ¢ R be a homogeneous ideal. The projective variety Vpn (I) is
defined as:

Ven(I) ={peP" f(p)=0 Vfel}
Similarly as before, this defines the Zariski topology in P".

The polynomials in the ideal m = (z,...,z,) only vanish simultaneously in
Aﬁ“ at the point 0. This point was removed in the definition of the projective space,
implying that Vp»(m) = (. This justifies that the ideal m is known as the irrelevant
ideal. Thus, if I ¢ R is any homogeneous ideal, considering the colon ideal with
respect to any power of m does not change the variety Vp- (7). In other words, the
saturation with respect to m, i.e.

1590 = (I : m™)

will satisfy Vpa (1) = Ve (1%2Y). In fact, 153 is the largest ideal in the class of all ideals
giving the same projective variety as 7 [BS87b]. This justifies the use of saturations
to understand the set of projective points that vanish in an ideal.

Definition 2.14. Let V C P" be a subset. The homogeneous ideal Iy~ (V) is defined
as:
Ipn(V)={f€R f(p)=0 V¥peV fhomogeneous}.

Theorem 2.4. [Eis95, Theorem 1.6] (Projective Hilbert’s Nullstellensatz) Given a
homogeneousideal I C R,

Tgn (Vpn (1)) = VT.
In particular, if Vpn(I) = (), then for every i = 0,...,n, there is & € Z-( such that
xf e l.

The definition of the dimension of a variety can be reproduced also in this
case as maximal chain of distinct irreducible varieties. However, if we consider
the Krull dimension of of the quotient ring R/I, we will find the affine dimension
of that quotient ring, which involves one more variable. Therefore, the geometric
dimension will coincide with the algebraic Krull dimension minus one, i.e.

dim (V- (1)) = dim(R/I) — 1. 2.1)

On the other hand, the projective varierty Ve~ (I) can be described in terms of the
homogeneous prime ideals in R/I that do not contain the irrelevant ideal, getting
the projective scheme Proj(R/I).

Proj(R/I) = {P homogeneous prime ideal of R/ such that P % m}.

Using the graded structure, we can provide another object that allows us to
understand the dimension of the variety Ve (7).

Definition 2.15. The Hilbert function of R/I is the function:

HFR/] : ZZO — ZZO d— dimk(R/I)d.
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It is standard in commutative algebra [Eis95] that there is a univariate polyno-
mial HP/; such that:
HPp ;(t) = HF g/ (t) ¢ > 0.

If this polynomial is of degree D, then the dimension of Vp-(I) is D. Moreover, the
Hilbert polynomial can be written as:

(&

HPr1(®) = @im = 1)

;17 + {terms of lower degree in t}

for some e € Zx¢; see [Eis95, Section 1.9]. Geometrically, it can be shown that e
corresponds to the number of intersection points between with D general hyper-
planes H;, = {l, = 0} fori = 1,..., D where l4,...,Ip are general linear forms, i.e.
considering the variety Vpn (7,14, ...,lp). This provides a geometric definition of the
degree of the variety Vpn (1).

Homological constructions. Some of the tools of commutative algebra that we
will use are based on homological algebra, which studies of properties of modules
(in particular, of polynomial ideals and quotient rings) in terms of the homology of
chain complexes.

Definition 2.16. Let R be a ring. A chain complex (M;,;);cz 1S a sequence of R-
modules (M;);cz together with a sequence of morphisms ¢; : M; — M;_4, i.e.

0; ; Oi_
M= (.. 255 My % My 225 )

satisfying §,_; o §; = 0 for ¢ € Z, in other words, im(4;) C ker(d;_1). A chain complex
is bounded if there are a,b € Z with a < b such that M; = 0 for all  such thati < a
or i > b. The i-th homology of a complex is the module:

o ker(éi_l)
v 1m(<5z)

A chain complex is exact is H; = 0 for all i € Z.

If the ring R, the modules (;);cz and the morphisms §; : M; — M,_, are Z-
graded, then the complex M, inherits the graded structure, and so do its homology
modules. Considering the graded pieces of degree d of a chain complex, as a com-
plex of k-vector spaces is known as considering a strand of a complex and denoted
as (M,)g4.

A possible way to comprise the algebraic structure of an module M is precisely
by attaching to it a chain complex, called free resolution. Initially, the algebra of M
is described by a minimal set of generators, fi,..., f., where every other element
in I can be written as a combination of them and none of them can be removed.
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However, the algebraic relations between these generators are also part of the de-

scription of M. For this purpose, it is natural to consider the syzygies of fi,..., f.,
i.e. .
SYz(fi,. ... fr) ={(gr, .. .9:) ESILR > gifi =0} 2.2)
=1

With this, we get an exact chain complex (short exact sequence) of the form:

0— Syz(fi,...,fr) = ®;_1R(—d;) 3> M — 0.

However, the algebra of I is also comprised by the generators of Syz(f,..., f,) as
an R-module. Thus, we can find a set of generators fi,..., f/, of this R-module of
degrees di,...,d,. Finding these generators is equivalent to finding a surjective
map from @}, R(—d!) to ker(¢), getting a new exact chain complex of the form:

0= SYz(fl,...,f) = @ R(~d}) — &F_ R(~d;) & M — 0.

If we repeat this process, we will get a chain complex formed by free R-modules.
Hilbert’s syzygy theorem [Eis95, Theorem 1.13] implies that this process will finish
after a finite number of steps, which is bounded by the number of variables in R.

Definition 2.17. A finite free resolution of a graded R-module M is a bounded chain
complex of the form

0= F 2 SRS E S0

satisfying:

- The 0-th homology equals M, i.e. Hy = M.
- For i > 0, the i-th homology vanishes, i.e. H; = 0.

- Each of the modules F; is free.

Free resolutions need not be unique. For instance, one can consider the trivial
exact chain complex induced by the identity map on R, i.e.

0—-R—R—O0.

If we are given a free resolution F, of M, we can modify its i-th map by considering
the map: B
0i Fi@R—F,_1®R (m,r)— (6;(m),r)

Then, the new chain complex after this modiffication is still a free resolution; see
[Eis95, p. 20.1]. In order to avoid the presence of these trivial complexes, we can
consider minimal free resolutions.

Definition 2.18. A minimal free resolution of a graded R-module M is a free reso-
lution such that:
51(Fl) cwmF;,_1 Vi>1.

Equivalently, F; maps to a minimal set of generators of coker(J;); see [Eis95, Lemma
19.4].
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Minimal free resolutions exist and they are unique in the graded setting [Eis95,
p- 1.1.6], thus they provide a method to comprise the algebraic structure of M. The
minimal free resolution is described in terms of the Betti numbers. Namely, as the
F; are free modules, one can write them as:

F; = @4S(—d)%aD).

Here, 3; 4(M) are the Betti numbers of M/ and only a finite number of them can be
nonzero.

Definition 2.19. Given an ideal I C R generated by » polynomials f,..., f. of de-
grees di,...,d, € Z, the Koszul complex is

Ko(I): Ko(I) 2 -+ — Ky (1) 25 Ko(I)
where the terms are the free modules K;(1) = @<, «_j,<x B(— Xgegjr.. ;3 %)- The
differentials o; : K;(I) — K,;_1(I) are defined as the direct sum of the maps ¢; =

ity R(— Z dy,) — @ R(— Z dr,)
ke{j,.di} €L, i} ke{jt-irk—{i}
g = YL D he @23)

ke{j1,-.Ji }

where 7(k) is such that j, ) <k < j-)41-

If we are given homogeneous polynomials f1, ..., f, with degrees d,,...,d, and
general coefficients, the Koszul complex provides the minimal free resolution [Eis95,
Corollary 19.3]. This result is based on the fact that general polynomials of degrees
dy,...,d, form a regular sequence, i.e.

(frsooo fimr s fi) = (f1, 5 fim1)

As we will often consider this general case for the coefficients of the system, the
Koszul complex will be a very useful tool in many of our construcitons.

Finally, there is another homological algebra construction which we can use
to summarize the properties of R-modules.

Definition 2.20. Let M be an R-module ar}d let f1,..., fr € R be a sequence of el-
ements generating an ideal J ¢ R. The Cech complex is formed by the modules

Ct, ... (M) where:

C}l,.-.,fr(M) = EB M(fj)je{jl ..... i}

1<j1 <-+<ji<r

where M) s =Us geM je{in,....5uth) @24

jE{jl 7777 '3 f]



and the differentials A’ : ¢}, (M) — C;t! . (M)definedas A" = @1j,<_j,<, 0707
where:
g (m) = Y (=)W (my,,.)
k¢{j1,..di}
where 7(k) is such that j ) <k < jrx)11 and éx : My
defined by inclusion.

Ve s ik} 1S

) — M(f]

J€{I15-04

Definition 2.21. The homology of the Cech complex is independent of the choice
of the set of generators of the ideal /7 and known as local cohomology. We denote it
as H%(M).

Definition 2.22. The cohomological dimension of M with respect to .J is:

cd;(M) = max({0} U {i € Zwg s.t. H5(I) # 0}). (2.5)

For our case of interest of polynomial systems, we study local cohomology
modules of the ideal I and the quotient ring R/I with respect to the irrelevant
ideal m. In this cases, local cohomology exhibits very interesting properties. For
instance, the 0-th cohomology module with respect to m corresponds to the quo-
tient 7%3t/1 [Bus06, Section 1], i.e.

HO(R/I) = HL(I) = I**/I. (2.6)

Moreover, as we will base many of the computations of local cohomology modules
on minimal free resolutions, an important object to understand is the local coho-
mology of the ring R itself, which is well understood.

Theorem 2.5. [Bus06, Section 1.3.4] For R = K[zo,...,z,] and m = (zo,...,x,), We
have:
- 0 i#Fn+1
H (R) = .
n(R) { L _Kzg',. .20l i=n+1

TO T rTn

In particular, H,(R); =0unlessi=n+1andd < —(n +1).

In order to derive the non-vanishing graded pieces of the local cohomology
modules H{ (I) for an ideal I, we will often use the the study of the spectral se-
quences associated to a Cech-resolution (or Cech-Koszul) double complex C2(F).
These two spectral sequences [Wei94, Section 5.6] appear after taking homologies
in the two different possible directions. If one considers the homologies with re-
spect to F, first, then in the second page of the spectral sequence, we will obtain
H2(I). On the other hand, if we start taking homologies with respect to C*®, the
first page will be formed by modules of the form H2(F,), whose supports can be
computed using the description in Theorem 2.5. The two spectral sequences must
converge to the same limit, providing a method to understand H2(I).

In order to connect the importance of local cohomology with the geometric
ideas that we introduced at the beginning of this section, we can state a formula,
usually named after Grothendieck and Serre, which relates local cohomology with
Hilbert functions and polynomials.
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Theorem 2.6. [BH98, Theorem 4.3.5] For any homogeneous ideal 7 C R, and d € Z
we have:

HF )/ (d) = HPg;(d) + ) _ dimy Hyy(R/T)a.
1=0

The Castelnuovo-Mumford regularity. As a way to end the review on commu-
tative algebra, we state the classical definition of the Castelnuovo-Mumford regu-
larity [MB66].

Definition 2.23. Let I C R be a homogeneous ideal. The ideal is called m-regular
for m € Z, if it satisfies any of the following three equivalent conditions:

- Hi(I)gfori>0andd>m —i

- fia=0fori>0andd>m+1.

- The truncated ideal I>,, = ®4>m1s has a linear resolution.

The Castelnuovo-Mumford regularity is the set of m-regular degrees, i.e.

reg(l) ={m e Z Iism-regular}

There is a wide literature on understanding the insights of this invariant; see
[Cha07] for a summary. In this literature, the Castelnuovo-Mumford regularity is
often seen as the minimal degree in reg(7). However, for the insights that we will
describe Chapter 5, it is interesting to see the regularity as a subset of degrees in
Z. The equivalence between the three definitions was provided by Eisenbud and
Goto in [EG84]. An elegant proof can be found in [Eis05, Proposition 4.16].

Remark 2.1. Using Theorem 2.6, we can see that for d € reg(I), then:

HFg/;(d) = HPg/;(d).

2. Newton polytopes and toric varieties

In this section, we discuss the theory of projective toric varieties, which forms the
foundation for much of the progress made in this thesis. It is important to have
in mind that the starting point of our description are the Newton polytopes. The
theory of toric geometry has many more insights (see [CLS12]), which exceed the
results that we required in our work.
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Figure 2.1: Two lattice polytopes in R? defined as the convex hull of the sets S =
{(0,0),(1,0),(2,0), (0,1),(1,1),(0,2)} and S = {(0,0), (1,0),(2,0),(0,1), (1,1),(2,1),(0,2),(1,2),(2,2)},
respectively.

Polytopes and normal fans. In order to develop the theory of toric varieties for
polynomial systems, one can work over the lattice Z". However, one can also con-
sider that the polynomials lie in some other lattice (for instance, Z" for some
D € Z-,), providing the same theory for generalized polynomials with rational ex-
ponents. Moreover, in most of our developments in Chapter 4, we will require that
k is the field of complex numbers C. The theory of toric varieties can be developed
for any other field, even of positive characteristic.

Notation 2.1. We denote by N = Homy(Z",Z) the dual of Z". Let (C*)" be the
complex torus of dimension n. We also set Ni the dual vector space to R™. Denote
as (-, -) the natural pairing between Z" and N.

Definition 2.24. Let S C Z" be a finite subset. The convex hull of S is the subset of
R™ given as:
conv(S) ={> Au A ERx Y Ay=1}CR"
u€eS u€esS
A lattice polytope A is a subset of R” of the above form. The dimension of a polytope
is the minimal d such that there is an affine linear subspace VV ¢ R™ of dimension d
such that A C V.

The affine linear subspaces defining the dimension can be described in terms
of affine hyperplanes:
Hyqo={meR" (u,m)=a}

for some v € N quad « € Z. Similarly, one can describe the closed half-subspaces
associated to to u, a as:

Hf,={meR" (u,m)>a}.

A face A’ of a polytope A is a polytope, denoted as A’ < A, such that there are
ui,...,u, € Nanday,...,a, € Z such that:

AN =ANHy o N NHy o ACH!, N---NHf

uy,a1 Up,Qr*

The faces of a polytope can be classified in terms of their dimension. In particular,
we can discuss facets (of dimension dim A — 1), edges (of dimension 1) or vertices
(of dimension 0).
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Remark 2.2. Most of the properties that we will discuss are invariant under con-
sidering translations of the polytopes, this is:

A+t={meR* m=m'+t m' €A}

for some t € Z".

Using the notation above, any lattice polytope A can be presented as an inter-
section of closed half-spaces, i.e.
A=HI n---NnH'

ui,a1 Uy ,Qr*

If there are two indices 7,5 € {1,...,r} such that v; = —u; and a; = q;, then A is
not n-dimensional. In that case, up to a translation of the polytope, we can study
its properties in the sub-lattice of Z" defined by the equation (m, u;) = 0. Thus, for
the next discussions, we can assume that A is n-dimensional. In that case, A can be
presented as the intersection of the inequalities defining its facets, i.e.

A={meR" (up,m)>—ar F facet}

where the facet F < A is defined by as An H,, for some up € N and ap € Z.

F,—afp

If the polytope A is very ample (see [CLS12, Definition 2.2.17]), then a toric
variety Xa associated with this polytope can be constructed by using the Zarizki
closure of the map @ 4, i.e.

Dy (CY' =PI b= (b uty) = (™0 ), 2.7)

where A = ANM = {my,...,ms}. f we are given any n-dimensional lattice polytope
A (not necessarily very ample) the toric variety to consider is the one associated
to [A for [ > 0, which has the same normal fan and is very ample; see [CLS12,
Definition 2.3.14].

Example 2.1. Consider the simplex A,, in R”, which is the convex hull of the lattice
points A = {0, ey, ...,e,} Where (e;);=1... , is a canonical basis of Z", then the closure
of the image of ® 4 is P".

Definition 2.25. Let S C N be a finite subset. The conic hull is the subset of Np
given as:
Cone(S) = {> A Ay €Rxp} C Ng.
ues

A rational cone o is a subset of Ny of the above form. A cone ¢ is strongly convex if
o N (—o) = 0. The dual cone of o* in R is the subset:

o ={meR" (um)>0 Yucoa}.

A face of a cone is a subcone ¢’ < o for the form: ¢/ = o N H,,, o for some m € o*.
The dimension of a cone ¢ is the smallest dimension of the linear subspace V' C Ny
such thato C V.
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Definition 2.26. A fan X is union of strongly convex cones of R" such that:

- If o € %, every face of o is also in .
- The intersection o; N o5 of tWwo cones o1, 09 € X is a face of each.
A fan ¥’ refines another fan 3, if every cone ¢’ € ¥’ is contained in a cone o € %, i.e.

o' C 0. We denote as X(d) the set of d-dimensional cones of a fan. The 1-dimensional
cones are called rays.

Figure 2.2: The normal fans of the polytopes in Figure 2.1.

If Aisapolytopeand A’ < Aisaface ofit, defined by the hyperplanes H,,, 5., ..., Hy, p,»
one can consider the cones of the form:

on = Cone(u; i€{l,...,r}) C Ng.

These cones are independent of b4, ..., b. and thus, invariant under translations of
the polytope.

Definition 2.27. The normal fan ¥ of a polytope A is the union of the cones o . for
all the faces A’ < A.

From the dual cones of the normal fan ¥, one can recover the affine varieties
defining A. Namely, one can consider the semigroup S, = ¢* N Z" and study the
affine toric variety

Spec(K[S,]) K[S,] =K[z™" m e NZ"].

where K[S,| is the semigroup algebra generated by S,. The generators of S, as a
semigroup provide the generators of K[S,] as an algebra. Gluing the affine vari-
eties defined by the semigroup algebras for every cone o € ¥, following the face
structure of the fan, one can recover the variety Xx; see [CLS12, Chapter 3, 3.1].

Example 2.2. The normal fan ¥ of the first polytope in Example 5.1 is the fan with
rays {ei,...,en, — 1, €;}; see Figure 2.2. If we consider the cone o generated by
ei,...,en, then the semigroup algebra is generated by the lattice points in Z2, and
the affine toric variety is A?; see Figure 2.3. Thus, gluing the semigroup algebras
defined by ¥ corresponds to the gluing of affine spaces that provides the projective

space P".
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Figure 2.3: In , the dual of the cone generated by (1, 0) and (0, 1). In red, the lattice points in this
dual cone. In and , the dual to the cone generated by (0,0). In red and blue, the lattice

points in this dual cone.

The Cox ring and the quotient construction Finally, we can provide a definition
of a toric variety which relies directly on the fan ¥ and does not require to glue
affine pieces. Recall that the starting point of our discussion is a polytope A. As
we assumed that A is n-dimensional, its normal fan is formed by strongly convex
cones and it is complete, i.e.

Usexo = Ng.

The normal fan of a polytope must have n + r rays for » > 0. Moreover, we can
assume that the generators of the rays u, € N for p € X(1) are primitive and span
the vector space Ng. By [CLS12, Corollary 3.3.10], this condition is equivalent to
the toric variety Xy having no torus factors. Thus, we denote as uq, ..., u,, the
generators of the rays in some order. In addition, if we denote the class group of
Xy by Cl(Xy), there is a short exact sequence:

0—2z" 5 70t I Cl(Xy) — 0, (2.8)

where F is an (n 4+ r) x n matrix whose rows are the generators of the rays
in ¥(1) and 7 is chosen accordingly to be a cokernel matrix; see [CLS12, Theorem
4.1.3].

Definition 2.28. The Cox ring is defined as the ring R = K[z1,...,2,+,]. This ring
is Cl(Xx)-graded through the map 7. Namely, a monomial [['"/ 2" has degree

T((@i)i=1,...n+r)-

This short exact sequence induces a transposed short sequence of groups by
considering the functor Hom(—, C*).

T |
0— G = (CH"" —— (CH" =0, (2.9)

where G = Hom(Cl(Xy), C*). In particular, one can show that G is the subgroup of
(C*)" defined by the equations:

G={(tpes € @) T 8™ =1 vme M},
pEX(1)
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Thus, the natural action of (C*)"*" in C"*" induces an action of G in C"*".

Definition 2.29. The irrelevant ideal is:

b = (i” such that r € 5(n)), where ™ = [] =,. (2.10)
p¢T(1)

The irrelevant subset is defined as V(b) = {z € C"*" f(x) =0 Vf € b}.
The primary decomposition of b can also be defined in terms of the combina-
torics of the fan >.

Definition 2.30. A subset C' C X(1) is a primitive collection if:

- There is no cone ¢ € ¥ such that C' = o(1).

- For every proper subset C’ C C, there is a cone o € ¥ such that ¢’ = o(1).

The irrelevant ideal satisfies b = N¢(z, p € C) where the intersection runs
over all the primitive collections in ¥; see [CLS12, Definition 5.1.6]. Thus, the irrel-
evant subset can be decomposed as:

V(b)) =UcV(z, peC). (2.11)

We can pay particular attention to the toric varieties for which the primitive col-
lections are disjoint.

Definition 2.31. A fan ¥ splits if the primitive collections are disjoint. A toric vari-
ety Xy has a splitting fan if the fan ¥ splits.

Each of the irreducible components in (2.11) is an orbit of the action of (C*)™*"
in C™*". Thus, G also induces an action in C"*" — V (b).

Definition 2.32. The toric variety Xy defined from the normal fan of A is defined
as:

Xy :=C""" -V(b)//G
This definition is equivalent to the two definitions above; see [CLS12, Proposition
5.1.9].

Example 2.3. The irrelevant ideal of the fan giving the projective space is precisely
m = (z0,...,7,) and G = {(\,...,\) € (C*)"*t X € C*}. With this, one recovers
Definition 2.12.

The action of (C*)"*" in C"*" — V(b) induces an action of (C*)" in Xy, after con-
sidering the quotient by G. There are other possible definitions of a toric variety
which do not involve starting with a polytope or a fan. All of them involve the idea
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Figure 2.4: In the first drawing, the cone generated by (1, 0) and (0, 1) is smooth as its generators are
a basis of Z2. In the second case, the cone generated by (1, 2) and (2, 1) is not smooth.

of having a variety X where the torus (C*)" is an open and dense subset with re-
spect to the Zariski topology and such that the action of (C*)™ in this subset extends
to the rest of the toric variety.

Further algebraic structure can be analyzed on toric varieties, by noting that
their defining ideals are prime ideals generated by binomials [ES96]. With the com-
binatorial information of polytopes and fans, one can easily this structure in the
ideals defining these varieties; see [CLS12, Proposition 1.1.9]. In some areas of com-
putational algebraic geometry, one can find ideals defining toric varieties whose
polytopes and fans can be more difficult to grasp; see [MS21, Section 8.3].

Defining toric varieties form the combiatorics of polytopes and fans gives us
the advantage of connecting the geometric properties of Xy, with the properties of
the fan X.

Definition 2.33. A rational cone o is simplicial if its generators are linearly inde-
pendent over Z". The fan ¥ is simplicial if every cone o € ¥ is simplicial. A rational
cone o is smooth if its generators are part of a basis of Z". The fan is smooth ¥ if
every cone o € X is smooth.

Theorem 2.7. The variety Xy is simplicial, if and only if, ¥ has, at most, finite quo-
tient singularities. The variety X, is smooth, if and only if, > is smooth. Moreover,
the variety Xy is compact (in the classical topology), if and only if, ¥ is complete;
see [CLS12, Theorem 3.1.19].

Polytopes and divisors By looking a bit more closely at the short exact sequence
in (2.9), one can see that the elements of Z"*" correspond to Weil divisors in the toric
variety Xy, which are invariant under the action of (C*)". Namely these divisors

are of the form:
n—+r

DV = Z I/ij
7j=1
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where D; is the Weil divisor defined by the equation {(z;)i=1,..,
see [CLS12, § 4.1]. In particular, by (2.9), the principal Weil divisors are of the form:

n—4+r
F(m) = (u;,m)D, (2.12)

j=1
for some m € Z". On the other hand, to each Weil divisor zgjg v;D;, one can asso-
ciate the following polytope:

Ay={meR": (uj,m)>—-v;,j=1,....,n+r} (2.13)

Properties of divisors, such as being Cartier; nef or ample, can be understood from
the combinatorics of the polytope A,; see [CLS12, Theorem 4.2.8, Proposition 6.1.1,
Theorem 6.3.12, Proposition 7.2.3] for proofs.

Theorem 2.8. Let D, = z;?:g v;D; be a Weil divisor in Xy and let A, be the associ-
ated polytope.

- The Weil divisor D, is Cartier, if and only if,

V7 € X(n), thereis m, € M such thatif p; € 7(1) (uj, m.) = —v;. (2.14)

- The Cartier divisor D, is nef, if and only if,
V7 € ¥(n), there is m, € A, N M such thatif p; € 7(1) (uj,m,) = —v;. (2.15)
Moreover, the previous conditions are equivalent to D, being basepoint free.
- The divisor D, is ample, if and only if, the normal fan of A, is 3.

Assumption 2.1. Our goal is to construct homogeneous polynomial systems that
only depend on a polytope A and its normal fan 3. Under this assumption, if D, is a
Weil divisor in Xy, then the normal fan of A, isrefined by ¥; see [CLS12, Proposition
6.2.5].

In some of our results, we will require that X5 is a smooth projective toric
variety. We can make this assumtion by considering a resolution of singularities
of Xy which is constructed through a fan >’ which refines ¥; see [CLS12, Theorem
10.1.10]. After changing Xy, by X5, D, remains a nef divisor in Xy, and the normal
fan of A, is refined by Y. Moreover; if the lattice polytope A, is fixed, we can also
assume that D, is nef and Cartier divisor, by choosing (v;) =1, .. n+, to be of the form:

vj = —lelleirAl(uj,m>.
minimum is attained at a vertex m € A,; see [CLS12, Proposition 6.2.5]. All in all,
our constructions will be based on a correspondence between nef Cartier divisors
in Xy and lattice polytopes, i.e.

Nef Cartier divisors D, in Xy , +— Lattice polytopes A, whose . (2.16)
normal fan refines &
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The assumption that Xy, is smooth also implies that every Weil divisor is Cartier. In
other words, the class group Cl(Xy,) coincides with the Picard group Pic(Xy), which
is a free abelian group isomorphic to Z"; see [CLS12, Proposition 4.2.5, Proposition
4.2.6].

On the other hand, if two polytopes A,, A, correspond to Weil divisors in the
same class in Cl(Xy), then by (2.9) they are translations of each other, i.e. there is
m’ € Z" such that:

yj—V;:<uj,m/> j=1,....,n+r

which implies that A, +m’' = A,/; see [CLS12, §4.2, §4.3].

Assumption 2.2. Some of the constructions that we will cosnider (for instance,
sparse resultants) are invariant under translations of the polytope A,. Therefore,
for each Z?i{ v;D;, we will choose a representative of its class in Cl(Xy) in the
following way: each maximal cone o € 3(n) corresponds to a vertex in A,. In par-
ticular, under Assumption 2.1, we can fix a smooth n-dimensional cone o € %(n)
and we can translate A, so that the vertex associated to ¢ is 0 € Z™. This choice of

the representative of the class of A, has the following implications:

- Choosing o € X(n) allows us to order and label the variables in the Cox ring as
x1,...,x, for those variables associated to rays p € o(1) and zy, ..., 2, for the
rest of variables.

- The matrix = which is a cokernel for F in the short exact sequence (2.9) can
be written as:
m=(P 1d,), (2.17)

=JhAiSh s

of = correspond to the rays p € (1). The rows of = correspond to the relations

between u,, ; and the basis given by u4,...,u, for j =1,...,r, i.e. relations of
the form: .
Uptj + Z Pirug =0 j=1,...,r (2.18)
k=1

- If 0 € A, is the vertex associated to o, we imply that v; =0 forall j = 1,...,n.
Hence, we are choosing a representative of the class of polytopes of A, that
only depends on vy, 41, .. ., Vpir

- Under Assumptions 2.1, the Cox ring is Z"-graded by the map =. In particu-
lar, the way we wrote the map = in (4.2) implies that every monomial z* =
it 2t of degree v is mapped via 7 to (vy4)j=1,..» € Z" and
thus satisfies the relations:

Un+j = Hn+j + ZPj’kuk for allj =1,...,7 (2.19)
k=1

37



- Thelattice pointsin A, correspond to the monomials in R of degree v € Pic(Xy).
We will use this idea to homogenize and dehomogenize polynomials in the
toric setting.

Example 2.4. Let Xy, = P" and o is the cone generated by the canonical basis of Z",
the polytopes A, only depend on a positive integer a € Z-, and one recovers the
Newton polytopes of the polynomials of degree a.

Remark 2.3. Writing the polytopes in the presentation (2.13) and imposing that 0 €
A also implies that for any v € CI(Xy), we have v, ; > 0for j =1,...,r. Otherwise,
0 = (un+j,0) > —vpy; > 0. Inparticular, if v, ; < 0 for some j € {1,...,r}, then there
are no lattice points in A.

Generic polynomial systems and homogenization Going back to the polyno-
mial systems, we will consider polynomials with supports in a subset A C Z", i.e.

F= Zcmmmeﬁzk[xl,...,a}n} cm €K (2.20)

meA

where 2™ = z{"* - .-z’ is a monomial that can be identified with a character ™ :
(C*)™ — C*. This is the general form of a polynomial whose Newton polytope is
A = conv(A) c R™. However, the polynomial F is not homogeneous in the setting
of the Cox ring that we previously defined.

Using Assumptions 2.2, we can assume that 0 € A and the cone ¢ associated to
0 is smooth. Moreover, we write the variables in the Cox ring as z1, ..., z, for the
variables of the rays in o and 2, .. ., 2, for the rest of variables. If A is the polytope
associated to a nef Cartier divisor Z?:*{ v;D; in a toric variety Xy, then we can

homogenize F to be a homogeneous polynomial in the Cox ring by considering:

F—oF= Z cmem+”ek[m‘l,...,xn,zl,...,zr] (2.21)
meA

where F is the matrix in (2.9). We note that we can chose a monomial basis of the
graded piece of R of degree v (denoted as R,) corresponding to = where ;, = Fm+v
for each m € A. On the other hand, if we are given a homogeneous polynomial,
given as a sum of the monomials in R,, i.e.

F= Z curt € R, ¢, €k

zHER,
then, we can dehomogenize by first changing z; = --- = 2, = 1 getting an affine
polynomial of the form:
F—F= ZcuxfmEk[wl,...,xn,zl,...,zr}. (2.22)
meA

where F is the submatrix of F considering the rows. This matrix is invertible over
Z as we assumed that ¢ is a smooth cone and the generators of the rays p € o(1)
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Figure 2.5: Affine and homogeneous monomials of a polynomial system.

form a basis of the lattice Z", implying that the matrix has determinant +1. As the
elimination constructions we will describe are invariant under a change of bases

of the lattice, we can replace zF™ by 2™, recovering a polynomial with supports in
A.

Example 2.5. The polynomial in Figure 2.5 has a Newton polytope whose normal
fan has rays:

p1=(1,0) p2 = (0,1),p3 = (=1,0) ps = (=1, —1) p5 = (0, —1).

Therefore, the matrices F and = are of the form:

1 0

0 1 10100
F=|-1 0 =111 0 1 0

-1 -1 01 001

0 -1

Therefore, the polytope A, in the Figure can be defined asin (2.13) with v = (0,0, 2, 3, 2),
providing the monomials and their homogenizaiton in Figure 2.5.

We refer the reader to [BT22, Section 2.2] for more details about homogeniza-
tion and dehomogenization of sparse polynomial systems.

Homological constructions over the irrelevant ideal In the case of projective
toric varieties, the irrelevant ideal b assumes the role previously held by m, as dis-
cussed in Section 1.. Consequently, local cohomology modules over b gain signif-
icance in the when we try to distinguish the geometry of Xy, from the algebra of
homogeneous ideals in the Cox ring. However, if Xy, # P", then the irrelevant ideal
is (in general) not a prime ideal and the structure of H{(R) cannot be described as
in Theorem 2.5. Nonetheless, alternative techniques exist for its characterization,
such as exploring its relationship with sheaf cohomology modules.

Let S be a finitely generated Cl(Xy,)-graded R-module with associated coherent
sheaf S in Xy, and « € Cl(Xy). If p > 2, then

HE(S)a ~ HPH( Xy, S(a)), (2.23)
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where H{(S). is the graded piece of H{(S) of degree a and S(«) is the sheaf de-
fined by S ® Ox(D), for a divisor D with [D] = a and Os, the structure sheaf of Xy;
see [CLS12, Theorem 9.5.7] for proofs. Furthermore, the following exact sequence
holds:

0— HY(S)a — Sa — H*(X5,S(a)) = HE(S)a — 0.

If S = R, then R, = H°(Xy, Ox(a)) and therefore
HY)(R) = HY(R) = 0. (2.24)

Notation 2.2. For the sake of simplicity in the notation, for any Cartier divisor D
and any integer p > 0, we will write H?(Xy, «) in place of H?(Xy, Ox(D)), where
a = [D] € Cl(Xy).

The following theorems, that are originally due to Demazure and Batyrev-
Borisov, will be our main tools to analyze the vanishing of sheaf cohomology mod-
ules over toric varieties; see [CLS12, Theorem 9.2.3, Theorem 9.2.7] for proofs.

Theorem 2.9 (Demazure). Let Xy, be a toric variety such that ¥ is complete and D
be a nef Cartier divisor, then H?(Xy,«) ~ 0 for allp > 0 and a = [D].

Theorem 2.10 (Batyrev-Borisov). Let Xy, be a complete toric variety and D be a nef
Cartier divisor, then

0 if p # dim A,

H?( Xy, —a) ~ . )
Dmerelint(a)nuKx™™  if p=dimA,

where a = [D] € Cl(Xy) and Relint(A,) denotes the relative interior of the polytope
A, associated with a.

Remark 2.4. We notice that the two above theorems are proved in more generality
in [CLS12], we stated them with assumptions that are sufficient in our context.

Another important result we will use is the toric version of Serre duality (see
[CLS12, Theorem 9.2.10] for a proof): for any Cartier divisor D and any integer
p=0,

HP(Xy,a) 2 H"P(Xy, -Kx —a)”, (2.25)

where Kx is the anticanonical class in Cl(Xy) and a = [D] € C1(Xy).

Let Xy, be a projective toric variety and let R be its Cox ring. The Hilbert func-
tion of a finitely generated graded R-module S is defined by

HF(S, —) : CI(XE) — ZZO (0 d HF(S,Q) = dimk(Sa). (2.26)

Assuming that Xy is a smooth toric variety, then for o > 0 (component-wise), this
function becomes a (multivariate) polynomial called the Hilbert polynomial and is
denoted by HP(S, «); see [MS03, Lemma 2.8].
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Remark 2.5. If S = R/J with J homogeneous ideal of R defining a 0-dimensional
subscheme in Xy, then the Hilbert polynomial of S is a constant which is equal to
the number of points (over an algebraic closure of k) in this subscheme, counted
with multiplicity.

The Grothendieck-Serre formula appearing in Theorem 2.6 also generalizes to
the case of the irrelevant ideal, namely, for any « € Cl(Xy),

HF(S, o) = HP(S,a) + » _(—1) dimy H{(S)a. (2.27)
=0

see [MS03, Proposition 2.14] for a proof.

3. The sparse resultant

In the introduction, we motivated resultants as central tools in elimination theory,
refering to several a wide literature on various methods to compute them; see for
instance [GKZ94; DD00; WZ92; D]JS22; Ben+21]. However, when we move towards
the sparse (or toric) setting, their definition can be intricate. Classically, sparse
resultants are studied in the situation where the family of exponents of the given
monomials is essential, that is, when the sparse resultant depends on the coeffi-
cients of all the polynomials and, in addition, the affine span of these families of
exponents coincides with the ambient lattice; see [Stu94]. In this section, we give
the definition provided in [D]S22], which is more general than the one provided for
an essential family and recall some of the properties of these objects.

Moreover, it is important that we are able to manage an object that eliminates
variables also in the case of homogeneous polynomials in the Cox ring of a toric
variety. This object was also defined in the book Discriminants, resultants and mul-
tidimensional determinants by Gelfand, Kapranov and Zelevisnky [GKZ94]. Under
some assumptions on the supports of the polynomials, these two objects coincide,
thus the methods for computing the resultant can be used both in the affine and
homogeneous settings.

The affine case. The setting for the resultant is that of n + 1 sets of supports

Ao, ..., A, C Z", providing a universal system of polynomials:
Fi= > cima™ i=0,...,n (2.28)
meA;

Let A; = conv(A4;) fori =0,...,n be the Newton polytopes of Fy, ..., F,.
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Definition 2.34. The family of polytopes A, ..., A, is essential if dim(}>"""  A;) =n
and for every J C {0,...,n}, we have:

dim() " Aj) > [J]. (2.29)

jeJ

The fundamental subfamily is the unique family (A;);c; for a subset I C {0,...,n}
satisfying dim(>_,c; A;) = |I| — land dim(3_,. ; A;) > |J| for every J C I.

From this definition, we derive that if the family (A, ..., A,) is essential, then
it is the fundameltal subfamily of that system of polytopes. On the other hand, if
the family is not essential, there is strictly smaller fundamental subfamily (A;);c;
for some proper subset I C {0,...,n}. In this setting, it makes sense to consider that
the lattice spanned by this subfamily, i.e.

L[:{Z)\imi N\ EZ m,—EAii:O,...,n}. (2.30)
el

This lattice might not be saturated, i.e. there might be lattice points in the real
vector space it spans that do not belong to L;. For this reason, we can consider the
following lattice.

L = (L; @ R)NZ". (2.31)

The space of coefficients of the Ey’s has a natural structure of multi-projective
space [], P4, as the zeros of Fy = --- = F,, = 0 are not modified after multiplica-
tion by a nonzero scalar. Consider the incidence variety

Z(F) ={xx (..., cim,...) € (C)Y" x [[PY Fo(z) =" = Fu(z) = 0}
=0

and let 7 be the canonical projection onto the second factor
n n
m: (CH)" x H]P’Ai — HIP’AZ'.
=0 =0

Definition 2.35. The sparse resultant, denoted as Res 4, is a primitive polynomial
in in Z[c; ] defining the direct image =.(Z(F)). This polynomial is a power of the
sparse eliminant, denoted as Elim 4, which is the irreducible polynomial defining
the closure of the image of Z(F), i.e. 7(Z(F)), if this is a hypersurface, and 1 other-
wise. In other words,

Res4 = + Elim% (2.32)

for some d4 € Z>o.

Note that as we are considering the closure of 7(Z), the preimages of the zeroes
of Res 4 are of the form x x (..., ¢;m,...) where z lies in some compactification of
(S
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From [Stu94, Corollary 1.1], we can derive that if (A4;);c; is the fundamental
subfamily of Ay, ..., A4,, then the sparse resultant (and eliminant) only depend on
the coefficients of the polynomials in this family. In fact, we can recude the gen-
eral theory to working over L$!. In [D]JS22, Proposition 3.6], the exponent d 4 is
computed.

Proposition 2.1. Let (A4;);c; be the fundamental subfamily of Ay,...,.4,, and sup-
pose that I # (. Then, dim(L;) = |I| — 1, and the exponent in (2.32) can be written
as:

dA = [L?at : L]] MVZ"/LSIM(W(AJ')]‘%J)

where r is the projection 7 : Z" — Z"/L$.
Imposing that the A;’s are n-dimensional and the .4; span the lattice Z" is suffi-

cient for ensuring that the fundamental subfamily is Ay, . .., .4, and that the sparse
resultant is an irreducible polynomial, i.e. d4 = 1; see [GKZ94, Chapter 8].

Lemma 2.1. [D]JS22, Proposition 3.2] Let ¢ : M — M’ be an injective morphism of
lattices of rank n. Then, Res,4) = Res&fw $(M)]

Remark 2.6. Moreover, the sparse resultant is invariant under translations. There-
fore, we can always assume 0 € A4; foralli =0,...,n.

The degree of the resultant with respect to the coefficients of each equation
must coincide with the maximal number of generic solutions of the system, which
following Theorem 1, is the mixed volume.

Definition 2.36. The mixed volume of »n polytopes P, ..., P, C R", denoted as
MV (P, ..., P,)

is the coefficient of [] , \; in Vol, (AP + --- + A\, P,) which is a polynomial in
A, ..., \n; see [CLO98, Theorem 6.7].

Proposition 2.2. [Stu94, Lemma 1.2] Fori = 0, ..., n, the degree of the sparse resul-
tant with respect to the coefficients of the i-th polynomial can be computed as:

deg , (Resy) = > (=DMIVOI) D Aj) =MV(Ag, .. A1, Agpa, ., Ay).
JC{0....,i—1,i41,...,n} jeJ
The homogeneous case. Let Fy,..., F,, be homogeneous polynomials of degrees

ap, ..., € Cl(Xy) corresponding to the Newton polytopes Ay, ..., A,. Using (2.21),
these polynomials are of the form:

Fi g Z Ci’mﬂj‘Fm+V E C ’l = 0, “ e ,n. (2-33)
meA;

for A, = A;NZ", i.e. these polynomials are general elements in the graded pieces of
the Cox ring of degree «; for i = 0,...,n, i.e. S,,. By [Cox95, Proposition 1.1], these
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are global sections of the line bundles O, (D;) where D; are nef Cartier divisors in
the class of a; fori =0, ..., n.

Using Assumption 2.2 and the notation of the previous section, we write:
Aj={meR" : (uj,m) > —a;;,j=1,...,n+r} (2.34)

where a;; = 0 for j = 1,...,n under Assumptions 2.2. To begin with, we can re-
strict to the case where Ox, (D;) are very ample line bundles, which means that
the normal fan of A; is ¥ fori = 0, ..., n. With this, we can define the homogeneous
incidence variety locus of

Z(F) ={(z,cim) € X5 X HHO(XE,OXZ(Di)) Fi(x)=0 i=0,...,n}
i=0

From [GKZ94, Chapter 3, Proposition 1.3], we can derive that the image of Z(F)
after the projection p : Xy x [[L, H'(Xs, Ox.(D;)) = [[ny H%(Xs, Ox,(D;)) is an
irreducible hypersurface.

Definition 2.37. The homogeneous sparse resultant of Fy, ..., F,,, which we denote
as Resp, is the unique irreducible polynomial defining the closure image of Z(F)
after p.

Notation 2.3. Note that the study of the toric variety associated with the resultant
relates to using the Cox ring C' = A[zy,...,2n, 21, ..., 2| Where:

A=K[ciy, meA i=0,...,n]

In other words, we are studying a projection from the toric variety Xy, xy [T/, P4:.

However, the assumption that the polytopes A; correspond to very ample divi-
sors can be to restrictive. The assumptions to overpass this restriction in [GKZ94,
Chapter 8] are the that the polytopes A; span the vector space R".

Under these conditions, these polytopes correspond to nef divisors D; and, as
in (2.7), there is a map:

Dy, (CHY - PA i=0,...,n.
which, altogether, define a product map:
Dy XX Dy, (CO = PA X A

whose image defines a toric variety Xa, . a,, which is isomorphic to X for A =
A+ ---+ Ay; see [GKZ94, Chapter 8, Proposition 1.4].

Now, the map ® 4, x --- x ¢4, provides the following injective map:

H(P4,0(1)) » H(Xa, Oxy (D;)) (2.35)
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which need not be surjective. It will be surjective if the variaety is linearly normal,
which means that X, is not contained in a hyperplane and it can not be repre-
sented as the projection from a higher dimensional projective space; see [GKZ94,
Chapter 1, Definition 4.6].

Using the above maps, we can see that if the starting points are the polytopes
whose span is R”, then the affine and homogeneous resultant will coincide.

Proposition 2.3. [GKZ94, Chapter 8, Proposition 1.5] Under the map in (2.35) and
the assumptions above, the affine and homogeneous resultants coincide

Once this affine versus homogeneous situation that one encounters in the defi-
nition of resultants is clear, we can shift our attention to the methods of computa-
tion, which will occupy a big part of our time during this text. A classical method for
computing the sparse resultant is to consider the determinant of the Koszul com-
plex K,.(F) of the sequence of homogeneous polynomials Fy, ..., F,. Under these
assumptions, we can compute Res, as the determinant of some graded pieces of
the complex

On
K.(F) K41 = C(—ZO{Z‘) AN 8—3> Ky = @k,k/C(—ak — Q)

% Ky = @pC(—ar) 25 €. (2.36)

As a consequence, we get that the resultant can be computed as the determi-
nant of some strands of this complex; see [GKZ94, Chapter 3, Theorem 4.2].

Theorem 2.11. There is a nonempty subset of Pic(Xy,) such that for a« € T'ges C
Pic(Xy), the strand K,(F), is an acyclic complex of free A-modulesand H°(K,(F),) =
B,. Moreover, if we also consider « such that (1%2t/1),, = 0, then det(K,(F),) equals
the sparse resultant Res 4 up to multiplication by a nonzero scalar.

4. Generic initial ideals and the regularity criterion

In the introduction, we gave the definition of a Grobner bases as useful tools in al-
gebraic elimination; see the definition of Grobner bases in Section 1. However, for
the developments of the results in Chapter 5, we do not deal with directly Grébner
bases as much as with generic initial ideals. As we explained in the introduction,
these are the Grobner basis that appear after performing a generic change of coor-
dinates that preserves the grading of an ideal.

Generic initial ideals For general toric varieties, it is not clear that these objects
are well-defined. In fact, as shown by Maclagan and Smith in [MS04, Example 4.11],
the grading might be too restrictive to allow changes of coordinates that alter the
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initial ideal. However, for standard gradings, these initial ideals exist, following
the work of Galligo in [Gal74]. For the standard Z-graded case, these ideals are
very well-studied; see [Gre98].

The generic inital ideal exists for standard Z"-gradings, where the underlying
toric variety is P™ x --. x P"s. The ideal appearing in this case is known as the
multigeneric initial ideal. For the sake of simplicity, we stick to the bigraded case,
i.e. for P* x P, and R = K[z, ..., Zn,v0, - - -, ym] and thus, to the the bigeneric initial
ideal, denoted as bigin(I)

The proof of the existence of bigin(7) of follows from the same lines in [Eis95,
Proposition 15.12]. We aim to reproduce this proof in the coming pages. How-
ever, there are results in Chapter 5, in which using the generic coordinates is only
required with respect to one group of variables. In the next theorem, we show
that it is possible to consider the generic initial ideal gin (7) after performing only
a change of coordinates with respect to the x block of variables and the results
that are shown in the previous sections are preserved. Our proof follows the same
lines as the proof of the existence of the generic initial ideal; see [Eis95, Proposition
15.18].

Notation 2.4. Let u € GL(n+ 1) x GL(m + 1) be block-diagonal matrix with nonzero
determinant and two blocks «* and Y. This matrix defines a linear change of co-
ordinates in S as:

uw=(u"u): R— R x; = ujpzo+ - +uj,xn Yi— upyo+ - +ul ym.  (2.37)

For each homogeneous polynomial f € S, we define the polynomial « o f as
f(u(z,y)), which has the same bi-degree as f. For each bihomogeneous ideal I C S,
u defines the ideal uo I = (uo f| f € I). However, in the next theorem the change
of variables with respect to the second group of variables is fixed, and thus we
consider v = g x id for g € GL(n + 1).

Theorem 2.12. There is an open set U € GL(n + 1) such that for ¢ € U, the ideal
in((g x id) o I) is constant. Moreover, this ideal is preserved by linear changes of
coordinates in GL(n + 1).

Proof. Namely, consider (g;;)i j=o,...n» € GL(n + 1) as a general transformation. Con-
sider fi,..., f- to be the generators of I in degree (a,b). Consider go f := (g x id) o
fiN---A(gxid)o f, as an element of A"S(, ;). Assume that m; A--- Am, be the high-
est monomial in g o f and let p(g;;) be the coefficient of this monomial. Consider
Ulap) € GL(n+1) to be the open set given by p(g;;) # 0. Consider J, ;) to be the ideal
generated by mq,...,m,.

Next, we show that J = @, y)cz2J(a,p) 1S an ideal. As U,y and Uq41 ) are open
and dense, we can find g € U, ) N U1, Such thatin((g x id) o I) a5 = Jiap) and
in((g x id) o I)gg10) = Jat1,p)- ThUs, S 0)J(ap) C Jiat1,p) (Similarly, S 1) Jap C
J(apr1))-
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Finally, we show that U = N, 3)cz2Uq,) 1S Open and dense. Namely, we show
U is a finite intersection. Let J be the set of bi-degrees (a,b) such that there is
some generator of J of degree > (a,b), this set is finite as J is an ideal. Consider
90 € Nap)egUap)- We know thatin((go x id) o I) (45 = J(ap) fOr (a,b) € J. Therefore,
J C in(g o I). Moreover,

dimk J(a,b) = dlmk I; = dimk(ggf)(&b) (a, b) S Z%O
implying that in((gg x id) o I) = J.

Claim 1: The strategy for showing that J is preserved by changes of coordinates
in GL(n + 1) is noting that if J, ;) is a vector space of dimension ¢, then the vector
space A'J,; of dimension 1 is spanned by the greatest monomial appearing in
Atin((g x id) o I)(, ) for all g € GL(n + 1).

The above claim is proved by showing that if ¢ is lower triangular with one
nonzero entry g;; for i < j then:

/\tJ(aJ)) = in((g xid) o I)(a,b)'

If f1,..., f: are generators of J, ;), we consider m; = in(f;) fori =1,...,¢ assuming
that m; > --- > m;. Assume that g is strictly upper triangluar, implying that if
n € S, We write n = z¢m for m not divided by ;. The monomials appearing in
go f are of the form z7*z%m for 0 < s < w implying thatin((g x id) o f) = in(f) and

soin((gxid)o fiA---A (g xid)o f;) =in(fi A--- A f).

Finally, we show that the ideal .J is preserved by lower triangular matrices. For
simplicity, we assume that J = in(/). In particular, we will show that if ¢ is a lower
triangular matrix v with one nonzero entry g;; # 0 for i > j, we have:

(1 =+ ’y) o in(I)(&b) = in(I)(a,b). (238)

We prove this by considering a basis fi,..., f; of S, and consider f = fi A--- A fi.
If we assume that (2.38) does not happen, then we have (1+~)oin(f) # in(f). Asv1is
lower triangular, all the terms of (1 +~) oin(f) are strictly bigger than in(f). There-
fore, we can get a contradiction with Claim 1 if we consider one of these monomi-
als m and find a diagonal matrix § such that m appears with nonzero coefficient in
(1+v)o0dof.

Consider the weight of a monomial n = nyA---An; € A'S(, ;) to be the monomial
ni---ny € S. The polynomial f can be summed as f =) f., where f, is the sum of
the terms of weight w € S. Each of these terms can be a sum of different monomials
except for the term f,,, associated to in(f). Consider the action of a diagonal matrix
0. Then, the result in:

(1+7) 080 f =wp(b1,...,00)(L+y) oin(f) + D w(di,...,8x)(L+7) 0 fo

wF#wo
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The coefficient of m in (1 4+ ) o d o In(f) is:
apwo (01, -..,0n) + Z auw(01, ..., 0p).

wFwo

This is a nonzero polynomial, so as the field is infinite, we can find a diagonal matrix
0 such that the above polynomial is nonzero. O

The same proof as above but applying the change of coordinates to two groups
of variables, provides the bigeneric initial ideal, denoted as bigin(7). In the case
that we only perform the generic change of coordinates with respect to the x block
of variables (resp the y block), we denote the corresponding monomial ideal as
gin, (7) (resp. gin, (I)). In the next example, we can show that gin, (/) and bigin(/)
need not coincide.

Example 2.6. The ideal gin (7) in the previous Theorem need not coincide with the
generic initial ideal gin(7). The example in P! x P! (i.e., in the ring C[zo, 21, 0, 1)) is
I = (zoy1 — 7190, Tovoy1 + r1%?). The classical bi-generic initial ideal is

bigin(I) = (z1y1, 2195, zoy?)
while the generic initial ideal gin (1) is (z1y1, 2192, Toyoy?).
Bi-generic initial ideals preserve many of the interesting properties of the clas-

sical generic initial ideals; see [Gre98]. In particular, the property that we will use
in the coming sections is the following; see [BS87a, Proposition 2.7] for a proof.

Lemma 2.2. Letk be a field of characteristic 0. Then, bigin(7) has the following two
properties:

- If 2;2%y® € bigin(I), then z;2%y” € bigin(I) for all j € {i,...,n}.
- If y;2%y” € bigin(1), then y;2*y® € bigin(7) for all j € {s,...,m}.

Using gin (/) or gin, (I), one can recover the properties of the above lemma,
only with respect to each group of variables. The property is also known as bi-Borel
fixed and can also be relevant from the point of view of monomial ideals [BGC13].

The Bayer-Stillman criterion To end this section, we give a bit more of detail on
the proof of the results by Bayer and Stillman [BS87a], which in Chapter 5 we will
try to extend to the bigraded setting. Assume that 7/ is a homogeneous ideal in a
Z-graded ring S = Clxo, ..., z,). To highlight the problem, we recall that Bayer and
Stillman showed that using the degree reverse lexicographical monomial order and
generic coordinates, the following equaility holds:

max{degrees of the minimal generators of gin(/)} = reg(gin(/)) = reg(I). (2.39)
where reg(7) is the Castelnuovo-Mumford regularity as defined in 2.23. We can
remark the importance of using generic coordinates with the following example.

48



Example 2.7. Consider the ideal I = (23 — 23,2271 + 23) in the polynomial ring
C[zg, x1, z2]. If compute a Grobner basis of 7, using the degree reverse lexicographic
monomial order with zy < z; < x9, then in(7) is generated by (23, v 29, 2323). How-
ever, if we first perform a generic change of coordinates, then gin(7) is generated
by (23, zoz1, x3). Therefore, we see in Figure 2.6, the degree of the computations is
reduced to only depend on reg(I).

reg(I) reg(in(I))

Figure 2.6: The Grobner basis of I is generated in degree 4 which, in this case, coincides with the
regularity of in(7). After the change of coordinates, Bayer and Stillman’s result implies that gin(7) is
generated in degree 3, which coincides with the reguilarity of I.

Remark 2.7. Recall that reg(in(7/)) is only a bound for the degrees of the generators
of the Grobner bases. Itis possible to find ideals for which these generators have de-
gree lower than reg(7). However, this analysis requires understanding more struc-
ture of the ideal than only its Castelnuovo-Mumford regularity and the degrees of
its generators. The study of Bayer and Stillman is, since their prominent work in
the eighties, the most general answer that has been provided to this question.

In order to show the equalities in (2.39), they showed that the Castelnuovo-
Mumford regularity in Definition 2.23 can be characterized using the following
theorem; see [BS87a, Theorem 1.10].

Theorem 2.13. Let d be the dimension of Vp- (). Then, the following are equivalent:

- mereg(l).
- For d general linear forms A4, ..., hy € S1, we have:
(I,hl,...,hj_l : hj)m’ = (I,hl,...,h]‘_l)m/ j == 1,...,d m/ >m

and
(I,hl,...,hd)m/ :Sm/ m/ >m

The idea of the proof of this criterion begins by noting that, in the case that
Ven (I) = (), the regularity is only determined by the degree of saturation, i.e.

HFg/;(m) =0 <= dimc(I*/I),, =0 <= m € reg(I).

Moreover, a general linear form in S is not a zero divisor in the quotient ring S /152t
Thus, one can deduce that these forms h € S; will satisfy:

(I:h)m/:Im/ <~ Iz,?t: m/ Vm'Zm
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In particular, if 7 is m-regular, then one can use this to compare the regularity of 1
with the regularity of (7, 4) and proceed by induction with the proof of the above
criterion; see [BS87a, §1].

In particular, after a generic change of coordinates, one can assume that the
general linear forms are the coordinate variables z, ..., z,, implying that:

m e reg(l) < (gol,z0,...,xj—1:xj)m = (gol,x0,...,2j—1)ms j=1,....,d m' >m

for a general linear change of coordinates ¢ € GL(n + 1). Here is where the DRL
order (see the Definition in Chapter 1) plays a relevant role. The main property of
the degree reverse lexicographical monomial order that we need to use is that if
divides a monomial =%, then it also divides every monomial 2z < z®. In particular,

if 2o divides in(f) — x divides f. (2.40)

This very simple property of the DRL monomial order, allowed Bayer and Still-
man to also prove that the colon property above, behaves well under considering
initial ideals, i.e.

(gin(I),zo,...,xj—1: ;) = (INI), z0, ..., Tj-1)pwy j=1,...,d m' >m

— (gol,z0,...,xj—1:xj)m = (go I, x0,...,Zj—1)my j=1,....,d m'>m

for a general linear change of coordinates ¢ € GL(n + 1). Finally, using the Borel-
fixed property of gin(7), one can show that its generators must have degree < m,
deriving that this degree is precisely reg(/). More knowledge on the structure of
generic initial ideals can be derived by using similar properties; see [BG06; Has12].

5. Multigraded Castelnuovo-Mumford regularity

The goal of the developments of Chapter 5 is to relate the generators of the multi-
graded generic initial ideals with the multigraded version of the Castelnuovo-Mum-
ford regularity. As a last part of this preliminary section, we review the main as-
pects of the study of the multigraded Castelnuovo-Mumford regularity, the sup-
ports of local cohomology and the multigraded Betti numbers that we will use in
Chapter 5. For the sake of simplicity, our results will be proved in the (standard)
bigraded case, even though they also hold in the (standard) multigraded setting.

Notation 2.5. Let k be a field of characteristic 0. Let S = K[zo,...,Zn,%0,-- - Ym]
be a ring with a (standard) Z?-grading, such that deg(z;) = (1,0) and deg(y;) =
(0,1). We will write the monomials in S as z%y” = z{° - - .xgnygo ...ybm for a vector
(a, B) € Z"™+2. A monomial x*y” has degree (a,b) if . ,@; = a and ditoBj =D
Let m, (resp. m,) be the ideal generated by the x (resp. y) variables. The ambient
biprojective space is P* x P™ and the irrelevant ideal is b = m,m,,.
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In Chapter 4, where the main tool to compute the supports of local cohomology
modules are the theorems of Demazure (Theorem 2.9), Batyrev-Borisov (Theorem
2.10) and Serre duality (Theorem 2.25). In the case of Chapter 5, the main idea is
to reduce the computations of local cohomology with respect to b to the local coho-
mology modules over m, and m,. To state these results, we need first to introduce
the following notation.

Definition 2.38. Let £ C Z? be a subset. The subset E£* is defined as:
E*={(a,b) € Z* 3(d,V) > (a,b) (d,V) € E}
where (d’,b') > (a,b) denotes (component-wise) o’ > a and v/ > b.
In particular, we are interested in the case where E are the supports of the

local cohomology modules with respect to a homogeneous ideal J (for instance,
with respect to b, m, or m,).

Definition 2.39. Let J C R be a homogeneous ideal. The supports of the local
cohomology modules with respect to .J are the bi-degrees (a, b) € Z? such that there
is i > 1 with H' (1), # 0, i.e.

Suppyz (H3(I)) = {(a,;b) € 2% 3i>1 Hy(I)(ap) # 0}- (2.41)

The following theorem relates the supports of the local cohomology modules
with respect to b with the supports of the local cohomology modules with respect
to m, and m,,.

Theorem 2.14. [CH22, Theorem 3.11] Let I C R be a bihomogeneous ideal, then:
Suppz: (Hg (1))" = Suppg: (Hg, (1))" U Suppz. (Hy, (1))".

Remark 2.8. If I = R, then itis easier to obtain the supports of the local cohomology
with respect to m,, that is:

Supp,: (HS. (R)) = (—n — 1,0) + (—N x N) (2.42)

and, similarly, for the supports of local cohomology with respect to m,; see [CH22,
Example 2.3].

Another aspect which was analyzed by Chardin and Holanda is the relation of
local cohomology with truncated ideals.
Definition 2.40. For any bihomogeneous ideal I ¢ R and (a,b) € Z?, consider the

truncated ideal Iz(a,b) = @(a’,b’)z(a,b)I(a’,b’)‘

The next lemma relates the local cohomology with respect to m, of the trun-
cated modules 7>, ;) with the local cohomology of /.
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Lemma 2.3. [CH22, Proposition 4.4] Let I ¢ Rbe abihomogeneousideal and (a,b) €
72, then:

1) Forall: > 0, if (¢/,0') > (a,b), then:
H (Is @)@ wy = Hi, (I (@ )

ii) For all i > 2, then: 4 ,
Hy (I>(ap)) = Hy, (1).

Once these tools are established, we can give the following definition of the
multigraded Castelnuovo-Mumford regularity, which was established by Maclagan
and Smith; [MS04, Definition 1.1].

Definition 2.41. Consider a bihomogeneousideal I ¢ S. The bigraded Castelnuovo-
Mumford regularity reg(I) is the subset of Z? containing bi-degrees (a, b) such that,
for all « > 1 and for all (a’,0') > (a — X\z,b — Ay), it holds

Hé(I)(a/,b’) = 07
where A\, + A, =i — 1, with A\;, A\, € Z>.

This definition of regularity preserves some of the classical properties of te
Castel-nuovo-Mumford regularity: it bounds the degrees of the equations that cut
out the variety defined by /. Moreover, Bruce, Cranton-Heller and Sayrafi proved
that (a,b) € reg(/), if and only if, the truncated ideal 7, ;) has a quasi-linear resolu-
tion; [BHS21, Theorem A]. Another important feature of the bigraded Castelnuovo-
Mumford regularity is its relation with the generators of /.

Theorem 2.15 ([MS04, Theorem 1.3]). Let I ¢ S be a multihomogeneous ideal. If
(a,b) € reg(I) then, for all (a’,b') > (a,b) there are no minimal generators of I of
degree (a/,0).

Remark 2.9. Note that Theorem 2.15 implies that reg(bigin(7)) provides an upper
bound for the bidegrees generators of bigin(7). Moreover, along the same lines as
in [MS04, Proposition 3.16], we can prove that the following inclusion holds:

reg(bigin(I)) C reg(I). (2.43)
However, as we will see in Example 5.4, these two regions will, in general, differ.
Another classical definition of the Castelnuovo-Mumford regularity (in the single-
graded case) comes from the Betti numbers.

Definition 2.42. The minimal free resolution of 7 is of the form

O - @ S(_a’ _b)ﬁr,(a,b)(l) — .. @ S(_a7 _b)ﬁo,(a,b)(l) — I — 0
(a,b)eZ? (a,b)ez?

Here, S(—a, —b) denotes a shift in the grading, namely S(—(a, b)) ») = S(@—ap/—b)
for (a',), (a,b) € Z*. We also denote 3;(1) = {(a,b) € Z* f; (41 # 0}
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There have been several attempts to describe the bi-degrees appearing in Def-
inition 2.41 in terms of the Betti numbers, with some relevant relations between
the two descriptions; see [BC17; BHS21; CH22]. In the later discussions, we will use
the following relation, established by Chardin and Holanda.

Theorem 2.16. [CH22, Theorem 1.2] Let I be a bihomogeneous ideal, then,

UiBi(1)* € (n+1,m+ 1) + (Suppgz(Hy, (1))* N Suppy2(He, (1))*).
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Chapter 3

The Canny-Emiris formula

In this chapter, we describe the Canny-Emiris formula [CE93], as one of the main
sources for formulas for the sparse resultant. The formula is based in the use of
mixed subdivisions of the Minkowski sum of the Newton polytopes. A proof of this
formula was provided by D’Andrea, Jeronimo and Sombra in [D]JS22] under some
conditions in the mixed subdivision, which we will also explain. Therefore, our
main goal with this work was to provide mixed subdivisions that i) satisfy these
conditions and i7) the size of these matrices can be reduced using the greedy algo-
rithm of Canny and Pedersen [CP93] for the case of n-zonotopes and multihomoge-
neous systems. We end the chapter with a conjecture on the existence of resultant
formulas of Canny-Emiris type.

1. Mixed subdivisions and the Canny-Emiris formula

Definition 3.1. Let A C R”" be a lattice polytope. A mixed subdivision of A is a
decomposition of into a union of polyhedral cells A = UD such that:

1) the intersection of two cells is either a cell or empty,
ii) every face of a cell is also a cell of the subdivision and,
iii) every cell D has a component structure D = Dy + --- + D,, where D, is a cell

of the subdivision in A;,.

The usual way to construct mixed subdivisions is by considering piecewise
affine convex lifting functions p; : A; — R as explained in [GKZ94]. A global lifting
function p : A — Ris obtained after taking the inf-convolution of the previous func-
tions, as explained in [D]S22, Section 2]. The graph of this function can be projected
to R", providing a mixed subdivision, which we denote as S(p); see Figure 3.1.
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Definition 3.2. A mixed subdivision of A is tight if, for every n-cell D, its compo-
nents satisfy:

n
> dim D; = n.
=0

In the case of n + 1 polynomials and n variables,
this property guarantees that every n-cell has a compo-
nent that is 0O-dimensional. The cells that have a single
0-dimensional component are called mixed (i-mixed if it
is the i-th component). The rest of the cells are called
non-mixed.

Let § be a generic vector such that the lattice points
in the interior of A + ¢ lie in n-cells. Then, consider:

B=(A+6)NZ"

Each element b € B lies in one of these translated cells
D + 4 and let D; be the components of this cell. As
the subdivision is tight, there is at least one i such that

Following the language of [MCO00], we call ¢, =
(.0, - - -, ton) the type vector associated with b, defined as
tp,; = dim D; for b € D + 6.

Definition 3.3. The row content is a function

rc: B — U g{i} x A

Figure 3.1:

The usual way
to construct mixed subdivi-

sions is considering piecewise
affine convex lifting functions
pi + A; — R. Then, take
the Minkowski sum of their
graphs of these functions as
polytopes in R™**. The image

source is the book [DEO5].
where, for b € B lying in an n-cell D, rc(b) is a pair
(i(b), a(b)) with

i(b) = max{i € {0,...,n} [tp; = 0} a(b) = Diy).

This provides a partition of B into subsets:
i(b) =i}

Finally, we construct the Canny-Emiris matrices H 4, whose rows correspond to the
coefficients of the polynomials Xb—“(b)Fi(b) for each of the b € B. In particular, the
entry corresponding to a pair b, b’ € B is:

BZ':{bEB ’

W —b+a(b) € A

U; ’
H b, bl — Z(b)7b —b+a(b)
Aplb, V] {O otherwise
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Remark 3.1. Each entry contains, at most, a single coefficient u; ,. In particular, the
row content allows us to choose a maximal submatrix of # 4 , from the matrix of
the map sending a tuple of polynomials (Gy, ..., G,) to GoFy+ - -- + G, F,, asin (1.5).
This class of matrices are called Sylvester-type matrices.

Let C C B be a subset of the supports in translated cells. The matrix # 4 ,¢
is defined by considering the submatrix of the corresponding rows and columns
associated with elements in C. In particular, we look at the set of lattice points lying
in translated non-mixed cells and consider:

B° = {b € B|bliesin a translated non-mixed cell}.
With this, we form the principal submatrix:

SA”{) = HA?/)?BO.

The Canny-Emiris formula computes the sparse resultant is the quotient of the de-
terminants of these two matrices:

B det(”HA,p)

Res — 2eWtap)
®5A= Get(€a,)

This result was conjectured by Canny and Emiris [CE95] and proved by D’Andrea,
Jerénimo and Sombra [D]JS22] under the restriction that the mixed subdivision S(p)
given by the lifting p satisfies a certain condition, given on a chain of mixed subdi-
visions.

Definition 3.4. Let S(¢), S(¢) be two mixed subdivisions of A = " A,;. We say
that S(¢) refines S(¢) and write S(¢) < S(¢) if for every cell C € S(v) there is a
cell D € S(¢) such that C ¢ D. An incremental chain of mixed subdivisions S(6y) <
.-+ < 5(6,,) is a chain of mixed subdivisions of A refining each other.

Remark 3.2. In [D]JS22, Definition 2.4], a common lifting function w € []}_, R4 is
considered and the S(¢;) are given by the lifting functions w<* = (wo,...,w;—1,0) as
long as S(6;) < S(#;+1). The last zero represents the lifting on (4A,,...,A,). The re-
sulting mixed subdivision is the same as if we considered the zero liftingin %, A;.

Given a tight mixed subdivision S(p), we can compute the mixed volume of
Ao, ...y Aj—1,Aj41, ..., A, by considering the volume of the i-mixed cells.

Proposition 3.1. [ER94, Theorem 3.4] Let S(p) be a tight mixed subdivision of A =
(Ag,...,A,). Fori =0,...,n,the mixed volume of all the polytopes except A; equals
the volume of the i-mixed cells.

MV(Ag, ..., Ai 1, Ajyr,.. ., Ay) = Y Vol, D

D i-mixed

In particular, MV(Aog, ..., A;—1,Ai11,...,4,) equals the degree of the sparse re-
sultant in the coefficients of F;; see [CLO98, Chapter 7, Theorem 6.3]. Each of the
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rows of # 4, will correspond to a lattice point b and each entry on that row will
have degree 1 with respect to the coefficients of F;; (more concretely, it will be
one of its coefficients) and zero with respect to the coefficients of the rest of poly-
nomials. Therefore, if we add the lattice points in i-mixed cells, the degree of H 4,
with respect to the coefficients of F; will be at least the degree of the resultant with
respect to the same coefficients.

Remark 3.3. Using Proposition 3.1, we can see that if the fundamental subfam-
ily is empty, then the resultant is equal to 1 while if the fundamental subfam-
ily is {i} then 4; is given by a single point {a} and the resultant is v for m; =
MV(Ag,...,Ai—1,Ai41,...,A,). The Canny-Emiris formula holds [D]SZZ, Proposi-
tion 4.26] in both cases.

Definition 3.5. An incremental chain S(6y) < --- < S(6,,) is admissible if for each
i = 0,...,n, each n-cell D of the subdivision S(6;) satisfies either of the following
two conditions

i) the fundamental subfamily of A, contains at most one support or

ii) Bp, is contained in the union of the translated i-mixed cells of S(pp). Here,
Bp,; is formed by the lattice points in D with row content i.

A mixed subdivision S(p) is called admissible if it admits an admissible incremental
chain S(6y) < --- < 5(6,,) < S(p) refining it.

With all these properties, together with the use of the product formulas, one
can reproduce the proof of the Canny-Emiris formula given in [D]JS22, Theorem
4.27] under the conditions of admissibility in S(p); see also [DS15; Stu94].

2. The greedy algorithm

If the set B only contains the lattice points that lie in mixed cells, then one can
recover an exact determinantal formula for Res 4. However, as we explained in the
introduction, this is not usually the case. On the other hand, different algorithms
for the construction of the Canny-Emiris matrices # 4 , can be employed, providing
more compact representations.

The first of these algorithms, usually called incremental algorithm, was pro-
posed by Canny and Emiris in [CE95]. In this case, they tried to add the lattice points
that appeared in one direction, until the degree of the resultant was achieved. Their
algorithm was able to recover some of the existing determinantal formulas for mul-
tthomogeneous supports. However, their algorithm did not take into account the
mixed subdivision in the cosntruction, so it is difficult to make sure that the con-
ditions on the proof of the Canny-Emiris formula were satisfied. Similarly, Canny
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and Pedersen [CP93] proposed a greedy algorithm for the construction of the ma-
trix, which we can describe as follows. Let b € B be a lattice point in a translated
cell. The first step of the algorithm is to add the row of the matrix corresponding to
b, and then continue by considering the lattice points corresponding to the columns
that have a nonzero entry in this row. These lattice points are:

b—a(b) + Ay

All these lattice points will have to be added as rows of the matrix. If we add the
lattice point ¥’ at some point of the algorithm after having added another lattice
point b, we say that we reach v’ from b. The algorithm terminates when there are
no more lattice points to add and it might give a square matrix g which has less
rows and columns than # 4 ,, which was constructed using all the lattice points in 5.
The rows and columns associated to lattice points in non-mixed cells also provide
a minor &g of Hg.

It was not proved by Canny and Pedersen whether this approach would always
include all the lattice points in mixed cells as rows of the matrix, independently
of the starting point. As these points are necessary to achieve the degree of the
resultant, we consider them to be the starting lattice points of the algorithm.

Remark 3.4. We know that the entry corresponding to the diagonal of the matrix
Hoapc Will be JT,cc vie),qap) for any subset ¢ € B. This term can be used in order
to deduce that these matrices have non-zero determinant; see [D]S22, Proposition
4.13].

Theorem 3.1. If the Canny-Emiris formula holds for a mixed subdivision S(p) and
the greedy algorithm provides matrices #¢g and &g by starting at the lattice points

in mixed cells, then:

_ de'[(?'[g)
Resy = qet(Eg)

Proof. In general, there is a subset G C B corresponding to the rows and columns
of Hg. We are assuming that G contains all the lattice points in translated mixed
cells. Let #H 4 , be the matrix containing all lattice points in translated cells of S(p).
Without loss of generality, we can assume that the matrix takes the following form:

_(Hg O
HA,p - < ° HB(_;’)

where 7 is the minor corresponding to the lattice points in G and Hz_¢ is the minor
corresponding to the lattice points not in G. The zeros appear due to the fact that
thereisno pairb ¢ G, " € G such thatb € b’ —a(b') + A;). The same block-triangular
structure also appears in the principal submatrix £4 , and all the lattice points that
are not in G must be non-mixed, implying that £s_¢g = Hp_g-.

Finally, using the fact that the determinant of a block-triangular matrix is the
product of the determinants of the diagonal blocks, we can prove the resultant for-
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mula:
det(HA,p) . det(Hg)'det(HB_g) . det(Hg)

det(gAp) N det(&g)-det(Hp—g) N det(&g)

Res 4 =
O

Example 3.1. Let fy, f1, fo be three bilinear equations corresponding to the sup-
ports Ay = A; = A = {(0,0),(1,0),(0,1),(1,1)}. A possible mixed subdivision S(p)
is the following:

where the dots indicate the lattice points in translated mixed cells. The number of
lattice points in translated cells is 9. However, if we construct the matrix greedily
starting from the lattice points in translated mixed cells, we have an 8 x 8 matrix.

Example 3.2. Let fy, f1, f2 be three bihomogeneous equations with supports
Ao = {(07 0)7 (L 0)7 (27 0)7 (07 1)7 (17 1)7 (27 1)}7

A1 ={(0,0),(1,0),(0,1), (1,1),(0,2), (1,2)}, A2 = {(0,0), (1,0),(0,1), (0, 1)}.

6,3,6,9),

1
The expected number of supports lying in translated cells is 16. Let py = (0, 3,

11 3

5,5) give

p1 = (0,2,2,4,4,6) and py = (0,1, 1,2) be the lifting functions and § = (—
the following mixed subdivision:

However, if we use the greedy approach, we have an 15 x 15 matrix, corre-
sponding to the lattice points marked in red.

Example 3.3. Let fo, f1, f2, f3 be four polynomials with
Ag = A = Ay = A3 = {(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,0,1),(0,1,1)}

and po = (0737673a6a9)’ p1 = (072747274a 6)’ p2 = <07 1,2, 17273) and p3 = <O7O70707070)
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gives the mixed subdivision:

¥ < <
' \ \
N N N
'’ 3 ~
, f K <
’, ' \ \
£
, ~ ~
J S N N
’ = - =
¢ <
’ /
k
7 AL /N
s 0 VRS
4 / /s
k Vi AR
7 7 7
¢ Ve Ve
’ / /
L < v
’

RSSS

If we take the translation § = (—2/3,—2/3, —1/2) the number of points in traslated
mixed cells is 24, but the degree of the resultant is 3 + 3 + 3 + 3 = 12. If we start at
the point (0,0,0) and use the greedy algorithm, we achieve a matrix of size 20 x 20.

3. A family of mixed subdivisions

In this section, we give a family of lifting functions associated to the polytopes
Ay, ...,A, and we prove that the Canny-Emiris formula holds for the correspond-
ing mixed subdivisions.

Definition 3.6. We can define a hyperplane arrangement # C Ny by considering
the span of the (n — 1)-dimensional cones of the normal fan of A; see [Zie95] for
more on polytopes and hyperplane arrangements.

Example 3.4. A polytope A (green), together with its normal fan (blue) and the

hyperplane arrangement Hx (red).

Definition 3.7. Let H be the hyperplane arrangement associated to A and take a
vector v € Ng which does not lie in #. We consider lifting functions w; : 4; — R
defined as:

wi(z) = Ni(v,x) 1=0,...,n x €A,

for Mo, ..., \, € R satisfying Ao > --- > A\, > 0 and small enough. Let p = (wo, ..., wy)
be a lifting giving a mixed subdivision S(p).

Remark 3.5. This choice of the lifting function can also be seen as a case of the ap-
proach of [D’A01], in a first proof of the rational formula for generalized unmixed
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systems. In particular, it is possible to think of the choice of the row content a(b)
associated to each lattice point as trying to solve the simplex method with the lift-
ing function as objective, which implies that S(p) is tight. This family guarantees
that we are always choosing this point in the same direction; see Figure 4.3 for a
description of this process.

Step Lifting Subdivision
ap,0 + a0+ azp
S(6o) 0 0 0 !
0
A \ )\O"Uj (.)E).,o + a?o + asz0
S(6y) 0% ) 40,0
0
Aok(x + A1)y
0T AT 0@0,0 + @1,0 gt
A e e 0000+ aipo+azo
5(02) ()\0 + /\1)7)] ao,0
(N
)\ij
(Ao +A)v;  gaoo+ag N N
. e e el a a
S(p) (/\0 + M+ )\Q)Uj a0 0,0 10 2,0

Figure 3.2: This table explains how the process of passing from the proposed lifting on A,

to the mixed subdivision works in the j-th coordinate for v; < 0 for any of the two components of
Example 3.1. One clearly sees that, for instance, 0ag,0eo C Dy, if and only if, zy < ao,0 for z € D. The
product of two subdivisions of this form gives the mixed subdivision in the figure of Example 3.1.

Theorem 3.2. S(p) is an admissible mixed subdivision.

Proof. Let S(6;) be the mixed subdivision obtained from 6, = (wo,...,w;—1,0,...,0).
Using [D]S22, Proposition 2.11], for each i = 0,...,n, there is an open neighboor-
hood of 0 € U ¢ R4 such that for w; € U we have S(6;) < S(6,41). For \; > 0 small
enough, w; lies in U. Therefore, the S(¢;) form an incremental chain.

All the lattice points with row content 0 are 0-mixed. Therefore, S(6y) satisfies
it) in Definition 3.5. Let D be an n-cell of S(6;). If dim D; = 0, then the fundamental
subfamily of Ap is at most {i} as shown in Remark 3.3. We show that, for our choice
of the lifting function, the rest of cells D satisfy i) in Definition 3.5.

Let D € S(¢;) such thatdim D, > 0. Suppose that this cell contains a lattice point
b € B that has row content ; but is not i-mixed. Therefore, this lattice point b will be
in a cell of S(p) with a 0-dimensional j-th component for some j < i. Take C D D in
S(¢;) containing the previous lattice point b. If dim C; > 0, then the lifting function
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w; = A;j{v,z) takes the same value in all the points of C;. Therefore, the vector v
is normal to a face of C; and has to be contained in the hyperplane arrangement
associated to A. As this is not the case, dim C; = 0 and consequently dim D; = 0,
contradicting the initial hypothesis. O

Proving that S(p) is an admissible mixed subdivision consists on both proving
that it has an incremental chain satisfying S(6y) < --- < S(6,,) < S(p) and that this
incremental chain satisfies the conditions in Definition 3.5.

In this proof, we considered the easiest way to prove the chain condition, which
is using [D]JS22, Proposition 2.11]. In this case, for );;; small enough satisfying \; >
Ai+1 > 0, w; lies in U. Therefore, the S(6;) form an incremental chain. However, we
can drop the restriction that A\, is small enough by proving a more general result.
In Section 5., we explore this new proof in the more general context of tropical
geometry.

4. n-zonotopes and multihomogeneous systems

In this section, we study the previous family of mixed subdivisions in the particular
cases of n-zonotopes and multihomogeneous syztems. For simplicity, we suppose
that our lattice is Z".

Definition 3.8. A zonotope is a polytope given as a sum of line segments. An n-
zonotope is generated by n line segments, which span a lattice of dimension n.

Consider linearly independent vy, ..., v, € Z™ and the line segments
Ovy,...,00, CR"

forming an n-zonotope Z = 0Ovy + --- + Ov, C R". If the Newton polytopes are n-
zonotopes whose defining line segments are integer multiples of the 0v,;, we can
write the supports of the system as:

_A;:{Z/\jvjezn’ /\jEZ, OS)\jgaij} (3.1)
j=1

for some a; ; € Z~(. Let V be the nonsingular matrix whose columns are the v; for
j =1,...,n and consider it as a monomorphism of lattices V : Z" — Z" of rank n.
Letey,...,e, be the canonical basis of Z".

Corollary 3.1. Let Aj,..., A/, be the previous family of supports, then Resy =
Reslet(V)l, where:

A ={(j)j=1,.n €Z" | 0<bj<ay} i=0,...,n (3.2)
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Proof. Using Lemma 2.1, we can view the map V : Z" — Z" as a monomorphism of
lattices sending the canonical basis ¢; to v; fori = 1,...,n. The determinant det(V)
is the index of the image. O

Remark 3.6. The results that follow in this section could be proved without using
Corollary 3.1, after changing b; by (b,n;) for j = 1,...,n, where (n;);=1,..» are the
normal vectors to the zonotope. However, this result extends to the matrices #g
and gives a major simplification when det(V') > 1.

In order to prove our results, we assume that the «;; are ordered, meaning that
0<a0j§a1j§"'§an—l,j j:17"'7n (3'3)

where we exclude A4,, from this assumption. Consider a translation § € R" such
that it is negative in each component. Then, the lattice points in translated cells of
a mixed subdivision of the previous system are:

B = {(bj)jzlymyn ez | 0< bj < Zaij}.
=0

Letv ¢ U {z; = 0} define the mixed subdivision S(p) as in the previous sec-
tion. We assume v; < 0 and get the following result.

Proposition 3.2. Letb € Bandi € {0,...,n}. Then:

1—1 7
i = {7 €{l,..on} | ) ek <by <)k}
k=0 k=0

and the row content i(b) is the maximum index in {0, ...,n} such that:

i(b)—1 i(b)
Aje{l,...,n}: Zakjgbj<2akj
k=0 k=0
with the support a(b) € A, satisfying:

i(b)—1
a(b) = {0 bj < zk%;(] Uk.j>
@iy bj = Dop=o Ok,j-

Proof. We analyze the structure of the mixed subdivision S(6;) for v; < 0. The lift-
ing function assign a higher value to the face {z; = 0} C A, with respect to the
face {z; = ap;} C Ap. When applied to the Minkowski sum A, this implies that
the hyperplane {z; = ao ;} will divide the cells D, € S(#:) between those such that
Oaj’oej C Dy (a:j < ao,j) and those with Oaj70€j §Z Dy (acj > a07j).

In terms of the lattice points, those b € B lying in a cell D € S(6¢,) that contains
the line segment 0a;oe; C Dy satisfy that 0 < b; < ag; and the rest satisfy b; > ao;.
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As a consequence, t, o will be the number of j € {1,...,n} such that 0 < b; < ag;.

We can reproduce this argument for: > 1. As S(6;) refines S(;_), the available
interval for D; 1s >0 ans > k-0 ak,j), 80 the inequality corresponding to Oa; je; C
D; will be Y44 a; < bj < Yi_, arj- The second claim follows from the definition
of row content with respect to the type vector ¢,.

Let b e B and let i(b) be its row content. For j = 1,...,n, we either have

b < Z’(b apj Or bj > Z“b) arj. In the first case, the vertex associated to the row
content, w111 bein the face of A, ;) defined by the equality {z; = 0} and in the second
case, the one defined by the equality {z; = a;«) ;}- O

Remark 3.7. If v; > 0, we would change the inequalities by >} _. ax; < bj < S2h_. | anj,
but the results that follow would not change. All the other mixed subdivisions of
the system can also be formed this way.

Definition 3.9. The type function ¢, : {1,...,n} — {0,...,n} associated to each
lattice point b € B is defined as the vector of indices satisfying:

wp(j)—1 @b (7)
Z Qg < bj < Z ak,j-
k=0 k=0
Following Proposition 3.2, it satisfies that ¢, ; = |, ' (i)].

From the components of a(b) in Proposition 3.2, we deduce that the range of
values for (b — a(b) + A;)); 1s:

{[bj, bj + ai(b),j] b < ZZ(b Ok
[bj — @iy 0] by = S ak;

Corollary 3.2. The range of possible type functions for &' € b — a(b) 4 A;;) are:

. {os(4) — Lop(j)}  i(b) < @p(J)
*”b“)e{{%m GO i) > el)

Proof. Take I to be the index such that >, ar; < bj < Yi_ax;. Then, we can
derive the inequalities:

bj = Qi = Yho Ak — @iy = Lo kg i(0) <1
bj + @i j < Shoo Wy + @i < Loy any i(b) > 1

In the first row, we used that a;) ; < ar—1,;. O

64



Definition 3.10. We define the greedy subset G C B to be formed by all the lattice
points b € B such that:

I
i <IT+1 VI<n,
=0

Theorem 3.3. Letb € Gand b’ ¢ G. Then, b’ ¢ b — a(b) + A;p

Proof. Let I be the greatest index such that Zfzo tw; > 1+ 1. As it is the greatest,
we must have ty .y =0and > ; ,ty; <n—IT—1.

On the other hand, Zfzo tp; < I+ 1. Using Corollary 3.2, the previous sum can-
not grow in b — a(b) + A, when i(b) > I. If S tyi=1+1,then o reites <n—1I
which implies that there is i > I with ¢, ; = 0 and i(b) > I.

Suppose Zf:o ty; < I+ 1andi(b) < I. Using Corollary 3.2, we have:
 thizn—TI and > t5;>n—-I-1
i=I+1 i=I+1
for b € b — a(b) + A; (). Therefore,
Y tpi<n—I-1< Y t,
i=I1+2 i=I+2

meaning that it is not possible that ' has a type function on the range of b — a(b) +
-Ai(b)' O

Definition 3.11. Let I, € {0,...,n} be the index satisfying:

j max{i € {0,...,n} |tp; > 2} bliesin a non-mixed cell
* o b lies in a mixed cell

Letg, = |{¢ < I t;, =0} be the number of zeros that ¢, has before I,,.

Lemma 3.1. Let b € G and suppose that g, = 0. Then, b lies in a mixed cell.

Proof. Suppose that b lies in a non-mixed cell. This would mean that there is no

zero before I, implying that 37t = S My + tyg, > 1 + 2. O

Lemma 3.2. If t;,; =0and b e G, .1ty < I + 1.

Proof. Otherwise, /"1 #,, > I + 1 implying b ¢ G. O

Theorem 3.4. Let G be the greedy subset and b € G such that g, = K for K > 0.
Then, there is b’ € G with g,y = K — 1 such that for some b € b' — a(b') + A; ), 5 = @o-
As a consequence, we reach b from o'
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Proof. Consider t;, to be the type vector of b and suppose that ¢, has two or more
zeros after . Then,

n
> thi<n—TI,-2,
i=Ip+1

implying that 3>/ #,;, > I, + 2,and b ¢ G.

If t, has one zero after I, it implies that i(b) > I,. If g, > 0, it needs to have at
least one zero before I,. Therefore, the type vector contains a sequence of the form

r I
= =~
(.00 L )

for some I’ < I < I, with ¢, ; > 2. Consider the type function:

L Jee() =1 I <pp(f) < T
o (j) = . .
op(J) otherwise

The corresponding type vector ¢, contains a sequence:
r I
=~ ——
(o) 11,0 Lty — 1,0,

Using Lemma 3.2, 3>/ t,, < I + 1, therefore we will have:

Il
th’,i < I' +1.
=0

The same will hold for all the partial sums from I’ to I, implying there is ¥/ € G
with type function ¢,. Using Corollary 3.2, ¢, is in the range of type functions in
v —a(b') + A;w). Aslong as i(b') < n, we can find ¢’ € G such that:

(=0 +a(t)); < ag, ) < i)
sobelt —al)+ A

If i(b) = i(b') = n, we must have a(b) = a(d/) = 0, so we reach a point b €
v —a(t') + Ay in the same cell as b such that:

(b=b); <(b=V); VI'<g(j) <1

As i(b) is always the same, after a finite number of steps, we have b € b—a(b) + A -

If ¢, does not have any zero after I, then i(b) < I,. The vector contains a se-
quence that looks like
i(b)

=
(oos O S tpi)yr1s o todys )
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for ¢, ;1 > 1 with i(b) < I < I,. In this case, consider the type function:

9

oy (j) = {(pb(j) —1 (b)) <wu(j) <1

©p(J) otherwise
with type vector (..., )41, -+ tog,, O ,...). For these functions, we derive

n

Z tblﬂ‘ >n— Z(b) + Z (tblﬂ‘ — 1) =
i=i(B)+1 ty1>2
1>4(b)

i(b)
th/,i <i(b) — Z (tys—1) <i(b) +1
=0

tpi>2i>i(b')
which implies that

i(b)

th’,i + ty iy < i(b) — Z (tyrim1) + ty iy < (D) +1

i=0 tp,i>2

i>i(b')

This argument holds for bounding the partial sums for I > i(b) so thereis ¥’ € G
with type function ¢, and ¢ is in the range of type functions in ' — a(b') + A; .
In this case, it is not possible that i(d’) = n. The same argument as in the previous
case holds in order to say that b € b’ — a(b') + A; ). O

Theorem 3.3 and Theorem 3.4 imply that if we start the greedy algorithm from
the lattice points in mixed cells, we will reach exactly the lattice points in G. This
actually reduces the size of the Canny-Emiris matrices.

Corollary 3.3. The size of the matrix Hg:

Z H Ay (5),

p:{1n}—{0,...n} j=1

where the sum is over the functions that satisfy ¢, ' ({0,...,I}) < I+1forall I < n.

Proof. Each type function ¢, corresponds to a cell D € S(p). The lattice points b € D
satisfy Definition 3.9. Therefore, for each j, there are a,, ;) ; possible values of b;.
The product over all of them gives the desired count. O

Example 3.5. Let f, f1, f2 be three homogeneous polynomials of degrees 2,2, 1 re-
spectively. We choose v = (—1,—2) and 6 = (—3/4,—3/4) and define an admissible
mixed subdivision S(p) in the Minkowski sum A of their Newton polytopes A;. Let
B be the set of lattice points in A + 4. Consider a system of polynomials whose New-
ton polytopes are n-zonotopes generated by the vectors w; = (1,0) and wy, = (-1, 1)
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and let ap; = ap2 = a1,1 = a12 =2 and az; = az2 = 1 be the bounds of the supports
as in Section 4.. Let S(p) be the mixed subdivision in the Minkowski sum A of A;
of this system given by the same v, § as the previous, and let B be the set of lattice
points in A + 4.

It turns out that the mixed subdivision S(p) embeds into S(p), i.e. all the cells of S(p)
are contained in a cell of S(p). This implies that B = BN A. As the greedy reduction
applies to the second system, it must apply to the first as well. We get a 9 x 9 matrix
Hg for the homogeneous system, excluding the black lattice point in the figure.

Similar to Example 3.5, consider multihomogeneous polynomial systems and
embed them into n-zonotopes. Let ny,...,ns € N5y be natural numbers and let
@®;_,Z™ be the lattice. Each multihomogeneous polynomial system can be written
as:

F; = Z UigX®, 1=0,...,n
acA;

where the supports are:
n
A; = {(bjl)Z::11;.~.-.~::l S @leznl ‘ bjl >0, Zbﬂ < di,l}
j=0
where d; = (d;1,...,d;s) is the multidegree of F;. Each of these supports can be
embedded into the following sets of supports:

ny
Ai={(bj) € BZM 0D by <dy} I1=1,....5 j=1,...,n.
J=j

Let A;, A; be the Newton polytopes of each of the systems and A, A be their respec-
tive Minkowski sums.

Lemma 3.3. The Newton polytopes A; of the system of polynomials with supports

in A4; are n-zonotopes whose line segments (w;,)/=,> " are given by the columns of

the matrix:

W - B Wl =
0 W, 0 0 1 -1
0 0 1
where the square blocks W, are of size n; for / = 1,...,s. Moreover, H = U;_, U;.”:l

{{z,w;;) = 0} C T];_, R™ is the hyperplane arrangement associated to A.
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Proof. Letb € @5_,Z" be a lattice point. As the columns of W form a basis of the
lattice, we can write b = > 7, >, A w;,; and these coefficients are precisely \;; =
Zgl:] bJJ. Then,

be A, < 0< N\ <dyy l=1,....,s5=1,....,m.

The normal vectors to the faces of A are given by the columns (njvl){::ll’_‘."'fl of the
matrix: o

1 0 0 ... ...

H ... 0 1 1 0 0
H=|: - y H=i oo
0 ... H; l....1. 10
1 ....1 1 1

One can check that (w;;,n; ) # 0, if and only if, I = I’ and j = j’. Therefore, v € H,
if and only if, it belongs to the span of >~} , n; — 1 columns of H, and this will only
happen if (v, w;;) = 0 for some pair j, I. O

Remark 3.8. As a consequence of Lemma 3.3, we can apply the results of Section 4.
to the system with supports A;. The matrix H gives the normals to our polytopes,
so we can use it in the sense of Remark 3.6.

Let v ¢ H and suppose that we take (v,w;;) <0,forl=1,....,sandj=1,...,n.
Consider S(p) to be the admissible mixed subdivision of A given by v as in Section 3..
Let S(p) be the mixed subdivision given by the same vector in A. Using (v, w;;) <0,
one can check that this mixed subdivision is also admissible as v does not belong to
the hyperplane arrangement # associated to A. Let B, B be the sets of lattice points
in translated cells of A and A, respectively.

We can see the polytopes A; as a product of simplices A;; x --- x A,; ; in each
of the factors of My = [],_; R™.

Theorem 3.5. The mixed subdivision S(p) coincides with S(p) N A.

Proof. We check the result for the cells of S(¢;) and the argument can be repeated
for all the mixed subdivisions in the corresponding incremental chain. The vector
v € [];_; R™ has to satisfy that:

v <0 vip v <0j=1,...,n—1,
which can also be written as:
Unyt < Upy—1g < ...v1y <0.
This means that the mixed subdivision lifts the vertices of A, in the order

0,do w1y, ..., do W,
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from higher to lower. As in Proposition 3.2, this means that the hyperplane

{(z,wig) =dog} 1=1,...,8 j=1,...,n,

divides the cells of S(p) between those with d ;w;; C Dy and those with dy ;w;; ¢ Do,
respectively. This cell structure is the same as the one given in S(p). Therefore, S(p)
coincides with the intersection of S(p) with A. O

Therefore, if we apply the greedy algorithm to the multihomogeneous system
with supports in the A4;, we will obtain the same greedy subset G C B, with the
restriction on the type vectors given in Definition 3.10. In particular, the domain of
the type functions will now be a multiset in each group of variables:

op {1, nat, {1 gt = {0, n)

The following proposition gives conditions to guarantee that the type function ¢,
corresponds to a lattice point b € 5.

Proposition 3.3. A lattice point b € B belongs to B iff its type function satisfies:

o) <o), Vi<j 4 =1....m I=1,..s.

Proof. Suppose that there is ¢, for b € B such that for some [ € {1,...,s} and some
pair j < j/in {1,...,n;} the function satisfies ¢,(j) > ¢s(j'). Using the definition of
the type functions and the matrix H, one sees that:

; .
dey <> by diy > by = > b <O

Therefore, there must be j € {j,...,5'} such thatb;;, < 0 and b ¢ B. On the other
hand, if we find b;; < 0, we can use the same argument to say that the type function
©p cannot satisfy the previous restriction. O

Corollary 3.4. The size of the matrix #¢ for multihomogeneous systems is:
ST (™)
2o 1=1 k=0 Nkl

wheren; ., = {7 € {1,...,m} ¢(j) = k}| and y, satisfies the restrictions of Corol-
lary 3.3 and Proposition 3.3.

Proof. Let D € S(p) be the cell associated to a type function ¢, for b € G. We can
consider that this cell has a decomposition:

n S
D=>.> Dui

k=0 =1
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where Dy is a cell of A;;. The number of lattice points in D corresponds to the
product over the number of lattice points in each of the Dy ;. As a face of Ay, Dy
is a simplex of degree d;; and dimension the number of j € {1,...,n;} such that

eu(j) = k.

The count follows by noticing that the lattice points in a translated simplex of
degree d and dimension n of size length are contained in a simplex of degree d — n
and same dimension. Therefore, there are (ff) of them. O

There exist exact determinantal resultant formulas for some multihomoge-
neous cases, obtained by using the Weyman complex and other tecniques [BFT18;
Ben+21; DE03; EM12; SZ94]. Our approach does not improve those cases, but the
use of type functions might be easier to generalize to a general case. We can give an
example of the size of these matrices with respect to some of the existsing formulas.

Example 3.6. For the polynomial system of Example 3.1, there are exact formulas
of Sylvester type [DE03] which give a matrix of size 6, smaller than that of size 8.

We could also exploit the incremental algorithm for constructing the Canny-
Emiris formula [CE95], but we would be losing the combinatorial properties. There-
fore, we would not have a proof of the formula for such matrices or we wouldn’t be
able to guarantee that they have a non-zero determinant as in Remark 3.4. More-
over, such implementation requires the precomputation of mixed volumes.

Apart from the treated cases, we could consider other systems for which the
mixed subdivision can be embedded in an n-zonotope and impose restrictions on
the type functions accordingly. We could also try to drop the hypothesis that ag ; <

- < ap—1;: the examples show that, for that case, the reduction in the cells that
are not in G is lower. We also expect to measure is when the Newton polytopes are
m-zonotopes for m > n. In such cases, the examples show that there will still be
some reduction.

Example 3.7. Here an example for
Ao = = :{(0,0),(1,0),(—1,1),(1,1),(—1,2),(0,2)} CZ2

and our choice of the mixed subdivision would give:

NERRAN
AR

DRE

In this case, there is a reduction on the lattice points of the cells not in G (lattice
points in black), but not all the lattice points can be excluded.
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5. Tropical refinement of mixed subdivisions

This section can be read independently with respect to the rest of sections of this
article. We describe, in much broader generality than we need, the refinement
of mixed subdivisions. In particular, we draw the full picture of when a coherent
mixed subdivision refines another one, by only changing the lifting function in A;.
In terms of the previous notation, we would like to know whether S(6;) < S(0;+1) for
some i = 0,...,n. Instead of studying a given mixed subdivision, we define a dual
of such object by introducing tropical geometry. After proving such result using
tropical geometry, the family of lifting functions given in Section 3. will satisfy the
refinement.

Remark 3.9. As in this paper we are mainly interested in affine lifting functions,
we restrict to such case. However, the following results could be reproduced for
any piecewise affine lifting function.

The general context of tropical geometry consists of working over rings of poly-
nomials over R with the tropical operations:

r@®y=min(z,y) r@y=x+y
Definition 3.12. A tropical polynomial is the expression:

tI'Op(f)(l‘) = e9CL€.A"‘)ax®a - I;lejil(wa + ax)

for 2 € R™ where A is the support of f. A tropical hypersurface V (trop(f))) in R" is
the set of points where the previous minimum is attained, at least, twice.

Remark 3.10. We can consider the coefficients w, to be the values of a lifting func-
tion. If the lifting is affine, we have w, = (v,a) for some vector v € Ng. Therefore,
the tropical polynomial with coefficients w, would be:

min(a(z + v))

Definition 3.13. A tropical system 7, is formed by r + 1 tropical polynomials with
supports F,...,P. C M:
trop(f;")(z) = @ Wia @ 2" = 1N (w0 +a - )

where the coefficients of the system are given by some lifting function of the P,. In
some references like [MS15], it is important to specify a valuation in the field but
here we can suppose it to be trivial.

In our context, as in Remark 3.2, we have a family of tropical systems 7; for
i=0,...,n of the supports:

Aoy A, Y A C M

j=i
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The last tropical polynomial is formed by imposing 0 coefficients, therefore, it is
defined by:
min (a,z)
a€d i, A
which corresponds to the normal fan of 377 A;. This coincides with the assump-
tions for S(6;) in Remark 3.2.

Proposition 3.4. The expression min,c 4(a, ) is achieved twice in the (n—1)-dimensional
cones of the normal fan of A = conv(A).

Proof. A j-th dimensional cone Nz C Mg is a of the normal fan of A corresponds
to a n — j-dimensional face of A. Take v € N, then min,ca (a, x) is the same for all
a € F, which is a face. Therefore, it is achieved, at least twice. On the other hand,
if the minimum is achieved at least twice at v, then consider the convex hull

conv{a; € A min(a;,v) is achieved}

and it is a positive dimensional face F’ of A, therefore v is in the a cone of dimension
atmost (n — 1) in F. O

Proposition 3.5. The expression min,c 4(a, = + v) is achieved twice in the (n — 1)-
skeleton of the normal fan of A translated after v € Ng.

Proof. The same proof as the previous works after translating by v. O

In this context, we can see the tropical system 7; as the superposition in Ny of
the normal fans 7y, ..., 7, centered at different points v; € Ngx which correspond
to each of the lifting functions w; : A; — R.

Definition 3.14. A polyhedral complex P is a union of cells (bounded or unbounded)
in Ny such that:
- Every face of a cell in P is also in P.
- The (possibly empty) intersection of two cells in P is also in P.
Fans are a good example of polyhedral complexes. Thereofre, a tropical system
defines a polyhedral complex.

Proposition 3.6. Let A, ..., A, be a family of supportsand w : > ; 4, - Rbea
lifting function. The polyhedral complex defined by tropical system 7 taking the
values of w as coefficients is dual to the mixed subdivision S(w).

This duality happens in the following sense: the j-dimensional cells of the poly-
hedral complex correspond to the (n — j)-dimensional cells of the mixed subdivi-
sion.
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Proof. Let pbe a 0-dimensional cell of the polyhedral complex defined by 7. As itis
the intersection of cones of each of the fans 7;, there is a cell of S(p) corresponding
to the sum of the faces associated to each of the fans. On the other hand, an n-cell
D on the mixed subdivision corresponds to a point p, which is the intersection of
the normal cones of each of the summands D;. Each of the faces of D corresponds
to a cell of the polyhedral complex in which p is contained. O

Denote by Hj, the hyperplane arrangement in R associated to the tropical sys-
tem 7;. Before stating the main theorem, we will put an example of the refining
construction.

Example 3.8. Let Ay, = {(0,0),(1,0),(0,1),(1,1)}, A; = A2 = {(0,0),(1,0), (0,1)} with
corresponding convex hulls Ay, Aq, A,. Start with the trivial mixed subdivision:

o-\o\
0¢ e0%0
99 0 Oe 0%0

0 0 Oe
0 0

In this case, the corresponding tropical system is given by the inner normal fan to
the Minkowski sum, which corresponds to the superposition of the normal fans of
each summand.

The dashed drawing represents the central hyperplane arrangement which we
will denote as Hy. Any lifting of A, will refine the subdivision. However, we can
see that refinement corresponds to moving the point (0,0) of the blue fan to an
adjacent chamber Hj. Take (2,2) as a normal vector. This means lifting A, after an
affine function of type ¢ — 22 — 2y. We can choose any constant ¢ as it will give the
same lifting. I choose ¢ = 4 in order to get positive values in the lifting. Now, the
subdivision looks like:

2e—a(
RSP S
4 0&4 .I
2 0 2 2 2
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and the corresponding tropical system 7; and the corresponding (not central) hy-
perplane arrangement H; look like:

Now, we claim that moving the orange fan close enough, we will be refining the
mixed subdivision. In particular, moving the orange fan to each of the adjacent
cells on the hyperplane arrangement corresponds to all the possible ways to refine
the previous mixed subdivision. For instance, if we take the traslation given by the
vector (1, —1), which would be the normal vector to the affine lifting ¢ — = + y with
¢ = 1. The mixed subdivision looks like:

4e—e2
20 3e—o19(
3 L IOIO
4 5e—4
2 3 2 2

and the tropical system after the traslation vector (1, —1), corresponds to:

We now recapitulate the notation used so far. Let w; : A; — R be the lifting
function. As in Theorem 3.2, S(6;) be the mixed subdivisions of the candidate in-
cremental chain given by the lifting functions (wo,...,w;-1,0,...,0). Let 7; be the
tropical systems dual to each of the mixed subdivisions S(6¢;) fori =0,...,n. Let H;
be the hyperplane arrangement associated to each of the tropical systems.

We now construct the tools needed for proving the refinement result.
Definition 3.15. We say that a ray » of the normal fan F; preserves adjacencies if it

is adjacent to the same cells in 7; and 7;_;.
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Lemma 3.4. Let S(6;) be amixed subdivision of Ay, ..., A;_1, Z?:i Ajfori=0,...,n.
The lifting of A, will give S(6;) < S(0i+1), if and only if, each ray of F; preserves the
adjacencies after the translation.

Proof. Suppose there is a ray r that doesn’t preserve an adjacencies. Then, take the
0-dimensional cell of the corresponding polyhedral complex where this adjacency
fails and it must correspond to an n-cell of S(¢,1;) that is not contained in the cell
of S(0;) corresponding to such adjacency.

On the other hand, take a cell C of S(¢;11) that is not contained in any of the
cells of S(6;) and, as we only lifted the polytope A;, the corresponding dual cell on
the polyhedral complex has to fail to be adjacent to the same rays. O

At this point, we have all the ingredients to state and prove the tropical refine-
ment result.

Theorem 3.6. (Tropical refinement) Let« = 1,...,n. The mixed subdivision S(6;)
refines S(6;_1), if and only if, the normal vector to the lifting function w; 1 : A - R
lives in a chamber of H; adjacent to 0 € R™.

Proof. Consider p as a point (0-dimensional cell) in the polyhedral complex that is
dual to an n-cell D of S(#;_1). Let v be the normal vector to the lifting function
w;i : A; — R. We have to prove that v lies in an adjacent cell to 0 in H;, if and only if,
D is contained in a cell D’ of S(6y,).

Firstly, suppose there was not such cell D’. This would mean that the adjacen-
cies would not be preserved and we can find a ray r in F; where this property is
failing. Consider the ray of a fan 7, for £ = 0,...,7 — 1 where this adjacency has
changed and this means that we have crossed a hyperplane containing such ray in
the previous fan.

On the other hand, if there is such cell D’, then the lifting of A; preserves ad-
jacencies. However, if we had moved v to a non-adjacent cell to 0, we would have
crossed a hyperplane therefore, we would be able to find rays in such hyperplane
where the adjacencies are not preserved. O

This result extends the proposition 2.11 on [D]JS22, Proposition 2.11] and gives
a full picture of refinement of mixed subdivisions. Therefore, we naturally un-
derstand all the ways to refine a given mixed subdivision S(6;) with affine lifting
functions on A;.

Corollary 3.5. The chambers of the hyperplane arrangement H; are in one to one
correspondence to all the possible ways to refine S(6;). In particular, if S(6;) is tight,
the chambers of H; correspond to tight mixed subdivisions.
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In the context of Theorem 3.2, in the direction of v ¢ Ha, the function (\;v, x)
will reach the hyperplane arrangement H; when \; = \;,_;. Therefore, for any 0 <
Ai < Ai—1, the subdivision S(6;,1) will refine S(¢;) fori =0,...,n.

Theorem 3.7. The mixed subdivision S(p) in Definition 3.5 is admissible.

Proof. All the lattice points with row content 0 are 0-mixed. Therefore, S(6,) satis-
fies i7) in Definition 3.5. Let D be an n-cell of S(6¢;). If dim D, = 0, then the funda-
mental subfamily of Ap is at most {i} as shown in Remark 3.3. We show that, for
our choice of the lifting function, the rest of cells D satisfy i) in Definition 3.5.

Let D € S(0;) such that dim D; > 0. Suppose that this cell contains a lattice
point b € B that has row content i but is not i-mixed. Therefore, this lattice point b
will be in a cell of S(p) with a 0-dimensional j-th component for some j < i. Take
C D Din S(6;) containing the previous lattice point . If dim C; > 0, then the lifting
function w; = A;(v,z) takes the same value in all the points of C;. Therefore, the
vector v is normal to C; and has to be contained in the hyperplane arrangement
associated to A. As this is not the case, dim C; = 0 and consequently dim D; = 0,
contradicting the initial hypothesis. O

This proves that the family of lifting functions that we have defined, always
provides an admissible mixed subdivision.
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Chapter 4

Toric Sylvester forms

The constructions in the previous chapter are based on the idea of using Sylvester-
type formulas for computing the resultant. These formulas provide a very natural
multivariate generalization to the classical construction of the resultant of two uni-
variate polynomials, due to Sylvester [Syl18] and are characterized by the fact that
each entry of the matrix corresponds to a single coefficient of the system. How-
ever, there are other formulas for the resultant in which the entries of the matrix
can be other polynomials in the coefficients. Examples of such formulas appear
in the very classical works of Bezout [Bez79] and Dixon [Dix09], Morley and Coble
[MC27] and others.

In [Jou97], Jouanolou compiled these formulas and added some more of his
own. We can extract the following idea from his work: if one wants to find more
compact formulas than those of Sylvester-type, a key ingredient will be to add in-
ertia forms [Hur13] i.e. polynomials in the saturation of the given ideal. The litera-
ture for computing these forms in different degrees includes the works of Hurwitz,
Mertens, Van der Waerden and Zariski [Zar37].

To be more specific, consider the ideal I = (Fy, ..., F,,) where F; is the generic
homogeneous polynomial of degree d; in the graded polynomial ring C = A[x, ..., z,],
where deg(z;) = 1 for all = 0,...,n and where A stands for the universal ring of
coefficients of the F;’s. The saturation of the ideal I with respect to the irrelevant
idealm = (zo, ..., z,), which we denote by 7% = | : m*, is the ideal of inertia forms.

As the elements in I are trivially inertia forms, 7%3/J is the natural quotient
to study. It turns out that the Jacobian determinant of the F}’s is a generator, as an
A-module, of the graded component of 753t/ in degree 6 = dy + --- + d,, — (n + 1)
and their resultant is a generator of 7%%'/J in degree 0. In order to unravel the
structure of 758/J in degrees smaller than 4, Jouanolou introduced and studied the
formalism of Sylvester forms [Jou97]. His ideas were based on the fact that for each
p= (fo,-..,pn) € N**1 such that |u| := Y, #; < min; d;, each polynomial F; can be
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decomposed as

F=Y @
=0

and one can consider the determinant det(F; j)o<; j<». Thislatteris called a Sylvester

form of the Fi’s and denoted by Sylv,. Independently of the choice of decomposi-
tions (4.1), the class of Sylv, modulo 7, which is denoted by sylv , gives a nonzero
element in (7%3/T)s_,,.. Moreover, (1°'/)s_,, is a free A-module which can be gen-
erated by the Sylvester forms of degree 6 — |u|. This result is a consequence of a du-
ality property between Sylvester forms and monomials; namely, for all » < min; d;
we have an isomorphism of A-modules

(Isat/I)g_V ~ HOI‘[IA(C,,, A).
More explicitly, this isomorphism corresponds to the equalities

/ sylv, ifpu= '
z sylv, = {Oy 0 if

where sylv, is a generator of (I%2!/I);. We note that up to a nonzero multiplica-
tive constant, sylv, is equal to the class of the Jacobian determinant of the F;’s; see
[Jou97, §3.10].

The definition and main properties of Sylvester forms have been recently ex-
tended to the case of n + 1 generic multi-homogeneous polynomials, i.e. of polyno-
mials defining hypersurfaces over a product of projective spaces of total dimen-
sion n; see [BCN22]. In this chapter, we reproduce the results of [BC22], in which
we develop the theory of Sylvester forms in the general setting of homogeneous
polynomials in the coordinate ring of a projective toric variety Xy. In addition,
to illustrate the importance of these forms in elimination theory, we also provide
applications to the construction of elimination matrices for overdetermined poly-
nomial systems and to the computation of sparse resultants and toric residues.

1. The o-positive property

As part of the assumptions of our construction, we define a property of toric vari-
eties which we introduced ”ad-hoc” for proving the results in [BC22]. At the end,
we will try to motivate that this property can be interesting in other contexts.

Notation 4.1. In what follows, we use the notation introduced in Assumptions 2.2.
Namely, given lattice polytopes Ao,...,A,, we consider the normal fan ¥ of the
Minkowski sum A = }~" | A; and consider the projective toric variety X, which
(up to resolving singularities) is smooth and the polytopes Ay,..., A, correspond
to nef Cartier divisors in Xy. Let R = K[z, p € X(1)] be the Cox ring of X5. We
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choose a maximal smooth cone ¢ € ¥ and denote by x4, ..., z,, the variables associ-
ated to the rays p € o(1) and by z,..., 2. the remaining variables of R. Denote by
ULy« U, Unil, - - -, Untr the generators of the rays associated to 1, ..., 2, 21, - - -, 21,
respectively. According to this choice of o, we write a matrix of the map = in the
form

T=(P 1d,), 4.2)

>J A >

between u,; and the basis given by u;,...,u, for j=1,...,r.

In order to introduce Sylvester forms later on, we need the following property
which is not standard.

Definition 4.1. For o € X(n), the projective toric variety Xy, is called o-positive if o
is a maximal smooth cone such that a matrix of the map = defined in (2.9) can be
written as in (4.2) with the additional condition that P;;, > 0 for j = 1,...,r and
k=1,...,n.

The above property amounts to require that the vectors —u,; belong to o for
allj=1,...,r; see Figure 4.1.

Figure 4.1: An example of the o-positive property.

A first observation is that not all smooth toric varieties are o-positive for some
o € X(n), as shown in the following example.

Example 4.1. Let ¥ be the complete smooth fan in Ny = R? with the following rays:

p1=(1,0) p2 = (0,1) p3 = (=1,1) ps = (=1,0) p5s = (1, —1) ps = (0, —1).

It is straightforward to check that for every o € X(2), there is p ¢ o(1) such that
—u, ¢ o.

On the other hand, most of the projective toric varieties that are of interest
in applications are o-positive for some smooth maximal cone . For instance, this
property is preserved under the product of toric varieties. To be more precise, re-
call that the product of two toric varieties is defined by the product fan; see [CLS12,
Theorem 2.4.7]. Any cone of this fan is of the form o, x 09, where its elements
are considered as pairs (u,v) for v € o1 and v € o,. Moreover, dimo; X oy =
dimal + dimO'Q.

Lemma 4.1. If X; (resp. X5) is a toric variety which is o;-positive (resp. oo-positive)
for some maximal cone ¢; in a fan ¥y, (resp. o2 in a fan %,), then the product X; x X,
is (01 X 09)-positive.
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Proof. Any ray p of the product fan is generated by an element of the form (u,,,0)
or (0,u,,), where p; is aray of o; and p is a ray of o». By assumption, —u,, and —u,,
can be written as a positive combination of elements in either o; or o»; therefore,
they belong to o x o3. O

Example 4.2. The projective space P" is o-positive as the map = can be written
as T = (1---1) for any choice of the maximal cone o. Therefore, any product of
projective spaces is o-positive by Lemma 4.1. Another classical family of smooth
toric varieties are Hirzebruch surfaces #;, c R?: for each r € Z-, these varieties
correspond to the fans ¥, with rays

p1 = (1,0) p2 = (0,1) p3 = (=1, -b) ps = (0, -1).

Hirzebruch surfaces are smooth and o-positive with respect to the smooth maximal
cone o = (p1, p2) as 7 can be written as

(1 r 1.0
™o 10 1)

Following Kleinschmidt’s classification of smooth toric varieties of Picard rank
2 [Kle88], we can give a larger family of toric varieties having the o-positive. He
proved that all these varieties can be constructed as a projectivization of toric vec-
tor bundles over the projective space; see [CLS12, Theorem 7.3.7].

Theorem 4.1. Let Xy, be a smooth projective toric variety such that Pic(Xy) = Z2.
Then, there are s,» >1and 0 < a; < --- < qa, such that:

Xy ZP(Ops @ Ops(a1) ®--- @ Ops(ar))

Using the notation above, the rays ug,u1,...,us are the generators of the fan
providing the projective space P* where uq,...,us is a canonical basis of Z° and
up = —»_;_; u;. Similarly, we can define ey, ..., e, asabasisof R"and ey = — > e;.

Then, the generators of the rays of Xy, are:
VOy---9Us,€Q0y...,Ep

where vy = up +aje;1 +--- +are, andv; = u; forall j =1, ..., s; see [CLS12, Example
7.3.5]. The relations between the generators of the rays are:

eo+--+e =0 vo+--+vs=ae+ -+ arer (4.3)

Corollary 4.1. Let Xx. be a smooth projective toric variety such that Pic(Xy) = Z2.
Then, Xy has the o-positive property with respect to the cone

o = Cone(vy,...,vs,€0,...,6r-1).

Proof. The rays that are not in o are generated by ¢, and v,. Using (4.3), we get:
r—1
—€r = Z €j
j=0
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and

r—1
—vg = v+ HUs—a1e1— - —ar_1€r 1+ § ej = v+ Fvst(ar—ar)er+. .. (ar—ar—1)er—1
=0

deriving the o-positive property. O

More generally, Batyrev classified all smooth projective toric varieties whose
fan splits [Bat91]. Namely, these varieties can be constructed from a series of pro-
jectivizations of vector bundles, similarly as above. This leads us to making the
following conjecture.

Conjecture 4.1. All smooth toric varieties Xy, whose fan splits have the o-positive
property for some maximal smooth cone o € X(1).

In what follows, we prove the existence of certain decompositions of homoge-
neous polynomials that we will use in Section 3. for defining toric Sylvester forms.
For the sake of clarity, we denote with a lowercase letter f any polynomial in the
Cox ring R of a toric variety Xy, whose coefficient ring is a field, in contrast with
generic polynomials that we denoted above with a capital letter (see also Notation
4.3).

Theorem 4.2. Let Xy, be a projective toric variety of dimension » such that Xy, is
o-positive with respect to a smooth cone ¢ € ¥(n). Let J be an ideal of the Cox ring
R of Xy, generated by homogeneous polynomials fo,..., f, of degrees ay,..., oy,
respectively, whose polytopes Ay, ..., A, are written as in (2.34) and only depend
on (ain+j)j=1,.r € Z". Let v € Cl(Xy) be a nef Cartier class and let A, be the corre-
sponding polytope, written as in (2.13), for some (v;,;);j=1,.., € Z" which satisfies

0<vpgj < Eglin ajnejforallj=1,...,r 4.4)
Then, the two following properties hold:

1) R, =(R/J),.
(ii) For every z* € R, and f; € Ry, and i = 0,...,n, there exists a decomposition
of the form

+1 +1 +1 1
f; = Zitnﬂ . ‘Zﬁn+7+ lefo + xlln z‘ljl et xﬁ""_ H (4.5)

©,n

where the f/;,i,j =0,...,n, are homogeneous polynomials in R.

Proof. The graded quotient map R, — (R/J), is surjective. If there is a nonzero
polynomial of degree v in J, there must be a monomial z# € R, that is divided by
some monomial z#: € R,, of degree «; for some i € {0,...,n}, i.e. the degrees of
the generators of J. If that is the case, then z# = z#z# for some monomial z* of
degree v — o; € Cl(Xy). However, using (4.4), we see that v, ; — a;,+; < 0 and by
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Remark 2.3, there cannot be any monomials of this degree in R. Thus, the kernel
of the previous mabp is zero, proving (i).

We turn to the proof of (ii). Recall from (2.21) that every monomial of degree
«; (and thus every monomial in f;) can be written as ¥+ for some lattice point
m € A;. Thus we fix a monomial zF0+% in the support of f; for some mg € A;.

Given z# = /.. ah" 2™ . 4" € R,, we are going to show that if zFmo+ai ¢
R, is not divisible by the monomlal At et then it must be divisible by
one of the monomials a:’““, “"“ . Indeed, if this property holds, every mono-

mialin f; fori =0, .. nmustbe d1v1dedbye1therx’““, kT or gt et

and the decomposmons (4.5) follow.

Using thata;, =0 for k =1,...,n, the n + r components of Fmg + a; are:

{(uk,m0> ke{l,. .. n} w6

<un+j)m0>+ai,n+j j € {17‘°'7T}'
Thus, the fact that zFmotai is not divisible by 2/~ ... 2#*+"*! implies that
(Untijo M0) + Qimtjo < fintj, fOr SOmMe jo € {1,...,r}.

From here, using (4.4), we get that (un+]0,mo> + Untjo < Hntjo- ON the other hand,
the monomial z# = z/*...ah" 2" ... 2" is of degree v and hence by (2.19), we
have v,y = tintjo + 2opey Pio ks Wthh implies that

n
<un+jo7m0> + ijmkuk <0.
k=1
Finally, we use the relation (2.18) between u, ;, and the generators of ¢ to derive
the inequality

ijok uk,m())) < 0.

As Xy is o-positive and all the Pj, k'S are non-negative integers forallk = 1,...,n
(and they are not all equal to 0 as u,4; # 0), there exists ky € {1,...,n} such that
[k, — (ug,, m) < 0. As the exponent of zy, in 2F™0+%: is precisely (ug,, mo), we deduce

that """ divides #Fmote:, 0
Corollary 4.2. Assume that the projective toric variety Xy is o-positive for some

o € X(n). If the polytopes A; in (2. 34) are n-dimensional for all i = 0,...,n, then
Theorem 4.2 holds for (v,,4;)j=1

-----

Proof. If there are i, € {0,...,n} and jo € {1,...,r} such that a;, 1, = 0, then for
every m € A;, = A;, N Z", we have the inequality (u,,, m) > 0. Using the relation
(2.18), we get

D Pioklug,m) <0 Vm € Ay,
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As Xy is o-positive and the P;, ; are non-negative integers for £ = 1,...,n (not all
equal to zero as u,j, # 0), there must be some ky € {1,...,n} such that (u,,m) <0
for all m € A;,. On the other hand, we also have the inequality (uy,,m) > 0 for all
m € A;, due to the presentation in (2.34) and using that a;,, =0forallk =1,...,n.
Thus, the lattice points in A,, must satisfy (ug,, m) = 0 and thus A;, cannot be n-
dimensional.

Therefore, if the A; are n-dimensional for all ;i = 0, ...,n, we have

0< min a;pny; j=1,...,m,

1=0,...,n

which proves that (v, 4;)j—1,..» = 0 € Z" satisfies the hypotheses of Theorem 4.2. [

-----

Finally, we note that that if Xy, is assumed to be o-positive, then Theorem 4.2
can be easily extended to the setting of generic homogeneous sparse polynomials
in (2.21) and yield a decomposition of the F; for i =0, ...,n, over Xy xi Spec(A).

Remark 4.1. If Xy does not have the o-positive property, but one can find another
way to decompose the polynomials F; for i = 0,...,n as in (4.5), then the results
presented in the next sections hold similarly. One such example is the construction
of the form A, with a nonzero residue, as detailed in [CCD97, Theorem 0.2], which
relies on the polynomials F; corresponding to Q-ample divisors.

2. A duality theorem

Let Xy, be a projective toric variety of dimension n which admits a maximal smooth
cone o € X(n). In this section, we consider the ideal generated by »n + 1 generic
homogeneous sparse polynomials (2.21) and analyze some graded components of
its saturation via a duality property. For that purpose, we take again the notation
of the resultant setting (2.33): Fy,..., F,, are the generic homogeneous polynomials

of degree ay, ..., a,, respectively; they are of the form
F;, = Z ciprt € C=Alxy,...,xn,21,..., %) 4.7
THERG,
As a preliminary result, we first show that Fp, ..., F,, form a regular sequence

outside V' (b) C Spec(C).

Lemma 4.2. For every maximal cone 7 € ¥(n) and for every i = 0,...,n, there is
a lattice point m;, € A; and L € Z-, such that zFmi~+% divides (z7)" where 7" is
defined in (2.10).

Proof. The exponents of of zf*+% are:

{(uk,m> ke{l,...,n} 4.8)

(un+j,m> +Qiny; JE {1, R ,T’}.
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Thus, using (2.14), we can find m; , € A; such that for p; € 7(1), we have (u;, m; ;) +
a;; = 0. Moreover, we can choose L that bounds above (u;,m; ) + a;; for p; ¢ 7(1).
Therefore, ¥~ divides (z7)~. O

Lemma 4.3. The homogeneous generic polynomials Fy, ..., F,, define a regular se-
quence in the localization ring C;- for any € 3(n).

Proof. We claim that F; is a nonzero divisor in C. This follows from Dedekind-
Mertens Lemma [B]14, Corollary 2.8], which says that a polynomial F is a nonzero
divisorin Az, ..., z,] if its content ideal is a nonzero divisor in A. The content ideal
is generated by the coefficients ¢ , for z# € R,, and they are all nonzero divisors.
Therefore, F, is a nonzero divisor also in C;- for all r € 3(n).

By Lemma 4.2, we can always find m, , € A; such that Fmirtai js invertible in
the localization ring C;- and let ¢; - be the coefficient in A associated to this mono-
mial. Then, similarly to [BCN22, Lemma 3.2], for any ¢ € {0,...,n — 1} there is an
isomorphism of (Al[zy,..., 2y, 21,. .., 2,])-algebras

(A[xl, ey Ty 21y 2] [ (FO, - ~,Ft>)j7 = (Al[zy, .oy, 21, -y 20)) 3

where AL = Kle;, ¢y #cir 0<i<tie, A= A, 0 < i < t]. This map

o . Fm; r+a; . .
sends ¢; , to —Ltr” T " for = 0,...,t, and leaves the rest of coefficients and
T T %

variables invariant. Applying again the Dedekind-Mertens Lemma as above, we
deduce that the polynomial F;.; is a nonzero divisor in (A% [xq,...,2p, 21, .., 2])z7)
and therefore in the ring (A[zy,..., %0, 21, ..., 2] /(Fo, ..., Fy)) - O

Next, we consider the two canonical spectral sequences associated with the
Cech-Koszul double complex C¢(K,(F)), where K,(F) denotes the Koszul complex
of the sequence of homogeneous polynomials Fy,...,F, in C. The terms of the
Koszul complex are graded free C-modules and we denote their homology modules
by H, for simplicity in the notation. If we start taking homologies horizontally, the
second page is:

H)(H,+1) H{Q(H,) HQ(H,—1) --- HY(Ho)=1I%YI
0 0 0 H}(Ho)
0 0 0 H['(Hy)
0 0 0 e H{""(Hy)
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The vanishing of the local cohomology modules H}(H;) for i > 0 and j > 0 follows
from Lemma 4.3 which shows that the F;’s form a regular sequence outside V' (b).
In addition, we deduce that H, are geometrically supported on V' (b) for all p > 0 by
a classical property of Koszul complexes, and hence that H?(H,) = H, for all p > 0.

On the other hand, if we start taking homologies vertically, we obtain the fol-
lowing first page:

0 0 0
0 0 0
H?(C(_ Ej a;)) — H{;‘(@k,kl(](— Zj;ﬁm« ;) ng(c)
Hy (C-20) = B @0 Ymp ) o B0

using that K;(F) = EB‘{JTS """ r} C(—= > kes ox)- We note that the vanishing of the two
first rows follows from (2.24) and the vanishing of A} (C) for all p > n + 1 is a con-
sequence of Grothendieck’s vanishing theorem [Gro57, Theorem 3.6.5].

Notation 4.2. The support Supp S of a graded module S is the subset of v € Cl(Xy)
such that S, # 0. We denote by I'; the support of the modules on the main diagonal,
except on the last row, and by I'y the support of the modules in the diagonal under
', except on the last row again, i.e.

T; = Supp(&]_o HY (Kpys1(F))) i=0,1. (4.9)

In addition, we define I'ges to be the support of all the cohomology modules that
are appearing above the diagonal in the first page of the second spectral sequence,
i.e. Ires = SUPP(®i<; H{(K;(F)). Moreover, from now on, we denote by § the divisor
class ag + - - - + o, — Kx where K x denotes the anticanonical divisor of Xs.

Remark 4.2. In the above analysis of the two spectral sequences associated to F,
we proved that K,(F), is an acyclic complex of A-modules for all o ¢ T'ges.
The comparison of the two above spectral sequences leads to the following

duality theorem.

Theorem 4.3. Let Xy be a projective toric variety which admits a maximal smooth
cone o € X(n) and let v € Cl(Xy) be a nef Cartier divisor. If § — v ¢ T'g UT'y, then

(I3 1)5_, ~ Hom((C/I),, A).
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Proof. From the comparison of the two spectral sequences associated to the double
complex C¢ (K. (F)), forall v € Cl(Xx) suchthaté—v ¢ T'oUT';, we get an isomorphism

(I4/1);_, ~ Ker (H:H(C( Y ai) = By @c(- Y aj))) .
o—v

J Jj#k

Moreover, using toric Serre duality (2.25) and the relation between sheaf and local
cohomology modules (2.23), we obtain

HIPHC(=) " 0g))s—p ~ H"(Xx, —v — Kx) ~ H*(Xy,v)" ~ Homu(C,, A).
J

By the same argument, we also have Hb”“(@kC(— > ik @))o—u = Homu (1, A). Us-
ing the first isomorphism, we get the duality property. O

Corollary 4.3. Let Xy, be a projective toric variety which admits a maximal smooth
cone o € X(n). Let Ay,...,A, be lattice polytopes as in (2.34) corresponding to
the polynomials Fp,...,F,. Let v € Cl(Xy) be a nef Cartier class and A, be the
corresponding polytope, written as in (2.13), satisfying 0 < v,,4; < MiNj—y @i n+;
for j=1,...,r. Assume also that é — v ¢ ', UT;. Then,

(Isat/I)g,y ~ HOI‘I‘IA(CV, A)

In particular, (7%2/1)s_, is a free A-module whose rank is equal to the rank of C,,
equivalently HF(R, v).

Proof. Using Theorem 4.2 i) (which does not require the o-positive property), we
can derive that (C/I), = C,. O

Remark 4.3. We notice that the case v = 0, which corresponds to the isomorphism
(I I)s ~ A, appears in [CDS97] in the case the polytopes Ay,...,A, are scaled
copies of the same ample polytope.

To close this section, we prove that if we consider a proper subset of the poly-
nomials that generate 7, then the corresponding ideal must be saturated at 5. We
will need this property in the next section.

Lemma 4.4. Assume that the polytopes Ay, ..., A, are n-dimensional. Let 7" be a
proper subset of {0,...,n} and consider the ideal Iy = (F;, i € T). Then, (I$%); =
(I7)s.

Proof. Consider the cohomology groups H/(K,(Fr)) where K;(Fr) denotes the Koszul
complex associated to Ir. Then, by (2.23),

JCT JCT
H{(K;(Fr))s = @ HI(C(=) )= P H ' (X2,>_ ar — Kx).
|J|=3 ke |J|=3 kg
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Using Serre duality (2.25), each of the summands is of the form:

Hi_l(XE, Zak — KX) ~ Hn_H_l(Xz, — Zak)
kT kT

AsJ C T'isapropersubset, >, . ; o isnefand its associated polytope is n-dimensional.
Therefore, we can apply Theorem 2.10, implying that H;(K;(Fr))s = 0 for all i > 2.
If i = 0,1, we can use (2.24). Therefore, comparing the two spectral sequences of
the Cech-Koszul double complex, we get (I52!/I7), = 0. O

3. Toric Sylvester forms

We take again the notation of Section 2.. As a consequence of Corollary 4.3, some
graded components of 7%3t/T are free A-modules and hence a natural question is to
provide explicit A-bases for them. This is precisely the goal of this section. We first
describe the graded component (7%3/1)s, which essentially follows from [CCD97].
Then, we introduce Sylvester forms to deal with the other cases. In what follows, we
assume that the projective toric variety Xy is o-positive with respect to a maximal
smooth cone o € 3(n).

Along the same lines as [CCD97], a nonzero element in (7%8¢/1)s ~ A can be con-
structed as follows. Using Corollary 4.2, if the polytopes Ay, ..., A,, are n-dimensional,
one can decompose each polynomial as

Fi=z- o+t +- -+ o, (4.10)
and consider the determinant

Sylvy = det (Fij) o, .,
This homogeneous polynomial is called the toric jacobian; we will denote its class
modulo 7 by sylv,,. Observe that, by construction, Sylv, is a linear form with respect
to the coefficients of each F;, 7 =0,...,n.

Lemma 4.5. Assume that A,..., A, are n-dimensional polytopes. Let P € I3 be
any homogeneous polynomial whose class in (7%3t/I); is nonzero. Then, for all i =
0,...,n, P must have degree > 1 with respect to the coefficients of F;.

Proof. For simplicity, suppose that P does not depend on the coefficients of Fy. For
any maximal cone 7 € (n), consider the monomial zF™o-+2 for some mo,r € A,
which is invertible in C;- by Lemma 4.2. Let ¢ , be the coefficient of zFmor+ao in Fy
and consider P as an element of C;-. As P € 1% there must be L € Z-, such that:

()P =GoFy+ -+ GpF, € 1.
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However, as P does not involve ¢, -, we can change this coefficient in C;- by

CO7T$Fm+a0 — F,
meJrao

without changing P. Therefore, (") P belongs to the ideal generated by 1, ..., F),
in C;-. Up to multiplying by some power L’ > L, we must have that ()" P belongs
totheideal generated by Fi, ..., F,, in C. Asthe above conslusion holds for every r €
¥(n), we deduce that P € (Fy,..., F,)3*. Now, using that the polytopes Ao, ..., A,
are n-dimensional, Lemma 4.4 implies that P € (F1,..., F,)s, contradicting that the
class of P modulo I is nonzero. O

Proposition 4.1. If the polytopes Ay, ..., A, are n-dimensional, the element Sylv,
belongs to (I%2);. Moreover, sylv, is independent of the choices of decompositions
(4.10). In addition, if § ¢ 'y UT, then sylv, is a generator of (1%/I); which is a free
A-module of rank 1.

Proof. Note that if 7 € X(n), then either 7 # o, in which case thereis k € {1,...,n}
such that z;, divides z” or 7 = ¢, in which case Z” = z; - - - z,. Using the invariance of
the determinant under column operations and using the decomposition in (4.10),
we get

oo mpFoy P R
zpSylvy =det{ -~ 1 o =det|- t el k=1,...,n. (411)

xan,k F,

The same holds for the monomial z; - - - z.. Therefore, we deduce that Sylv, € 153t =
(I : b>). In order to prove that sylv, has degree §, we find the degree of each
entry (i, ) of the matrix defined by the F; ;’s. In (4.10), we divided the monomials
of degree «; by a monomial of degree

(e;) if the monomial is z; for k = 1,...,n,
7(3_y ens;)  if the monomial is z; - - 2,

where {e;}77] is the canonical basis of z>™). On the other hand, the anticanonical
class Kx coincides with the degree of the monomial z; --- 2,21 - - - 2, (see [CLS12,
Theorem 8.2.3]), which is equal to 7 (377 ¢;). Therefore, the degree of each of the

J
summands constituting the determinant is equal to:

n

Z (Cki - W(er(i))) = (Zn: Oéi) — KX = (5, (412)
1=0

i=0
where eg = 3777 .| e, and 7 is any permutation of {0,...,n}.

The fact that sylv, is nonzero and the independence from the choice of the
decompositions in (4.10) are consequences of the global transformation law; see
[CCD97, Remark 2.12 iii), iv)].
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If 6 ¢ TouTy, (I%Y/1)s is a free A-module of rank one. By Lemma 4.5, any
generator g of (I%'/I); must have degree greater or equal than 1 with respect to
the coefficients of F; for i = 0,...,n. On the other hand, the construction of sylv,
indicates that for all i = 0, ..., n, the degree of sylv, with respect to the coefficients
of F; is smaller or equal to 1. Thus, if we write sylv,, = cg for some ¢ € A, the degree
of ¢ with respect to A must be zero, implying that ¢ € kK. This implies that sylv, is
also a generator of (7%3'/I)s as an A-module. O

In order to use [CCD97, Remark 4.12 iv)], we need to be able to specialize to
values in the field of complex numbers C. Therefore, from now on, we assume that
the field k is a subfield of the complex numbers. Assuming § ¢ I'oUT';, Theorem 2.10
implies that the Sylvester form sylv,, corresponds to the unique lattice point in the
interior of the polytope Ay associated to the anticanonical divisor K, i.e.

(I 1)5 ~ H{PH(C(= ) ai))s ~ H( Xy, —Kx) ~ Opnepeling(ag) AX "

So far, we proved that the toric Jacobian sylv, yields an A-basis of (I%2!/1); ~ A.
The next step is to construct an A-basis of (7%3/I);_, when it is a free A-module.

Definition 4.2. Let Xy, be a projective toric variety which is o-positive for some
o € X(n). Assume that the polytopes Ay,..., A, are n-dimensional. Let v € Cl(Xy)
be a nef Cartier class and A, be the corresponding polytope written as in (2.13) and
satisfying 0 < v,,4; < min;—g__n a; n4; for j =1,...,r. According to Theorem 4.2, for
any z* € R, and for any i € {0, ...,n} the polynomial F; can be decomposed as

F, = Zitn+1+1 . Zﬁn+r+1FijO + :L,,LlqulFi;jl 4ot xgn—f—lFi;fn. (4.13)
We define the toric Sylvester form Sylv, as the determinant
Sylv,, = det(F}";)o<i j<n-

The class of Sylv, modulo I is denoted by sylv,. Observe that, as with Sylv,, the
Sylvester forms are linear in the coefficients of F; fori =0,...,n.

If we are given two different monomials z#, z* € C,, there must be some k ¢
{1,...,n} such that u; # . Otherwise, using (2.19), we can derive that z# = z*'.
With this, we can introduce the following lexicographical monomial order.

Definition 4.3. Given two monomials z* and z* of degree v, we say u < ' if ko =
min{k € {1,...,n} py # py} satisfies py, <y, .

Theorem 4.4. Let Xy, be a projective toric variety which is o-positive for some o €
¥ (n) and that the polytopes Ao, ..., A,, are n-dimensional. Let v € Cl(Xy) be a class
satisfying the hypotheses of Theorem 4.2. Then, for every z* € R,, Sylv, belongs
to (I°%");_, and its class sylv, is a nonzero element in (7°*'/I);_, . Moreover, for
o, 2" € R,, we have

sylvg p =4/

o aew (4.14)

z sylv = {
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As a consequence, the Sylvester forms {sylv,},.cg, are linearly independent in
(Isat/I)(;,l,.

Proof. The fact that Sylv, is of degree § — v follows by analyzing the degree of each
summand in det(Fi‘fj) as in (4.12). Moreover, we can use the same argument as in
(4.11), to see that z/* Sylv, € Iforallk =1,...,n and Al et Sylv, € I.
This proves that Sylv, € I3 . Consider two distinct monomials =*, z* € R, such

14

that p < 1/, then there is ky € {1,...,n} such that:

u
lu/ o X p,k,o-f—].
x Sylvu = T%kao SylvlL el
ko

and hence z* sylv,=0€ (I sat /T)s_,. On the other hand, we have:

at Sylv, = 2y - Sghtn Al g det(F};) = det(a:?jl?{fj)
but at the same time, the decomposition

L Knt1 | pnt 14 H1 w2 i
Fi=2z1-22] zhm TFi,O + 117 FZ + + Tpah an

gives the Sylvester form sylv,, implying that = sylv, = sylv, and that Sylv, ¢
I. From these two facts, we can derive that the Sylvester forms are nonzero in
(I%2'/I);_, and linearly independent. Namely, ifwe have arelationy_ .., A, sylv, =
0 for some )\, € A, then multiplying by the monomials z# € R, in decreasing order
with respect to <, we derive that A\, = 0 for all z* € R,. O

We notice that the relation between Sylvester forms and monomials stated in
Theorem 4.4 can also be deduced from the global transformation law in [CCD97].
As the decomposition we provided in Theorem 4.2 differs from the one provided in
[BCN22, Section 4] for the multihomogeneous case, we can see that, in general, the
Sylvester forms and the monomials of degree » do not form a pairing. In particular,
we can see that there isamatrix D = (D, ;) ,u ' c g, Whose entries are polynomials
in A ordered with respect to < and satisfy that:

ot sylv, = Dy, sYIV,, . (4.15)

Note that D, ,, can be computed using the global transformation law and noting
that:

. ! . /
Dy = Residue g, . g, (2" sylv,) = Re31due( Al et Z;L,IHH“_Z:LHTH)(:U“ )

Ty

(4.16)
This last residue is zero, if and only if, ' belongs to the ideal
(x/f1+17 o 7‘,1:,%714’17 Ziln+l+1 . Zﬁn+7‘+1),

Otherwise, as the residue does not depend on A4, it must be a nonzero element in K,
which is also independent of the decomposition (4.5) giving rise to sylv,,. Theorem
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4.4 implies that the matrix D is lower triangular with ones in the diagonal. There-
fore, D is invertible and its inverse has entries in k. If Xy, = P, the decomposition
in (4.13) coincides with the one given in [Jou97] and we can see that D is the identity
matrix.

In the next theorem, we prove that the Sylvester forms yield an A-basis of
(I%3t/1)5, when it is a free A-module. This result is the key to the applications we
discuss in the following sections.

Theorem 4.5. Under the assumptions of Theorem 4.4 and if 6 — v ¢ Ty UT; (see
Notation 4.2), {sylv, },uec, is an A-basis of (I%3t/1)5_,. Moreover, the classes sylv,,
do not depend on the choice of the decompositions in (4.13).

Proof. In Theorem 4.4, we proved that the set of forms {sylv,,},ucp, is linearly in-
dependent. Moreover, as in [BCN22, Theorem 4.9], consider the canonical basis of
Hom(C,, A) which is dual to the monomial basis of C,. Namely, to each monomial
z# € C,, we associate the map:

Xr.C,— A

which sends z* to one and every other monomial to 0. Moreover, consider the A-
linear isomorphisms
¢: A= (ID)s ¢ — esyly,

and
- i
D,:C,—-C, zt— Z D,y pat
=+ €R,,

where ¢ is an isomorphism by Proposition 4.1 and D, is an isomorphism because
the matrix D is invertible. Therefore, by (4.15), the composition ¢ o X* o D, corre-
sponds to multiplying the monomials in C, by sylv, and realizes the isomorphism
(I%?t/1)5_, ~ Hom(C,, A). This proves that the Sylvester forms {sylv, }uner, yield
an A-basis of (I%'/I)s_,. Moreover, this also implies that the classes sylv,, are in-
dependent of the decompositions (4.13) since the maps ¢ o X* o D,, are themselves
independent of these decompositions.

O]

4. Application to toric elimination matrices

An important motivation for studying the structure of the saturation of an ideal
generated by generic sparse polynomials is for applications in elimination theory,
in particular for solving sparse polynomial systems. In this section, we introduce a
family of matrices whose construction involves toric Sylvester forms. It yields new
compact elimination matrices that can be used for solving 0-dimensional sparse
polynomial systems via linear algebra methods. We refer the reader to [EM99;
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BT22; Tel20] for a thorough exposition of such methods that we will not discuss
in this paper.

In what follows, Xy, will denote a projective toric variety which is assumed
to be smooth and o-positive for some maximal cone o € X(n), and we will con-
sider a generic sparse polynomial system defined by homogeneous polynomials
Fy, ..., F, as defined in (2.21). We require Xy to be smooth because we will use the
Grothendieck-Serre formula (2.27). This setting covers many cases that are of inter-
est for applications. We notice that the smoothness assumption is not very restric-
tive as Xy, can be replaced by one of its desingularization varieties (see e.g. [CLS12,
Chapters 10, 11]), but the preservation of the o-positive property under desingular-
ization is not obvious.

Notation 4.3. The elimination matrices we will consider are universal with respect
to the coefficients of the F;’s, so we introduce the following notation to study rig-
orously their properties under specialization of these coefficients. Recall that 7
denotes the ideal in C generated by Fy, ..., F,.

Any specialization (i.e. ring morphism) ¢ : A — k induces a surjective map
C — R where R = K[z, : p € ¥(1)] (this map leaves invariant the variables z,).
Foralli = 0,...,n, we define f; = 6(F;) € R, we denote by I(f) the homogeneous
ideal (fo,..., f,) of R and set B(f) = R/I(f). Moreover, we also set Bst = (/%!
B(f)% = R/I(f)% and B%(f) = C/I®(f) (observe that I(f)%' and I%8(f) are in
general not the same ideals). Finally, for any matrix M with coefficients in A4, we
denote by M(f) its specialization by ¢ : A — k. We will refer as V(I(f)) to the
zero set of the polynomial system defined by 7(f) over (Xx); where k denotes an
algebraic closure of k. Recall that in Section 3., we assumed that k is a subfield of
C. Thus, we can consider that V(I(f)) are the zeros of I(f) over C.

In what follows, we will consider Pic(Xy) instead of Cl(Xy;) as all Weil divisors
are Cartier in a smooth variety (see [CLS12, Proposition 4.2.6]).

Hybrid elimination matrices We begin by describing precisely what we mean
by an elimination matrix M associated to the polynomials Fy, ..., F,. It is a matrix
whose columns are filled with coefficients of some homogeneous forms that are
of the same degree and that all belong to the saturated ideal /%% ¢ C. Thus, its
entries are polynomials in A. Moreover, it is required that for any specialization
map 6 : A — k the following two properties hold:

1) The corank of M(f) is equal to zero, if and only if, fy = --- = f, = 0 has no
solution in Xx..

ii) If the number of solutions of f; = --- = f, = 0 (over K) is finite in Xy and
equals «, then the corank of M(f) is .

We note that the first property yields a certificate of existence of a common root
of the f;’s, which is related to sparse resultants, a topic we will address in the next
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section. The second property is mainly required for solving 0-dimensional polyno-
mial systems by means of linear algebra techniques based on eigen-computations.
In this approach, the common roots of the f;’s are extracted from the cokernel of
M(f) (see e.g. [BT21]).

A very classical family of elimination matrices is obtained by filling columns
with all the multiples of the F;’s of a certain degree. These matrices are usually
called Macaulay-type matrices and are widely used for solving 0-dimensional poly-
nomial systems (see for instance [BT22]). To be more precise, these matrices, that
we will denote by M, are presentation matrices of the A-module B,, i.e. are matri-
ces of the maps

(@i C(—ai)), — Ca 4.17)

(Go,..,Gn) = > GiF,.

Of course, some conditions on « € Pic(Xy) are required in order to guarantee that
M, is an elimination matrix; we refer to [EM99] and to [Tel20, Chapter 5] for more
details. Applying results we proved in the previous sections, we are going to extend
the family of Macaulay-type matrices by using toric Sylvester forms. We recall that
Sylvester forms belong to 753t by Theorem 4.4.

Definition 4.4. Let o be such that (7%2'/I) isafree A-module generated by Sylvester
forms, so that (Isat/I)a ~ @uuec; A (see Corollary 4.3 and Theorem 4.5), and con-
sider the map

(O Cl-a)), o @B A| — Ca (4.18)
eHeCs_q
(Goso o Gr) @ (b)Y GiFi+ Y 1,Sylv,.
i=0 zheCs_g,

Its matrix (in canonical bases) is called a hybrid elimination matrix and denoted by
H,,.

The matrices H,, are called hybrid because they are composed of two blocks,
one from the classical Macaulay-type matrices and another one built from toric
Sylvester forms; see Example 4.3. In particular, M,, = H, if (1%/I), = 0, so that
the family of matrices H, extends the family of Macaulay-type matrices M,,. Thus,
from now on we will use the notation H,, instead of M,. Our next step is to prove
that these matrices are elimination matrices.

Main properties In this section, we first prove that the matrices H,, introduced
in Definition 4.4 are elimination matrices. Then, we give an illustrative example
and also provide another criterion to construct the matrices H, without relying on
the computation of the supports I'; and I'; (see Notation 4.2).
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First, suppose given a specialization map (see Notation 4.3) and a degree «.
From the results of Section 2. and Section 3., and also Definition 4.4, we deduce
that the image of the matrix H,(f) is I%(f),, so that its corank is HF(BS3(f), a).
Therefore, a natural question is to compare this Hilbert function of B%( f) with the
one of B(f)% in degrees for which hybrid matrices H,, are defined (see Definition
4.4). We recall that we use the notation of Section 2. and we assume that the toric
variety Xy is smooth and o-positive for a maximal cone o € X(n).

Lemma 4.6. Let o ¢ I’y UT'; C Pic(Xy) and suppose given specialized polynomials
fo,--., fn defining a 0-dimensional subscheme in Xy, possibly empty, of x points,
counted with multiplicity. Then,

HE(B(f)™,a) = HF(B%(f),a) = .

Proof. This proof goes along the same lines as [BCN22, Lemma 2.7]. First, one ob-
serves that I(f) c I5Y(f) c I(f)%" so that B(f)%, B%¥(f) and B(f) have the same
Hilbert polynomial, which is the constant « by our assumption.

Now, H}(B(f)%") = 0 for i = 0 and for all « > 1 since V' (I(f)) is finite. Applying
Grothendieck-Serre formula, it follows that HF(B(f)%, «) = « for all « such that
HE(B(f)%), = 0. Analyzing the two spectral sequences associated to the Cech-
Koszul complex of fy, ..., f,, we get that the above vanishing holds for all o« ¢ T'zUT';.

Similarly, Grothendieck-Serre formula and the finiteness of V' (I(f)) imply that
HF(B%(f),a) = & for all a such that HY(B(f)%"), = H}(B(f)%"), = 0. By [Chal3,
Proposition 6.3], the vanishing of these modules can be derived from the similar
vanishing conditions H)(B%), = H{}(B%), = 0. These latter conditions hold for
all o ¢ T’y U Ty, which concludes the proof. d

Remark 4.4. As a consequence of the above lemma, the canonical map from 732! to
I(f)%3t, which is induced by a specialization 6, is surjective, i.e. generators of 7(f)3at

o

can be computed by means of universal formulas.

Theorem 4.6. Assume that the toric variety Xy is smooth and o-positive for a max-
imal cone o € X(n). Then, for any o ¢ I'y UT'; C Pic(Xy) satisfying that (7%2/I) ~
Garec;_, A, the matrix H, is an elimination matrix, i.e. it satisfies:

1) corank(H,(f)) = 0if and only if V(I(f)) is empty in Xy,
ii) If V(I(f)) is a finite subscheme of degree « in Xy, then corank(H,(f)) = .

Proof. We first prove 7). If V(I(f)) is empty, equivalently B(f)%" = 0 (which fol-
lows by the Grothendieck-Serre formula requiring the smoothness of Xy), then
HF(B%3(f),a) = 0 by Lemma 4.6. If V(I(f)) # 0, then the f;’s have a common solu-
tion, say the point p € Xy, (over k) with defining ideal I, (radical and maximal in
R). Therefore, since 1%8(f) c I(f)% c I, and HF(R/I,, 3) = 1 for all 3 € Pic(Xy) by
the maximality of 7, we deduce that HF(R/I%%(f), a) # 0 for any «. The proof of ii)
follows from Lemma 4.6. O
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(0,0) (1,0) (2,0)
Figure 4.2: The polytopes A; corresponding to the generic sparse homogeneous polynomials in Ex-

ample 4.3 with the lattice points marked in red.

Example 4.3. Let Z? be the lattice and Xy, be the Hirzebruch surface %, described
in Example 4.2. Consider the following polytope presentations:

Ay ={m eR?: (m,(1,0)) >0, (m,(0,1)) >0, (m,(=1,-1)) > =2, (m, (0,-1)) > —1},

for i = 0,1,2. H; has the o-positive property for ¢ = ((1,0),(0,1)). The class in
Pic(#;) = Z? corresponding to these polytopes is o; = (2,1),i = 0, 1,2, and we write
the corresponding generic homogeneous sparse polynomials as:

Fy = o222y 4 a1x12120 + a2 20 + a3waz) + a2
resp. Fy, F> with coefficients b;,¢;,j =0,...,4. (4.19)

/|Figure 4.3: This is the picture of the regions I'o,I'1,I'res, I’ C
Pic(Xx) = Z? (the latter being defined in Section 3., (4.32)). The
3,1) blue region corresponds to I'y, the red region corresponds to I'q,

: “]the green region corresponds to I'res and the brown region corre-
sponds to I'. We marked in orange those o with (I**'/I), # 0. We
; derived the local cohomology of #, from [Alt+20]; see also [EMS00;
21Bot11].

Figure 4.3 describes the supports I'y, I';, 'res. We deduce that elimination matrices
H, are obtained for o € {(4,2),(3,2),(3,1),(2,1)}. In the cases a« = (4,2) and o =
(3,2), we get two Macaulay-type matrices. The two other cases give the following
matrices:

» Case a = (3,1). This matrix corresponds to o = ¢ and in this case, we are intro-
ducing a Sylvester form. This form is Sylv, and can be computed, as before,
by a determinant that we write as:

a12129 + agx129 + aqxre asz1 Qo2
det

bizize 4 bawrzp 4 bawy - a2y 5021) = [130]2825 + [230]z1 232 + [430)223,
C121%292 + Cox122 + Cc4x2 €321 Coz1

a;  aj Qg
b b by

). Therefore, the elimination matrix Hs 1) is of the
C; Cj Ck

where [ijk] = det(
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form:

ag ay as 0 as ay 0
0 ap a1 a2 0 a3 a4
bo by by 0 b3 by O
Hgpy=| 0 b b by 0 by by
Co C1 C2 0 C3 C4 0
0 cpo €1 €2 0 c3 ¢4

[130] [230] 0 O [430] 0 0

This type of matrices for a = § were already known from [CDS97] as the A;’s
are all equal and ample in #;.

» Case a = (2,1). We obtain the following matrix H, ;) which is built from two
different Sylvester forms:

aop ax az az ag
bo by by b3 b4
Hen =1 < 1 c2 3 ¢

(013] [023] +[014] [024] O O
(023] [024] +[123] [124] 0 0

that correspond to the monomial basis {z;, 21} of C, for v = (1,0). As far as
we know, these matrices did not appear in the existing literature.

Example 4.4. Consider again Example 4.3 with the same Fj, F; as in (4.19) but sup-
pose now that ay = (1, 1) and thus the corresponding generic homogeneous sparse
polynomial F; is:

Fy = coz120 + c1x129 + c3xo. (4.20)

In this case, the Newton polytopes A;’s are not scaled copies of a fixed ample class
and «y is not even ample in #,. However, the polytopes A; are n-dimensional.
Therefore, Corollary 4.2 and Theorem 4.6 imply that Hj is an elimination matrix
for § = (2,1). The corresponding Sylvester form is

a12122 + as2x122 + a4x2  azzy  apzl
det

i1z +borzo +bava bsz bOzl) — [130)2%29 + [230]21 2120 + [430]221,
C122 c3 €o

a; aj Qg
by by by

), with the convention that ¢; = 0 if this coefficient does
C; Cj Ck

where [ijk] := det(

not appear in F». Then, the corresponding elimination matrix is

ag ay az as a4

bo b1 ba by by

IHI(Q7 1) = Co C1 0 Cc3 0
0 co c1 0 c3

(013] [023] +[014] O [024] 0
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This example illustrates that we obtain the same type of matrices as in [CDS97] but
under different assumptions: we are assuming that the polytopes Ay, ..., A, are n-
dimensional and Xy, has the o-positive property, and in [CDS97] it is assumed that
the «;’s are scaled copies of the same ample class.

0,1

0,0) (1,0)

Figure 4.4: The polytope corresponding to the generic sparse homogeneous polynomial F, in Example
44.

As illustrated in Example 4.3, the construction of elimination matrices H, re-
quires the computation of the support of the local cohomology modules H{(R). This
task can be delicate, although several results are known; for instance, see [Alt+20]
for the cases where the fan ¥ splits or the rank of Pic(Xy) is 2 or 3, or see also
[EMSO00; Bot11]. In order to avoid such computations, the next result yields some
sufficient conditions to get hybrid elimination matrices.

We recall that we are using the notation in Section 2.. In particular, for i =
0,...,n, we write «; € Pic(Xy,) for the classes associated to the homogeneous poly-
nomial system, K x for the anticanonical divisor and we set 6 = g + - - - + v, — Kx.

Theorem 4.7. Assume that the toric variety Xy is smooth and o-positive for some
maximal cone o € ¥(n). Moreover, assume that the polytopes Ay,..., A, are n-
dimensional. If « € Pic(Xy,) satisfies either of the two following properties:

1) o = + v with v a nef class or;

ii) o =0 — v, where v is a nef class satisfying the hypotheses of Theorem 4.2 and
foralli = 0,...,n, a; — v is a nef class that corresponds to an n-dimensional

polytope,

then H,, is an elimination matrix. In addition, it is purely of Macaulay-type if and
only if « satisfies i) but not ii).

Proof. First, recall that the notation K;(F') stands for the terms of the Koszul com-
plex associated to Fy,. .., F,. We will also denote by .J subsets of {0,...,n}. For both
cases, our strategy is to show that « ¢ Ty UT'; and (I%2/1),, = ¢,A in order to apply
Theorem 4.6.

We begin with the case i) and pick « = ¢ 4+ v with v a nef class. We have

Hy(Kj(F))s v ~ Hy(@171=C(= > a))srv = Sj— Hi(C)s ooy, jar 12 0,5 =0,...,n+1.
leJ
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Recall that the local cohomology functors commute with direct sums. Using (2.23)
and (2.25) for i > 2, we get:

Hé(c)‘”‘l’_zle] o X Hi_l(Xz, Zal —Kx + I/) ~ Hn_H_l(Xz, — ZO&[ — I/).
1¢.J 1¢J

If 7 # {0,...,n} then the class of Diggou+vis nef and its associated polytope is
n-dimensional. In this case, we can apply Theorem 2.10 to deduce that

H" " (Xy, =Y oy —v) =0fori>2.
1¢J
As Hi(C) =0fori=0,1 (see (2.24)), it follows that
HY(K;(F))ss, =0forallj #n+1

and hence, by definition of T’y and I'; (see (4.9)), that §+v ¢ T'yUT';. As a consequence,
Theorem 4.3 shows that:

(I /D)5, = Homu((C/) -, A).

As v is nef (and also effective), Remark 2.3 implies that (C'/I)_, = 0 for all v # 0. On
the other hand, Corollary 4.2 implies that and (C/I)q = A. Therefore, (1%3/1)5,, =0
for all v, except v = 0 where we have (7%3/)s ~ A. From here, Theorem 4.6 implies
D).

We proceed similarly to prove ii) and pick o« = § — v. We have:

Hy(Kj(F))s—v ~ Hy(@171=C(= > a1))s—v = S 5)= Hy(C)s—pes . yar 1> 0,5 =0,...,n+1
1eJ

and using (2.23) and (2.25), for all < > 2 we get:
Hy(C)s—ps, jor = H (X5, Y ou = Kx —v) =~ H" " (Xy,v = > ).
1¢J 1¢J

Our assumptions imply that the «; — v are nef and their associated polytopes are
n-dimensional for i = 0,...,n. Hence, if J # {0,...,n}, the classes Zlﬂ o — v are
also nef and their associated polytopes are n-dimensional. Applying Theorem 2.10,
we deduce that

H{(K;(F))s—, =0forall j #n+1,

hence § — v ¢ Ty UT;. Applying Theorem 4.3, we deduce that
(1% I)s_, = Homu((C/1),, A).

Finally, since v satisfies the hypotheses of Theorem 4.2, we deduce from this the-
orem that (C/I), = C, and (I%/I)s_, is a free A-module, which concludes the
proof. O
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Corollary 4.4. Assume that the toric variety Xy is smooth and o-positive for some
maximal cone o € ¥(n). If the polytopes Ay,..., A, are all n-dimensional, then H;
is an elimination matrix.

Proof. Apply Theorem 4.7, i) with v = 0. O

Example 4.5. Taking again Example 4.3, we observe that several elimination ma-
trices are obtained from Theorem 4.7. Indeed, the matrix H, ) is of Macaulay-
type and corresponds to case i) in this theorem. The matrix H, ;) corresponds to
case ii) while the matrix H; ;) corresponds to both cases i) and ii) (v = 0). How-
ever, the matrix Hs,) does not belong to either of the two cases. Using the ex-
plicit computation of I'y and I'; that we showed in Figure 4.3, we can derive that
(I52%/1) 39y = Hom((C/I)_(o 1y, A) where (C/I)_ 1) = 0 and thus, Hs 5 is also an
elimination matrix.

Overdetermined sparse polynomial systems In this section we extend the con-
struction of hybrid elimination matrices to the case of homogeneous polynomial
systems that are defined by » + 1 equations with » > n. Such systems often ap-
pear in practical applications and are referred to as overdetermined polynomial
systems.

Notation 4.4. We assume that the projective toric variety Xy is smooth and o-
positive for some maximal cone ¢. In what follows, Fy,..., F, are generic homo-
geneous sparse polynomials corresponding to nef classes «y, ..., a,, I denotes the
ideal they generate and B = (/I the corresponding quotient ring. For each sub-
set T c {0,...,r} of cardinality n + 1, we set Ir = (F; : i« € T), By = C/Ip
and ér = 3 ,.pa; — Kx. We denote by Sylv, , the Sylvester forms that can be
formed from {F;};cr; see Section 3.. We also denote by K,(F') the Koszul complex
of Fy, ..., F, and by K7 ,.(F) the Koszul complex of {F;};cr.

The following result is a generalization of [BCP23, Chapter 3, Proposition 3.23]
which deals with the particular case Xy = P".

Theorem 4.8. Using the previous notation, suppose that there exists a subset S C
{0,...,r} of cardinality » + 1 and a nef class v € Pic(Xy) satisfying the hypotheses
of Theorem 4.2 such that

VieS j¢S o —ajisnefand
Vi e S «a; —visnefand corresponds to an n-dimensional polytope. (4.21)

Then, the set of Sylvester forms
{sylvy, : T C{0,...,r} such that |T'| =n + 1 and 2" € Cs; 5541}

yields a generating set of the A-module (7%%/1)s,_,.
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Proof. First, we use Serre duality and Theorem 2.10 in order to compute the local
cohomology modules H{(K;(F))ss—v, fori =0,...,n+1and j = 0,...,n, similarly
to what we did in Theorem 4.7. Namely, for i > 2 we get

H{(K(F))ss—v ~ Sr— Hi(C(—= D ar))ss—v ~ Sr— H* (X5, Y ak— > aw+v).
keT keT k'eS

As we assumed that j < n+1, we can show that the previous cohomology module is
of the form H"*1~( Xy, —a) for a a sum of nef divisors whose corresponding poly-
tope is n-dimensional. Namely, the elements in S N 7 cancel each other, and the
rest of elements £’ € S can be either (i) paired up with o4, for k& € T satisfying that
ay, — oy 1s nef, (ii) paired up with v satisfying that «; — v is nef and the correspond-
ing polytope is n-dimensional, or (iii) they are nef themselves. Therefore, applying
Theorem 2.10 for + > 2 and Remark 2.24 for i = 0, 1, we deduce:

HUKj(F))sg—p~0 i=0,...,n+1,j<n+1. (4.22)

As a consequence, from the comparison of the two spectral sequences that are con-
sidered in Theorem 4.3, we obtain the following transgression map, which is an
isomorphism of graded modules:

7 Hy1(Ko(F), HMNC))sg—0 — HE (B)sg—u-

Forany T c {0,...,r} of cardinalty n + 1, let 7 be the corresponding transgression
map for K7 .(F) and By. For each of these Koszul complexes, we have a canonical
morphism of complexes Kro(F) — K.(F) that induces:

L(F)= @ Er.F)— K(F).
|T|=n+1

It follows that there is a commutative diagram:

B1nt1 Hnit (K1 (F), HTH(C)) 55— —— Hp1(Ko(F), HIH(C))s5-0
O TTl k . (4.23)
@IT\:n—l—lH[?(BT)%—V Hg<B)5S—V

As the two vertical arrows are isomorphisms, in order to show that the bottom
arrow is surjective, it is enough to show that the top arrow is surjective. For that
purpose, we observe that L, (F) = K,,+1(F) by construction and also

E(rj=ns1 Hn1 (K10 (F), Hy7H(C))sg— = Ker (Hy ™ (L1 (F)) = Hy ™ (Ln(F)))sg—0-
However, by the same argument as in (4.22), HgL“(Ln(F))(;S,,, =0, S0
Drienst st (K a(F), By (CO))gg o = HE (Kt (F))sg e (4:24)
On the other hand,

Hn—i-l(K'(F)a H[:H_I(C))(Ss—u =
ker(HEL+1(Kn+1)5SfV - Hg+1(Kn)5Sfu)/im(Hgl+1(Kn+2)557V - H:+1(Kn+1)6571/)-
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As above, H""'(K,)s5,—, = 0 and so

Hypr (Ko (F), HE Y (C) )5 = HE (Kt )/ A(H Y (Ko2) 5 = HE T (Ke)55-0)-
(4.25)
By comparing (4.24) and (4.25), we see that the top map in the diagram (4.23) is
surjective, as we wanted to prove. It follows that the basis of Sylvester forms of
®|r=n+1Hy (Br)ss—v 1 a set of generators of H) (B)sg—, = (I°4/1)55_,. O

We are now ready to extend the construction of hybrid elimination matrices
to overdetermined homogeneous polynomial systems.

Theorem 4.9. We denote by H,, the matrix of the following map:

(B1oC(—a)), &y A 5 C, (4.26)

TC{OV'WT}: |T‘:TL+1,
m”EC(;T_a

(G07-~-7Gn>@(-HJT,;MH-) — ZGle—‘r Z Z ZTJLSYIVT,M
=0

TcH{0,...,r} HE€Cs —a
|T|=n+1

where a = 65 — v and where [, € A for all x and 7. Under the assumptions of
Theorem 4.8, H,, is an elimination matrix, where o = §g — v.
Proof. The proof goes along the same lines as the proof of Theorem 4.6 for the case

r=n. O

Example 4.6. Taking again the notation and the polynomials Fy, F;, F> of Example
4.3, we add another polynomial of degree a3 = (2,1) in H; and write it in homoge-
neous coordinates as

Fy = do2? 20 + dy1 2129 + doa? 2o + d3wozy + dyzy2o.

Following Theorem 4.9, the matrix Hj, for dg = (3,1) is

ag al a> 0 as ags 0

0 ag al ag 0 as aq

bo by by O b3 by O

0 bo b1 b 0 bs by

Co cl c 0 cs3 cy O

0 (&) C1 C9 0 C3 C4

do dy do 0 ds dy O

0 do di dy 0 d3 dy
[130]ape  [230]ape O O [430]pe O O
[130]apa  [230]ae¢ O O [430]apa O O
[130]acd [230]aeca O O [430]ged O O
[130)pca [230]bcg O O [430]peg O O
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a;  Qj ag

where [ijk]gpe = (bi bj bk), and [ijk]abds [27K]acd, [ijk]pca defined accordingly. It is
i G Ck

an elimination matrix for the overdetermined polynomial system defined by the

polynomials Fy, Fy, F> and Fs.

We conclude this section with a comment on the computational impact of the
hybrid elimination matrices obtained in Theorem 4.9. Indeed, these matrices are
intended for solving overdetermined O-dimensional polynomial systems via eigen-
value and eigenvector computations, applicable over projective spaces, multi-projective
spaces, or more broadly, smooth projective toric varieties that are o-positive for a
given maximal cone o. In comparison with the more classical Macaulay-type ma-
trices, hybrid elimination matrices are more compact. In particular, these matrices
have a smaller number of rows, which is a key ingredient with respect to compu-
tational complexity.

Indeed, this number of rows is controlled by the vanishing of the local coho-
mology modules at certain degrees, including the control of the saturation index
of the homogeneous ideal I(f) generated by general polynomials fy,..., f, of de-
grees ay, ..., «,. In the case of hybrid elimination matrices, the situation is similar
with the difference that now one considers the homogeneous ideal generated by
fo,--., fr and their toric Sylvester forms, whose saturation index is smaller than
the one of I(f).

To be more concrete, we considered some specific polynomial systems for which
we report, in Table 4.1, the number of rows of hybrid elimination matrices (4.18)
and of Macaulay matrices (4.17). We considered systems of 4 generic homogeneous
polynomials in four different settings of Newton polytopes and degrees, all corre-
sponding to 3-dimensional varieties. As expected, we observe that hybrid elimina-
tion matrices have a significantly smaller number of rows compared to Macaulay
elimination matrices.

degree « number of rows
Classical ‘ Hybrid Classical | Hybrid

Type of system

Polynomials of deg. 2 in P3 5 3 56 20
Polynomials of deg. 10 in IP3 37 27 9880 4060

Polynomials of deg. (2,1) in P2 x P! (6,3) 4,2) 112 45

Polynomials of deg. A x [0,1]in 71 x P* || 3(A x [0,1]) | 2(A x [0,1]) 88 36

Table 4.1: The first column describes the type of system of 4 homogeneous polynomials which is
considered. The second column provides the degree o for which the classical Macaulay-type matri-
ces and the hybrid elimination matrices are constructed. The third column gives the corresponding
number of rows of these two matrices. The Newton polytope A in the last row corresponds to the
degrees of the polynomials considered in Example 4.3 .

We remark that the number of columns of hybrid elimination matrices may

increase fast when the number of equations is large compared to the dimension of
the ground projective toric variety.
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5. Sylvester forms and sparse resultants

For the results of this section, we assume the setting of the homogeneous resultant
in Section 3. and the fact that, for some « € Pic(Xy), Res4 can be computed as the
determinant det(K,(F),). In order to incorporate Sylvester forms in this setting
construction we proceed as follows.

As in Definition 4.4, let a be such that (1°%'/I) is a free A-module generated
by Sylvester forms, i.e. (I%/I) ~ @ucc;_,A. We define the complex K3'(F),
as the graded strand K,(F), of the Koszul complex, where the map on the right,
namely (K;), — C, (see (2.36)), is replaced by the defining map (4.18) of the hybrid
elimination matrices. More precisely, K3 (F), the following graded complex of
free A-modules

On (93)a
Z az a 1o L ®k,k’c(_ak - ak’)a

(62)(1@0

8 « «
—_— @kc(_ak)a @xﬂectsfa A (—1)—@:_)

Co, (4.27)

where the map (0;).®7, is the map (4.18), 7, denoting the map from & ucc,_ Ato C,
corresponding to the Sylvester forms. By definition, we notice that H,;(K$(F),) =
H;(K.(F),) for all i > 2. Moreover, we also see that H;(K$3(F),) ~ Hi(Ke(F)a),
because 7, is injective by property of the Sylvester forms, and that Hy(K$(F),) =
(Bsat) .

Theorem 4.10. Assume that Xy, is a smooth projective toric variety which is o-
positive for a maximal cone ¢ and that the classes «y, ..., «, are ample. For every
a ¢ Tres, K3 (F),, is an acyclic complex of free A-modules. Moreover, if « = § — v as
in Theorem 4.7 ii), then det( K$3'(F),,) is equal to Res 4 up to a nonzero multiplicative
scalar in k.

Proof. By construction, the acyclicity of K$3'(F), follows from the acyclicity of the
usual Koszul complex (see above). Moreover, since Hy(K$3Y(F),) = (B%Y),, we de-
duce that det(K$'(F),) and Res4 are two polynomials in A that vanish under the
same specializations in k. In order to show that they are the same polynomial, we
will proceed by comparing their degrees with respect to the coefficients of F; for
i =0,...,n. For the sake of simplicity, we proceed by computing the degree of these
polynomials with respect to the coefficients of Fy, and denote this degree as deg .
As proved in [GKZ94, Appendix A], the determinant of a complex of vector spaces
Vo : Vo1 — ... — Vi — V is given by the formula

dim(V;)

det(Va) = ® A vi© (4.28)

Regarding the degree computation for K,(F), the terms of the Koszul complex are
k-vector spaces tensored with A, thus we can apply (4.28) to this complex of A-
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modules. The degree of A\ (F) i ;(F) with respect to the coefficients of Fj is:

0oeJ
> HF(R, 0 = ay). (4.29)
JA0,...,n}, | J|=j jeJ

For a >> 0, we have (I%/]), = 0 and HF(R, «) = HP(R, o). Therefore, the degree of
the determinant of the complex K$3(F),, coincides with the degree of the resultant
and we can compute:

deg;, (Resy) = degy, det(K*'(F),) =
0eJ 0eJ

> (D)HFR - o) = > (-DVIHP(R,a =) ay). (4.30)

Jc{o,...,n} jedJ JcA{o,...,n} jeJ

As the degree of the resultant with respect to the coefficients of Fj is constant (and
equal to the mixed volume of the polytopes A;,..., A,), the last term in (4.30) is a
constant polynomial in «, so when we evaluate it at any «, it will always be equal
to degy, (Resy). Therefore, for o = ¢ — v as in the statement, we have (I°%'/I)s_, =
Homy,(C,, A) # 0 and we can check that the difference of degrees between the pre-
vious alternate sum and the degree of the classical Koszul complex is compensated
by adding (71%2'/I)s_, at the term K; of K,(F) (and thus counted with sign —1 in the
determinant of the complex):

degy, det(Ke(F)s—,) — degp, (Resy) =

oeJ
> ()Y(HFR,6-v =) o) —HP(R,6—v - > qa;)). (431)
JcA{o,...,n} jeJ jeJ

Using Grothendieck-Serre formula (2.27), we deduce that this coincides with the

quantity
0oeJ n+1

S )Y (1) dimy B (R)s_ oy o
=0

Under the hypotheses of Theorem 4.7 ii), and using Theorem 2.10, we get that all
the summands in the above sum vanish exceptif: = n+1and J = {0,...,n}. In
this latter case, we have H""'(R)_f, _,, which is counted with the sign (—1)2"+1) =
1 and has the same dimension as the rank of the free A-module H""'(C)_x_,.
Recalling the duality theorem, which holds under the hypotheses of Theorem 4.7
ii), we have:

HIN(C) ok —v =~ (I 1), ~ Homy (C,, A),

which concludes the proof as the degree of each of the Sylvester forms Sylv,, for
z* € R, with respect to the coefficients of Fj is 1.
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From the above result, we can also identify cases where the matrices H,, are
square matrices, and therefore their determinant (in the usual sense of the deter-
minant of a matrix) is equal to the sparse resultant, up to a nonzero multiplicative
constant. For this purpose, we consider

I'= Supp ( D i/ C(—Oék — ak/)) 4.32)

to be the support of the term K,(F) in the Koszul complex; see Figure 4.3 for an
example.

Corollary 4.5. Let Xy be a smooth projective toric variety which is o-positive for
a maximal cone o. Assume that A, ..., A, correspond to ample divisors. Then, for
any o ¢ ' UT'ges UTg UT'; we have det(H,) = Res 4, up multiplication by a nonzero
scalar.

Proof. If a ¢ T'res U g U Ty, then (1%2Y/1),, is free and Resy = det(K$'(F),) as in
Theorem 2.36. If « ¢ T, then the complex K$3(F),, has only two terms and therefore
det(K$Y(F),) = det(H,). O

Remark 4.5. Computing the determinant of a complex can be done using some
techniques such as Cayley determinants (see [GKZ94, Appendix A]), butitisnot very
practical. However, Theorem 4.10 yields new expressions of the sparse resultant as
aratio of two determinants if o ¢ Supp &1, C(—a, — oy —ay,); see [CDS97, Corollary
2.4] for a combinatorial characterization of such case.

We close this section with a comment and an example related to the well-
known Canny-Emiris formula. For Macaulay-type matrices of the form M,, the
Canny-Emiris formula gives a way to choose a nonzero minor of maximal size;
see [CE93] for the formula and [D]S22] for a proof that this minor is nonzero. It
remains an open problem to see whether the conditions in the proof of the Canny-
Emiris formula [D]JS22] coincide with the Cayley determinant for such a choice of
a minor. In the case of hybrid elimination matrices H,, a similar formula has been
explored in [DEO1] for n = 2 and « = ¢.

Example 4.7. Let’s consider the four matrices provided in Example 4.3, which cor-
respond to the cases « € {(4,2),(3,2),(3,1),(2,1)}. The last three are square matri-
ces while the first one is not. We have drawn the region I' in brown in Figure 4.3, in
order to indicate the elements that provide a square matrix, as well as I'ges, in green,
for the acyclicity of the complex. For the Macaulay-type matrices, we can combi-
natorially describe a maximal minor of M, 5y using the Canny-Emiris formula; see
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[CE93; DJS22]. The matrix M3 9) is square,

apg a1 a2 0 0 az a4 0 0
0 a ar ao 0 0 a3 ag O
0 0 apg a1 az 0 0 az aq4
bp b1 b2 O O b3 by O O
M(372) = 0 by by by O 0 b3 by O s
0 0 bo by by 0O 0 b3 b4
Chp €1 C9 0 0 C3 C4 0 0
0 cCh C1 C2 0 0 C3 C4 0

0 0 ¢ ¢c1 c2 0 0 c3 ¢4

and it might be obtained using a greedy approach to the same formula (see the re-
sults of Chapter 3 or [CP93]), but as far as we know, there was no known certificate
of its existence as a resultant formula. The hybrid matrices for o = (3,1),(2,1) are
square. More generally, for non-square hybrid matrices, a procedure for choosing
a minor is known when n = 2 and o = 4; see [DEO1].

6. Toric residue of the product of two forms

Another topic for which Sylvester forms are of interest is the computation of toric
residues. These objects were initially introduced by Cox as a way to relate the
residue of a family of » + 1 forms to the integral of a certain differential form in a
toric variety Xy, (see [Cox96]). Being given Fy, ..., F,, generic homogeneous polyno-
mials as in (2.21), and denoting by K (A) the quotient field of the universal ring of
coefficients A, Cox proved the existence of a residue map

Residuer : Bs — K(A)

(recall that I = (Fp,...,F,) and B = C/I) which has the following property: for
any specialization # : A — Kk (see Notation 4.3) such that the specialized system
fo =---= fn = 0 has no solution in Xy, the residue map Residue; : (R/I(f))s — k
is an isomorphism. Cox defined residue maps through trace maps of Cech coho-
mology, but they can be characterized through the fact that, if there is no solution
in X, p(sylv,) is sent to £1 € K, so we can assume Residuer(sylv,) = +1. Many
authors contributed formulas based on elimination matrices and resultants to com-
pute residues [KS05; DKO5; CCD97; CDS97] and also used them in other applications
such as polynomial interpolation [Sop07] or mirror symmetry [BM02]. In particu-
lar, in [DKO5] an explicit formula for computing the toric residue of a form of degree
J as a quotient of two determinants “a la Macaulay” is proved.

If a form G of degree § can be written as a product G = P(Q, a natural question
is to ask whether one can take advantage of this factorization in the computation of
the residue of G = PQ with respect to the polynomial system defined by Fy, ..., F,.
In the case Xy = P", Jouanolou proved that this is possible by exploiting the duality
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between the degrees 6 — v and v of P and Q, respectively; see [Jou97, Proposition
3.10.27]. Notice that in [Jou97] the residue is defined as a map to A, and not to
K(A), by multiplying with Res4 in the image. In the case of ample divisors, the
product of the residue and the resultant lies in A; see [CDS97, Theorem 1.4]. In
what follows, we explore the generalization of Jouanolou’s formula to a general
smooth projective toric variety Xy which is o-positive for a maximal cone o, using
toric Sylvester forms.

Let H;_, be an elimination matrix that satisfies the assumptions of Theorem
4.7 ii), and let #s_, be a nonzero maximal minor of Hs_, which contains the entire
block built with Sylvester forms. Now, being given two generic forms P € C, and
Q € Cs_,, we consider the matrix

_( Héw A
O (R s

where p, respectively q, stands for the vector of coefficients of P, respectively Q,
and D is the matrix defined in (4.15). Recall that by the construction of the ma-
trix Hs_,, the matrix Hs_, is built as the join of a Macaulay-type block-matrix and
another column-block matrix built from Sylvester forms. Thus, the row (p)’D is
aligned with the column-block built from Sylvester forms; see Example 4.6 for an
illustration.

We first prove that the residue of the product of two monomials can be com-
puted as a quotient. In what follows, we denote by #,, ¢ the submatrix of #;_, that
is obtained by deleting the column corresponding to the monomial z# € R, and the
row corresponding to the monomial z¢ € Cs_,,.

Lemma 4.7. Assume that Xy, is a smooth projective toric variety which is o-positive
for a maximal cone o. Let Fy, ..., F, be a system of homogeneous polynomials in C
as in (2.21), then for two monomials z* € R, and z¢ € Rs_,,

>t e, (1P (=1)5D,, 0 det(Hue)
det(Hs_,) ’

Residuep (z+1¢) =

where (—1)* (resp. (—1)¢)is set to 1 if the relative position of the monomial z* (resp.
2¢) in the columns (resp. rows) of Hs_, is even, otherwise it is set to —1.

Proof. Let H¢ be the matrix obtained by multiplying the row of #s_, corresponding
to 2¢ by the monomial 2¢ itself. Then, by expanding the determinant along this row,
one gets:

wiat det(Hy—,) = 2 det(H®) = 2" () GiF + Y (—=1)*(—1)%cu e SYlv ).
weC,

Then, using the matrix D, we get that

wlat det(Homy) = > a"GiFi+ Y (=" (=1)*Dyywew e Sylv, modulo I.

zreC),
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Taking residues, we deduce that

!

Residuep («¢) det(Hs_,) = Y (D" (=1)*Dy ey

zHeCy,

Finally, from the expansion of the determinant det(H¢), we get thatc,, . = det(H,, ¢).
[

We are now ready to prove the claimed formula for the residue of the product
of two forms.

Theorem 4.11. Assume that Xy, is a smooth projective toric variety which is o-
positive for a maximal cone o. Let Fy, ..., F,, be a system of homogeneous polyno-
mials in C as in (2.21), and suppose given two forms P € C, and Q € Cs_,, then

. det(©s_,
Residuer(PQ) = det((HZ;’

Proof. Write P =3 ,.cc, purand @ =Y e gex*. Then, bylinearity of residues,
we have:

Residuer(PQ)= > pugeResiduep(z"*¢) =
zreCy,z¢€Cs_,,

P o (1M (1)

b I

q§DM7M/ det(?—[uz7§)det(7-[5_,,) . (434)

The numerator is precisely the expansion of the determinant det(6;_,) of the ma-
trix defined in (4.33), firstly with respect to the last row and secondly with respect
to the last column. O

Example 4.8. In Example 4.3, the elimination matrix H, ) is square, therefore we
take

agp ay a2 az a4
bo by by b3 by
H(Q,l) = IHI(2,1) = Co C1 C2 €3 €4

(013] [023]+ [014] [024] O O
(023] [024] +[123] [124] 0 0

Let P = poz1+p171 and Q = qoz320+q1 21 2071 +qo2203 +q321 T2 +q471 72 e homogeneous
formsin C(, 5) and C(, 1), respectively and let D be the matrix in Remark (4.15) which

1 0
is of the form D = (pm 1), then

ag a1 as as aq4 0

bo by ba bs by 0

o - co cl Co Cc3 C4 0
20D 7 1013] [023] +[014] [024] O 0 po+ Dorpr

[023] [024] 4+ [123] [124] 0 O p1

Qo q @ 9B @ 0
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Dp1 can be computed as in (4.16) and it is nonzero as z; ¢ (22,z2,2122). Applying
Theorem 4.11, we deduce that Residuer(PQ) = %&3;. For the sake of compari-

son, let us examine the formula we obtain by developing the product of P and Q. In
this case, we apply Theorem 4.11 with § = (3,1) and » = 0, so we have to consider
the matrix ©; ;) which is of the form:

ag al as 0 as a4 0 0

0 ag al as 0 as a4 0

bo b1 ba 0 bs by 0 0

o _| 0 bo by by 0 b3 by 0
(371) - co Cc1 Cco 0 C3 Cq4 0 O
0 co c1 c2 0 c3 cy O

[130] [230] 0 0  [430] 0 0 1

0

Pogo Poqi +Pi1qo DPog2 +P1q1 P1q2 DPog3 Pogd4 + P1g3  Di1g4

since the product PQ is equal to

P0qozi 22 + (poqi + p1go) 21221 + (poge + p1q1) 21 2023+
Pog3zize + (Poqa + P1g3)z1T129 + 1G22t + prquaizs.  (4.35)

The expansion of det(© 3 ;)) with respect to the last row leads to the same formula
as in [DKO5, Corollary 3.4].
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Chapter 5

Multigraded
Castelnuovo-Mumford regularity
and Grobner bases

The multigraded Castelnuovo-Mumford regularity has attracted the interest of many
researchers in the last decades either for finding an extension of its definition and
main properties [BHS21; HWO06; MS04], studying properties of local cohomology in
the multigraded case [BC17; CH22], understanding its relation with the Betti num-
bers and virtual resolutions [AHS21; BES20], considering special properties in the
cases of points and curves [Cob24; HV04] or for providing bounds that generalize
those existing in classical case [BHS22; MS03; RSM22]. However, finding a multi-
graded generalization of the Bayer and Stillman criterion (see Theorem 2.13) that
can be used to describe the multi-degrees that generate the Grobner basis has re-
mained an open problem. For the sake of simplicity, we will describe our results
in the bigraded case i.e., when the degrees are prescribed in two groups of vari-
ables, that we will denote with z’s and y’s. All the discussion and results that follow
extend to the multigraded setting.

Notation 5.1. Let k be a field of characteristic 0. Let S = K[z, ..., Zpn,v0,-- ., ym] b€
a ring with a (standard) Z2-grading, such that deg(z;) = (1,0) and deg(y;) = (0, 1).
We will write the monomials in S as z%y® = x50 - - - 28ny,° - - yom for a vector (o, 8) €
zr+m+2, A monomial z*y° has degree (a,b) if 7 ja; = a and Y72 8; = b. Letm,
(resp. m,) be the ideal generated by the = (resp. y) variables. Let m, (resp. m,) be
the ideal generated by the = (resp. y) variables. The ambient biprojective space is
P" x P and the irrelevant ideal is b = m,m,,.

Notation 5.2. A polynomial f =3}, 4 capr®y? € S is bihomogeneous of bi-degree
(a,b) € 7?2 if all of its terms are monomials of bi-degree (a,b). An ideal I C S is
bihomogeneous if every polynomial f € I is bihomogeneous. The graded part of
bi-degree (a,b) of I is the k-vector space generated by all the polynomials of bi-
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degree (a,b) in I, and denoted as I(,;). Recall that a a generic linear x-form as a
general element in S, ).

A generalization of the Castelnuovo-Mumford regularity to the bigraded set-
ting, which we also denote as reg(7), was given by Maclagan and Smith in [MS04],
by using local cohomology modules with respect to the irrelevant ideal b, i.e. the
intersection of the ideals generated by each group of variables.

Definition 5.1. [MS04, Definition 1.1] Consider a bihomogeneous ideal 7 ¢ S. The
bigraded Castelnuovo-Mumford regularity reg(I) is the subset of Z? containing bi-
degrees (a,b) such that, for all : > 1 and for all (a/,b") > (a — A\;,b — A,), it holds

Hy(I)(a ) = 0,

where )\, + )\, =i — 1, with \;, \, € Z>.

The goal of this part of the thesis is to establish a connection between the
bigraded Castelnuovo-Mumford regularity and the degrees of the minimal gen-
erators of the DRL Grobner basis after a generic change of coordinates that pre-
serves the bigraded structure, providing the bigeneric initial ideal; see Chapter 2
and [ACDNOO, Section 1]. Unlike the single graded case, the need of preserving the
bihomogeneous structure of the ideal makes this bigeneric initial ideal dependent
on the choice of the order of the variables of the different blocks.

Example 5.1. The following example is an adaptation of [BHS21, Example 4.3] (sim-
ilarly [BES20, Example 1.4]) and corresponds to a smooth hyperelliptic curve of
genus 8 embedded in P? x P!. It will be our running example throughout the chap-
ter. Consider the standard Z2-graded ring C|x, 21, 72, ¥, 1] and the ideal:

J = (ygx% + y%x% + yoyllt%, y(?)’$2 + yi’(&“o + 1))

and consider I = J% = (J : b*>) to be its saturation with respect to the irrele-
vant ideal b = (zoyo, zoy1, T1Y0, T1Y1, T2Y0, T2y1). We notice that if we use a monomial
order such that:

To < x1 < T2 < Yo <Y1, (5.1)

the degrees involved in the computation of the bigeneric initial ideal are those ap-
pearing in the left image in Figure 5.1. On the other hand, if the monomial order
satisfies:

Yo < Yy1 <xog <1 <T9, (5.2)

the degrees involved in the computation of the bigeneric initial ideal are different;
see right of Figure 5.1.

The problem of the relation between reg(7) and the generators of bigin(7) had
already been raised in the work of Aramova, Crona and De Negri [ACDNO00] and
Romer [RomO01], where the following partial notion of regularity was defined using
the Betti numbers.
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Figure 5.1: In each drawing, the represent the degrees of the generators of 7 and the black
dots represent the degrees of the generators of the bigeneric initial ideal. In the left hand side, we
can see the degrees of the generators of bigin(7) using the monomial order in (5.1), while in the right
hand side, we can see the degrees of the generators of bigin(7) using the monomial order in (5.2).

Definition 5.2. Let I be a bihomogeneous ideal in S, then 9Rx(7) is the minimal
degree a € Z such that:

Bi(a+it1,p) (L) =0
for all i,/ € Z>¢ and for all ' > a. Similarly, one can define 9y (7).

With the above definition, Aramova, Crona and De Negri proved that the max-
imal degree of a minimal generator bigin(7) with respect to the z (resp. y) block of
variables is given by 9 (bigin(7)) (resp Ry(bigin([))); see [ACDNOO, Theorem 2.2]
using the same assumptions on the monomial order, Romer showed that:

%y (I) = Ry (bigin(1))

and thus the description for the x block of variables depends solely on the algebra
of 1. If J is a monomial ideal satisfying the properties of Lemma 2.2, for instance
bigin(7), then Ry (J) (resp. Ry(J)) is the maximal degree of any minimal generator
of J with respect to the degrees of x variables (resp. y).

Theorem 5.1 ([ACDNOO, Theorem 2.2]). Let I be a bihomogeneous ideal. Then,
there is b € N and a generator of degree (9Rx(bigin(7)),b) in bigin(7). Moreover,
no generator of bigin(7) has degree with respect to the z variables bigger than
Rx(bigin(7)). The same property holds for %y (bigin(7)) and the degrees with re-
spect to the y variables.

Furthermore, Romer proved that, using the relative order of the variables in
Eq. (5.4), Rx(I) behaves well with respect to the bigeneric initial, i.e.,

Ny (1) = Ry (bigin(1)). (5.3)

A direct consequence of this is that the maximum degree of the generators of bigin(7)
with respect to the z variables is Ry (I); this is a partial generalization of the Bayer
and Stillman criterion to the bihomogeneous setting.
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Theorem 5.2 ([RomO01, Proposition 4.2]). Let I c S be a bihomogeneous ideal.
Then, there is b € N and a generator of degree (9x(I),b) in bigin(7). Moreover, no
generator of bigin(7) has degree with respect to the z variables bigger than %k (7).

Romer also noted [RomO01, Remark 4.3] that, as we are using the monomial or-
der in (5.4), Ry (I) and Ry (bigin(I)) might be different and so the previous theorem
does not hold for the variables in y.

Example 5.2. We continue Example 5.1. From the minimal free resolution of 7
(see [BHS21, Example 7.1]) we can derive that Rx(/) = 8 and fRy(I) = 3. Using the
results in [ACDNOO] and [R6m01], we can derive the maximal degrees of bigin_ (1)
and bigin, (1) with respect to each block of variables; see Figure 5.2.

R, (bigin(7))

4 o Ry (1)

1 L]

0

1 2 3 1 5 6 7 8 9

Figure 5.2: The bi-degrees of the generators of bigin(7), where the bound for the degrees of the z’s is
given by 93x(I). However, using the monomial order in (5.4), 93y(I) is lower than the bound on the y’s
given by Ry (bigin(1)).

Assumption 5.1. Consider a degree reverse lexicographical monomial order < (or
DRL) such that:
o< < Tp <Yo: < Ym.- (5.4)

The above example also shows that the description in terms of 934 (I) only de-
scribes the maximal degree of a generator of bigin(7) with respect to one block of
varialbes. Thus, a natural question is whether we can find an algebraic invariant
that describes more tightly the bi-degrees involved in the computations based on
Grobner bases, in terms of the algebraic properties of 1.

1. First examples and the case of ideals defining empty vari-
eties

The works of Aramova et al. (Theorem 5.1) and Romer (Theorem 5.2) allow us to
construct a bound for the bidegrees of the minimal generators of bigin(7). One of
our objectives in this work is to construct coarser regions bounding these bidegrees.
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Following the work of Bayer and Stillman, a natural candidate to construct such
regions is the bigraded Castelnuovo-Mumford regularity either from I or bigin(I).
However, as we illustrate in this section, it is not possible to construct straightfor-
wardly such a generalization: on the one hand, there can be unbounded regions
outside of reg(7) and reg(bigin(7)) where there is no minimal generator of bigin(7)
(see Example 5.3); on the other hand, there can be minimal generators with bide-
grees which are strictly bigger than reg(7); see Example 5.4. The same example also
illustrates that reg(7) and reg(bigin(7)) may differ.

We start our discussion by considering the case of ideals defining empty vari-
eties for which we can characterize the regularity in terms of the associated Hilbert
function. Let I be a bihomogeneous ideal defining an empty variety of P x P and
consider the associated Hilbert function

HFS/It 7?2 — ZZO

(a.b) > dimg(S/1) sy (5:5)

The regularity reg(7) is determined by the bidegrees at which this function attains
the value zero, i.e.,

reg(I) = {(a,b) € Z* : HFgf(a,b) = 0}. (5.6)

This last equality follows, mutatis mutandis, from [BS87a, Lemma 1.7] where a sim-
ilar result is presented for the homogeneous case.

It is a general property that the Hilbert functions of an ideal I and its bigeneric
initial ideal bigin(7) coincide; this also follows similarly from the single-graded case
[Eis95, Theorem 15.26]. Therefore, if I defines an empty subvariety of P" x P™, it
holds that

reg(l) = reg(bigin(7)).
In addition, it is possible to determine the existence of minimal generators of bigin(7)
at bidegrees where the Hilbert function of 7 vanishes.

Theorem 5.3. Let (a,b) € Z2, be a bidegree such that HF g,/ (a, b) = 0. Then, bigin(J)
has a minimal generator of bidegree (a,b) if and only if HFg/,(a’,t') # 0 for every
(a',0) < (a,b).

Proof. Withrespectto DRL, the monomial z¢y} is the smallest monomial of bidegree
(a,b). As HFg//(a,b) = 0, we have that z§y§ € bigin(I)(, ;). If 2§y is not a minimal
generator of bigin(7), then there must be (a/, ') < (a,b) such that z¢'y% € bigin(I).
By Lemma 2.2, this last condition is equivalent to the fact that every monomial of
bidegree (a’,b") belongs to bigin(/), that is, equivalent to HFg,;(a’,0") = 0 for some
(@', V) < (a,b).

O]
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As a consequence of this theorem, we deduce that the region reg(/) does not
contain bidegrees of minimal generators of bigin(7), except maybe in its minimal
bi-degrees with respect to inclusion.

Corollary 5.1. Assume that / defines an empty variety of P" x P™. If (a,b) € reg(I)
then bigin(7) has no minimal generator of bidegree (da’,b') > (a,b).

e

Proof. Follows from Eq. (5.6) and Theorem 5.5. O

Remark 5.1. Using that, in the case of I defining an empty subvariety, reg(/) and
reg(bigin(7)) coincide, we may also deduce the above corollary from Theorem 2.15.

As mentioned before, unlike in the single graded case, the region reg(7) does
not yield a sharp description of the bidegrees of a minimal set of generators of
bigin(7). We illustrate it with the following example where we observe that the
converse of Corollary 5.1 does not hold and also that reg(7) does not yield any in-
formation for infinitely many bidegrees.

A
veg(7)

ot
[ ]

1

0 >
1 2 3 4

wt
(=2}

Figure 5.3: The green dots » represent the bidegrees (a, b) of the generators of the ideal 7 in Example

5.3. The black dots e represent the bidegrees (a,b) of minimal generators of bigin(7)and the white

dots those bidegrees for which HFs,;(a,b) = 0. The region reg(7) is marked in red. In blue (resp.
), an infinite column (resp. a row) which does not intersect reg(7).

Example 5.3. Consider the standard Z2-graded ring S = Clxo, 21, %0, ¥1] and the ideal
I C S generated by four bihomogeneous polynomials:

p3(zo, z1)q1 (Yo, y1), P53 (20, 21)q1 (Yo, y1), p1(T0, 21)q3(v0, Y1), P (0, 21)q5 (Y0, Y1),

where p;’s and p/’s and general forms of degree : in =, z; and ¢;’s and ¢;’s and general
forms of degree i in 19, y;. The ideal I defines an empty variety. In Figure 5.3 we
show the bidegrees of a minimal set of generators for bigin(7), as well the region

reg(1l).

At the bidegrees (3,5) and (5, 3), Theorem 5.3 applies so that there are minimal
generators of bigin(7). The bidegree (4,4), where HFg/;(4,4) # 0, so that (4,4) ¢
reg(l), shows that the converse of Corollary 5.1 does not hold. Also, in Figure 5.3
we highlighted an infinite column and an infinite row that does not intersect reg (7).
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It turns out that if we do not restrict to ideals defining an empty variety, then
even Corollary 5.1 is no longer true, i.e. there might be bidegrees (a, b) € reg(I) such
that there are minimal generators of bigin(7) in degree > (a,b).

s} é
(1)
6 o
5 (1)
4 ¢
3 [ )
2
1 [ ]
0 1 2 3 4 5 6 7 8>
Figure 5.4: The multigraded Castelnuovo-Mumford regularity reg(7), in and the multigraded

Castelnuovo-Mumford regularity of the bigeneric initial ideal bigin(7), in purple.

Example 5.4. We continue with Example 5.1. We note that (2,4) € reg(I), never-
theless there are generators of bidegrees > (2, 4); se Figure 5.4. This example also
illustrates that, in general, we cannot expect that reg(7) and reg(bigin(7)) to coin-
cide, even though we have an inclusion, as in Eq. (2.43). For this reason, there is no
straightforward way of using reg(7) in order to bound the bidegrees of the minimal
generators of bigin(7).

Remark 5.2. To compute the regions in these examples, we used the Macaulay2
packages VirtualResolutions [Alm+20] and LinearTruncations [CHN22]. In
both packages, the input is assumed to be saturated, which is the case of the ideal
I in Example 5.1.

2. The partial regularity region and its main properties

The results and examples presented in Section 1. illustrate the difficulty to establish

a direct bihomogeneous analogue of Eq. (??) by means of the bigraded Castelnuovo-
Mumford regularity region. To unravel this situation, we introduce a new region,
denoted by xreg(7) and explore its properties. Compared to the Castelnuovo-Mumford
regularity region, which relies on the vanishing of local cohomology modules with
respect to the irrelevant ideal b of the product of two projective spaces, this new re-
gion relies on the vanishing of local cohomology modules with respect to the ideal
my. This construction is inspired by the work of Botbol, Chardin and Holanda [BC17;
CH22].

Definition 5.3. Let I C S be a bihomogeneous ideal. We denote by xreg(I), and call
it the partial regularity region, the region of bidegrees (a,b) € Z? such that for all
i>1and (a/,b') > (a—i+1,b),

Hi (I)(a’,b’) - O

mx
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One of the main results of our work is that, in generic coordinates, xreg(/)
provides a bounding region to bidegrees of the elements in a minimal Grobner basis
which is (partially) tight. This result will be proved in Section 3.. In order to do so,
in this section we need to establish two key properties of xreg(7). First, in Theorem
5.6, we present a criterion to compute xreg(/) similar to the one proposed by Bayer
and Stillman in the classical setting [BS87a, Theorem 1.10]. Second, in Theorem
5.5, we show that, in generic coordinates, the partial regularity region of an ideal
and its bigeneric initial ideal agree, that is, xreg(7) = xreg(bigin(7)). The results on
this section generalize the ones in [BS87a, §1] and most of the proofs follow similar
strategies.

Notation 5.3. Let I C S be a bihomogeneous ideal.

- We denote by 7%34* the saturation of 7 with respect to my, i.e. (I : m2°).

- Given any polynomial f € S, (1, f) will denote the sum of the ideals 7 and (f).

Lemma 5.1. A generic linear z-form & is not a zero divisor in S/7%3%X, Namely,
(Isanx . h) — Isat,x‘

Proof. The proof follows using the same argument as [Van02, Lemma 3.3]. O

The following lemma shows that local cohomology modules with respect to mx
vanish when the degree with respect to the x variables is big enough.

Lemma 5.2. Let I C S be a bihomogeneous ideal. Then there is ay € Z such that
forall b € Z, it holds '
H:nx(l)(a,b) =0 Va > ag.

Proof. It is classical property that the local cohomology modules H{ (I) can be de-
fined and computed using the Cech complex Cm.(I). We refer the reader to [BS08]
for more details on the construction of this complex and its main properties. In this
proof, we will use this complex, together with a minimal free resolution F, of I, to
construct a double complex that we denote by C;_(F,). We note that this double
complex has often been used in the bibliography; see, for example, [BH19, §2].

There are two natural spectral sequences associated with the double complex
Cy. (F,), depending on whether we consider the filtrations with respect to the hori-
zontal or the vertical maps. Both sequences converge to the same limit. Consider-
ing the filtration given by the horizontal maps, since F, is a minimal free resolution
of I we deduce that the spectral sequence converges to Hy,_(I) in its second page.

Similarly, the second spectral sequence has the terms H{, (F,) in its first page.
These terms are direct sums of H;, (S), up to the shifts appearing in the minimal
free resolution F,. Thus, using Eq. (2.42), we deduce that there exists ag € Z such
that for allb € Z,

Her(Fq)(a’,b’) = 0 for all i, q and (a', b/) > (ao, b)
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The proof follows straightforwardly by comparing the limits of the two above spec-
tral sequences. O

Lemma 5.3. Let I C S be a bihomogeneous ideal. Let » be generic linear z-form
and (a,b) € Z%,,. Then, the following are equivalent:

1) (I h)(a’ v) = I(a’ ) for all (CL b/) (CL b)
i) HY (1)) = 0 for all (a',t') > (a,b).

Proof. Since n > 1, we have that H, (1) = HY (S/I) = I*®*/I; see for example
[BS87a, Remark 1.3]. Hence, Hy, (1)) = 0, 1f and only if, Isa,t;f) = I ) By
Lemma 5.1, as h is a generic z-form, condition ¢i) implies condition 7) as in this case
we have that, for every (d/,b') > (a,b)

(I : h)(a/,b/) = (Isat’x : h)(a/b/) = I(sa/t;s) = I(a’,b/)'

To prove the opposite implication, we observe that by Lemma 5.2, for a given
bidegree (a,b) € Z?, there is a \g € Z>, such that, for every A > )\, we have that

Lariap) = I( ,H »y for every (a',b') > (a,b).

Either the previous condition holds for every A\ and so H;, (1)) = 0 for all
(a’,b') > (a,b), or either there is a minimal )\, satisfying the previous condition.

In the latter case, by minimality of \,, we have that I\, 4y, _14) # I(S;":’f‘AO 1y for

some (a/,b') > (a,b). Therefore, there must be bihomogeneous f € 13X of bidegree
(@ + Ao — 1,b') such that f ¢ I. However, as I(Sj,th’b,) = I(gr42,)> fOT €Very z-form
h € S(1,0), we have that h f € [(g ) @nd SO f € (I : h)(gr1x,-1)- If Ao > 1, condi-
tion 7) implies that (1 : h)r4ag—1,0) = L(@+20—1,57)» SO We get a contradiction as f ¢ 1.
Hence Ao < 0 and so H,_(I)(, ) = 0 for every (a/,b') > (a,b). O

The following lemma shows that the partial regularity region can be computed
recursively using colon ideals with respect to generic linear z-forms.
Lemma 5.4. Let h be a generic linear z-form and (a,b) € Z>O, then the following
are equivalent.
1) (a,b) € xreg(I).
ii) (I:h)@yy = L) for(a,b) > (a,b) and (a,b) € Xregl, ).

Proof. First, we observe that, if (I : h)>(,4) = I>(as), then for every i > 1, H{, ((I :
h)>(ap) = Hi (I>(ap). Under this assumption, Lemma 2.3 implies that

mx

Ho (I 2 h)(a ) = Hy (I) (o) fOT every (a/,1) > (a,b). (5.7)
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and ' ‘
H, (I:h)=H, (I) for everyi > 2. (5.8)

To prove that ¢) implies i), let (a,b) € xXreg(/). By Lemma 5.3, we get that (I :
h)>(ap) = I>(ap) SO that Eq. (5.7) and Eq. (5.8) hold. Consider the short exact se-
quence which is induced by the multiplication by #,

0— (I:h)(—(1,0)) = I® (h) — (I,h) — 0. (5.9

For every i > 1, taking the graded components of the corresponding long exact
sequence of local cohomology at degrees (a/,b’) > (a — (i — 1), b) yields

e — Hé‘lx([)((l,,b,) — H&X(I, h)(a/’b/) — H;j;l(l : h)(a’—l,b’) — - (510)

We notice that the last term in (5.10) can be replaced by H, ' (I)_14y asi > 1,
using Eq. (5.8). Moreover, as we are assuming that (a,b) € xreg(/), the two graded
components of the local cohomology of 7 in Eq. (5.10) vanish, and so H,_(I,h) ) =
0 for all (¢',v') > (a — (i — 1),b).

In order to prove that condition #i) implies condition i), we consider (a,b) €
xreg(I,h) such that (I : h)y) = I« y) for every (a’,b') > (a,b). By Lemma 5.1,
we have that H} (1)) = 0 for (a’,t') > (a,b). As we did above, we consider the
long exact sequence associated to Eq. (5.9) at the graded pieces given by (a/,') >
(CL - (7“ - 2)7 b)’

NN Hzﬂ;l(l, h)(a'7b') — anx(.[ : h)(a’—l,b’)

d; i i
— HmX<I)(a’,b’) — HmX<I7 h)(a’,b/) —

As (a,b) € xreg(I, h), the graded pieces of local cohomology modules associated to
(I, h) vanish, and so the map ¢; is an isomorphism. By Lemma 5.2, there exists A
sufficiently big such that

Hi ([)(a/—i-)\,b’) =0 (a/,b’) Z (a — (Z — 1),b> (511)

mx

As we are assuming that (I : h)>p) = I>(p), EQ. (5.8) holds and, together with
Eq. (5.11) and the isomorphism 4;, we have that for every i > 1 and every (a’,b') >
(@ —(i—1),b),

Hi (D (ara—1y) = Hi (12 R) (@rsx—1,) = Hy (D) (@rgap) = 0. (5.12)

7

where the first isomorphism follows from Eq. (5.8), the second isomorphism is §;,
and the last equality to zero follows from Eq. (5.11). If we apply the above repeat-
edly, starting from big enough A, we conclude that for every : > 1, H¢_(I) vanishes
at every degree bigger or equal to (a — (i — 1),b), and therefore (a,b) € xreg(l). O

The following theorem, which aims to characterize xreg(7), can be seen as a
partial extension of the criterion of Bayer and Stillman to compute the Castelnuovo-
Mumford regularity in the single graded case [BS87a, Theorem 1.10] to the setting
of bigraded ideals.
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Theorem 5.4. Consider a bihomogeneous ideal 7 ¢ S. Then, for (a,b) € ZEO, the
following are equivalent:

1) (a,b) € xreg(I).

ii) There exists a non-negative integer ky < n such thatforall k = 0, ...,k and
(a',b') > (a,b), we have:

(Jk—l : hk)(a’,b’) = (Jk—l)(a’,b’)

where J, 1 = (I, hg,...,hx_1) (With the convention J_; = I), h; are generic
linear z-forms and Ji, D mx.

Proof. We will proceed by induction in the minimal number %, such that J, > mx.
Consider I such that ky = —1. As I D mg, we have 753X = S, Moreover, as in the
classical setting (see [BS08, Corollary 2.1.7]) the higher local cohomology modules
of I are the same as those of the saturation, and so

H} (I) = H},_(I**) = H}_(S) for every i > 2.

By Remark 2.8, the previous cohomology H, (5),s Vvanish, unlessi = n +1,a <
—n — 1 and b > 0. Therefore,

Hxﬁi—l([)(a',b/) =0 for (d,b') > (a—n,b).
Moreover, as a > 0 and I D mg, we have I(Sc?,téi{ = Ita)= S(ay)- This last condition is

equivalent to the fact that H;, (1), = 0fora > 0, and so xreg(I) D ZZ,. This shows
that, for k£, = —1 condition ¢) is also always satisfied.

For the inductive step, assume that the theorem holds for every ideal such that

its associated kg is at most ¢. Consider an ideal I such that its associated kg is ¢ + 1.
Then, for a generic z-form 4, the k, associated to (I, h) is t. Hence, we can apply our
inductive hypothesisto (I, k). The proof follows straightforwardly from Lemma 5.4.
0

Our next goal is to prove that the region xreg(7) and the region xreg(bigin(7))
coincide. This will only happen if we consider the bigin(7) with respect to the DRL
monomial order in (5.4). In the next lemma, we analyze the behavior of ideals
under change of coordinates.

Lemma 5.5. Let / C S be a bihomogeneous ideal and v € GL(n + 1) x GL(m + 1).
Then, the following hold:

i) wo (Isat,X) — (u o ])sat,x_
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ii) Let hy,...,h, be linear forms satisfying that z;, = uwo hy for £k = 0,...,n and
(a,b) € Z°. Then,

(I, hgy ..o, hp_q: hk)(a,b) = (I, ho, .. -ahk—l)(a,b) <~
[(wol),xo,...,Tk-1: Tk)(ap) = [(wWo 1), Zo,s- -, Th—1](ap)-

forallk =0,...,n.

Proof. In order to prove the part i), we note that my is invariant under the action
of GL(n + 1) x GL(m + 1). Therefore, if f € u o 158X then there is g € 3% such
that f = u o g and there exists ¢t with gm!, c I. This is equivalent to the fact that
fml C wol. Similarly, the proof of part ii) follows from the fact that the colon ideal
commutes with the change of coordinates. O

The following lemma shows that we can verify the equality between I and its
colon ideal with respect to a variable by looking at the initial ideal. This is a classical
property of the DRL monomial order defined in Eq. (5.4); see Remark 5.3 for more
details.

Lemma 5.6 ([BS87a, Lemma 2.2]). Let I ¢ S be a bihomogeneous ideal and let
(a,b) € Z2,. For k =0,...,n, we have the following:

i) in([, xo, . .- ,xk) = (in(I),xO,...,xk).

ii) Suppose that zg,...,z;_; € I and that we are using the DRL monomial order
in Eq. (5.4), then:

(I 2p)ap) = Loy = (I0(I) : 2) (@) = IN(T)(00)-

The following lemma generalizes Lemma 5.1 to the bigeneric initial ideal.

Lemma 5.7. Let I C S be a bihomogeneous ideal. For every £ =0,...,n,let J,_; :=
(bigin(1), xo, . .., zr_1) (with the convention J_; = I). If (J;,_1)%%% # S, then z; is a
non-zero divisor in S/(J,_1)%34%.

Proof. We first prove the case k£ = 0. Following the same argument as in [CDNG13,
Lemma 2.1], we note that the associated primes of a bi-Borel fixed ideal are of the
form:

Pr= (Ttyse s TnsYtys - - > Ym)

for some t,,t, € Z* such that 0 < ¢, < nand 0 < ¢, < m. If bigin(1)%* £ S,
the associated primes of bigin(7)%"* must satisfy ¢, > 0. Therefore, 2, cannot be
contained in the union of the associated primes of bigin(71)sat%,

In the case where £ > 0, we note that bigin(7) N K[z, ..., Zn, 0, ..., ym] 1S also
bi-Borel fixed. Therefore, the associated primes of .J,_; which contain x; are not
associated primes of (J;_1)%%*. The proof follows by the same argument as above.

O
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Using the above lemmas, we obtain the following theorem.

Theorem 5.5. Let I C S be a bihomogeneous ideal and hy, . .., h are generic linear
z-forms. Then, for every (a,b) € Z2,and k =0,...,n

(I, ho,...,hg_1: hk)(a,b) = (I, ho, ... >hk’—1)(a,b) <~

[(blgln(]), Ty xk_l) : ij](a,b) = [(blgm(I), Ty« 7$k—1)](a,b)' (5.13)
In particular, xreg(I) N ZZ, = xreg(bigin(1)) N ZZ,,.

Proof. The first part of the proof follows straightforwardly from Lemma 5.3 and
Lemma 5.6. For the second part, we note that Lemma 5.7 implies that the proof of
Theorem 5.4 can be reproduced for bigin(7) using the variables =z, ..., z, instead
of generic linear z-forms hy, . . ., h,. Namely, (a, b) € xreg(bigin(7))nZ2, if and only
if, there is kg € Z> such thatforall k =0, ...,k and (a’, V') > (a,b), we have:

(Je—1: Tr) (@ p) = (Jh—1)(@ )

where J,_; = (bigin(/),xo,...,xx—1) and Ji, O mg. Therefore, the proof follows
straightforwardly from the first part, i.e. from Eq. (5.13). O
Remark 5.3. In Lemma 5.6, the proof of the fact that for any ¥ = 0,...,n and for
any I such thatif g, ...,z € I, we have

(ln(I) : xk)(a,b) = in(I)(,Lb) = (I : xk)(mb) = I(a,b) (5.14)

does not require that the monomial order < is degree reverse lexicographical. There-
fore, Eq. (5.14) also holds for any other monomial order. On the other hand, in
[Loh16], Loh proved that for any monomial order different than DRL, it is possible
to find an ideal I such that the converse implication to Eq. (5.14) does not hold, re-
gardless of the bigraded context. This motivates our choice of using the DRL mono-
mial order in our study of the generalization of the Bayer-Stillman criterion to the
bigraded setting.

As we noticed in Example 5.1, the relative order of the variables of different
blocks will change the bidegrees of the generators of bigin(7). Theorem 5.5 relies on
the specific choice of Eq. (5.4). While the criterion in Theorem 5.4 would also hold
symmetrically for yreg(7), this region does not remain invariant under bigin(7)
unless we change the relative order of the blocks of variables.

Example 5.5. We continue with Example 5.1 and draw the regions yreg(/) and
yreg(bigin(7)). We note that, using the monomial order Eq. (5.4), they are different.

3. The partial regularity region and the minimal generators
of bigin(7)

In the previous section, we provided the definition and main properties of the par-
tial regularity region xreg(I), including a criterion which generalizes the classical
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Figure 5.5: In olive, the region yreg(7). In blue, the region yreg(bigin(1)).

result of Bayer and Stillman to the setting of regions of bidegrees that we are study-
ing. In this section, we exploit xreg(7) to prove the absence of minimal generators
of bigin(7) at some bidegrees (see Theorem 5.6) and to certify that there are gener-
ators near the border of the region xreg(7) (see Theorem 5.7). Moreover, we also
provide relations between reg(7), xreg(/) and the Betti numbers of I by relying on
results by Chardin and Holanda [CH22].

The following lemma, which is the bigraded analogue of [BS87a, Lemma 2.2
iii)], provides sufficient conditions for the absence of minimal generators of bide-
gree (a,b).

Lemma 5.8. Consider a bihomogeneous ideal 7 ¢ S and k£ € {0,...,n} such that

xo,...,xx—1 € 1. Let (a,b) € Zio with ¢ > 1. Assume that there is no minimal
generator of in(7, z;) of bidegree (a,b) € Z2, and that
(1) : @) (1) = (AN + mg(N(T) : 24)) 014)- (5.15)

Then, there is no minimal generator of in(7) of bidegree (a, b).

Proof. Consider an element f € (o). If zo,..., 239, Or 23—, divides in(f), then
f cannot be a minimal generator of in(7). Thus, up to substracting multiples of
xo,...,Tk_1, We may assume that f € K[zg,..., 20,90, ..,ym]- If 2, divides in(f),

then in(f) = z; in(f) for some
in(f) € (in(1) : xk)(a—1,) = (IN(I) +my(IN(I) : 2k))(a-1,p)-

Hence, there is a non-constant 2y” € (x4, my) and [ € I of bidegree strictly smaller
than (a,b) such that in(f) = z®y” in(l). Therefore, in(f) cannot be a minimal gen-
erator.

Suppose now that x; does not divide in(f). As there is no generator of in(7, )
of bidegree (a,b) and in(f) € in(I, z;,), then we can write in(f) = z*y% in(g) with
2 y% # 1 and in(g) € in(I,z;). Write g as g = g1 + xg2 for g1 € I. Since in(g) >
in(z,g2), we have that in(f) = 2*'y% in(g;) with g; € I an element of [strictly lower
bidegree] than (a,b). Hence, in(f) is not a generator of in(7) O
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Applying repeatedly Lemma 5.8, we get sufficient conditions for the absence
of minimal generators of in(I) of bidegree (a,b) € Z2,,.

Corollary 5.2. Let I C S be a bihomogeneous ideal. Let (a,b) € Z2, with ¢ > 1, and
assume that:

(in(Jk_l) : xk)(a7b) = (in(,]k_l) +my(in(Jk_1) : mk))(a,b)’ (5.16)

forallk =0,...,nand J; = (I, zo,. .., x;) (with the convention J_; = I). Then, there
is no generator of in(/) of bidegree (a, b).

Proof. Note that there are no minimal generators of in(7, zy, ..., z,) of any bidegree
(a,b) € Z2, as each of them must be divided by some z;. By Lemma 5.6 and the
hypothesiNs, this implies that there is no generator of in(7, zo, ..., z,_1) of bidegree
(a,b). Applying Lemma 5.6 ii7) recursively, we get that there is no generator of in(7)
of bidegree (a,b) € Z%O. O

Applying Theorem 5.4, we derive the following result.

Theorem 5.6. Let I C S be a bihomogeneous ideal. Let (a,b) € xreg(l) NZ2,. If
(a',b') > (a+ 1,b), then there is no minimal generator of bigin(/) of bidegree (da',V').

Proof. Note that for every (d/,b) € Z%O, the equality

(Jk—1 k) (@ p) = (Jr—1) (@' )
implies that
(Je-1: Tk (@) = [Je—1 +my(Jr—1 : 2p)] ()
for every Ji_, = (bigin(I), zo, ..., zx—1) With £k = 0, ..., n. Therefore, applying Corol-
lary 5.2 to bigin(7) and Theorem 5.4, we deduce that if (a,b) € xreg(l) N Z%o: then
(Jk—l : xk)(a/’b/) = (Jk—l)(a’,b’) for all (a’, b/) > (a, b) and k£ = 0,...,mn O

In addition, we can use Lemma 2.2 to attest the presence of generators of some
bidegrees, using the same criterion as in Theorem 5.4.

Theorem 5.7. Let (a,b) € Z2, with a > 1 such that (a,b) € xreg(I), but (a — 1,b) ¢
xreg(I). Then, there exists ¥ < b such that there is a minimal generator of bigin(7)
of bidegree (a,t).

Proof. If (a—1,b) ¢ xreg(I), then by Theorem 5.4 and Eq. (5.13) (not an equation), we
can derive that, there is 0 < k < n such that we have (Jy_1 : #1)(a—1,5) 7 (Jr—1)(a—1,)
for J,_; = (bigin(I),zo,...,2x_1). This result implies that there is a monomial
z®y? € S, such that

xkxay S (blgm(I), xo, ... ,xk_l)(a’b) but
%y ¢ (blgln([), Zo, .-, xk—l)(afl,b)' (5.17)
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Figure 5.6: In olive, the region xreg(I) + (1, 0). In blue, columns and squares where there are gener-
ators of bigin(7).

Therefore, none of the variables z, ..., z;_; divides the monomial z%y?. If z,2%y?
is a minimal generator of bigin(7), we are done. Otherwise, write zy2%y® = 227
where 27 is a minimal generator of bigin(7). We need to show that the bidegree of
2718 (a,b’) for some ¥’ < b. If this is not true, then there is some &’ > & such that z;,
divides z. At this point, we have two cases:

- If &’ = k then z,2%y” = k227, which implies that oyl = =27 € bigin(J), in
contradiction with (5.17).

- If ¥ > k, then z; divides 27 and z,, divides z. In this case, we write 27 =
z,2Y and z = z,7. Using the property of bigin(7) in Lemma 2.2, we get
z 2" € bigin(I) and so z*y® = z,Z'27" € bigin(I) getting a contradiction with
Eq. (5.17).

Therefore, 27 has bidegree (a, ') for some ' < b. O

Example 5.6. Consider the ideal 7 in Example 5.4. In Figure 5.6, one shows the
region xreg(I) + (1,0) where there cannot be any generators of bigin(7) (using The-
orem 5.6). Moreover, we mark the columns and squares in which Theorem 5.7
guarantees that there must be minimal generators of bigin(7) of such bidegrees.
Due to the vanishing of H}, (1), for a >> 0, we note that the region xreg(I) always
provides a tight bound for the degrees of the generators of bigin(7) with respect to
the 2’s. The bound of provided in Theorem 5.2 is thus recovered.

In what follows, we study the relation between xreg(7), the multigraded Castel-
nuovo-Mumford regularity of 7 and the bidegrees of the generators of bigin(7).
Theorem 5.8. Let I C S be a bihomogeneous ideal. Then, thereis0 < s < cdy, (1) —
1, such that reg(I) + (s,0) C xreg(I).

Proof. If (a,b) € reg(l), then we have H{(I)q ) = 0 foralli > 1 and (d',V/) >
(a—Xg,b—A,) with (A, \y) € Z2, such that A\, + ), = i—1. In particular, H{ (1), ) = 0
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for all (a/,¥) > (a,b). This implies that (a,b) ¢ Supp,.(Hg(I))*. Hence, by Theorem
2.14, we get (a,b) ¢ Supp,.(Hy, (I))*. It follows that
H’i

m

(D) py =0forall (a',0') > (a,b) and i > 1.

Therefore, there is some 0 < s < cdy, (I) — 1 such that for i > 1, we have H],_(I)(, )
= 0 for all (a/,0') > (a + s — (i — 1),b). This implies that (a + s,b) € Xreg(I) and so
does every (a/,t’) > (a + s,b). O

Remark 5.4. Remark ?? implies that for every ideal, the integer s appearing in the
above theorem is bounded by ». In many cases, we can also bound the cohomolog-
ical dimension using the dimension of 7, as a module over K[z, . .., z,]; see [Gro57].

As a consequence of Theorem 5.8, we derive a relation between reg(/) and the
minimal generators of bigin(7).

Corollary 5.3. Let I C S be a bihomogeneous ideal and (a,b) € reg(I) N ZZ,. Then,
thereis 1 < s < cd,, (1) such that for every (a/,’) > (a + s,b), there is no minimal
generator of bigin(7) of bidegree (o, ).

Proof. The proof follows from applying Theorem 5.6 and Theorem 5.8. O

Using Theorem 2.16, we can also relate xreg(7) with the Betti numbers of 1.

Theorem 5.9. Let I C S be any bihomogeneous ideal and let (a,b) € xreg(I) N Z2,.
Then, (a+n+1,b+m+1) ¢ 5;(I) foralli > 1.

Proof. If (a,b) € xreg(I), then (a—i+1,b) ¢ Supp,=(H;, (1))* for all< > 1. In particu-
lar, (a,b) ¢ Supp,.(Hy, (I))*. Using Theorem 2.16, we derive that (a+n+1,b+m+1) ¢
U;3;(I)*, concluding the proof. O

Corollary 5.4. Let I C S be a bihomogeneous ideal and let (a,b) € xreg(l) N Z2,.
Then, there is 0 < s < cdw, (1) — 1, such that 3; )y = 0 for all« > 1 and (d/, ') >
(a+n+s+1,b+m+1).

Proof. Apply Proposition 5.9 and Theorem 5.8. O

We refer to [BC17, Corollary 3.8] for a finer version of Corollary 5.4.

Example 5.7. We continue with Example 5.2. In Figure 5.7, we illustrate the region
xreg(I)-+(3,2) and the Betti numbers, i.e., the bidegrees (a, b) such that thereisi > 1
with 8; (,4)(1) # 0 in the minimal free resolution of 7. Proposition 5.9 guarantees
that there is no Betti number in the region xreg(7) + (3,2).
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Figure 5.7: We illustrate in olive the region xreg(/) + (3,2) and in squares, the Betti numbers,
i.e. the bidegrees (a, b) such that there is < > 1 with 8; (4,5 (I) # 0.

4. Bounds on the cohomological dimension

In Theorem 5.8, we have seen that the multigraded Castelnuovo-Mumford regular-
ity reg(7) is contained in the partial regularity region xreg(/), up to a shift by (s, 0),
where s is bounded above by the cohomological dimension of I with respect to m,.
In general, the cohomological dimension is bounded above by the minimal number
of generators of m,, which is n + 1.

However, we can clearly see in Example 5.6 that the bound by » + 1 can be
refined. In fact, we have already used in Lemma 4.6 of Chapter 4, the classical result
of Grothendieck [Gro57, Theorem 3.6.5] that says that the cohomology modules can
be bounded above in terms of the dimension of the module.

Remark 5.5. In the paper, we describe the generators of bigin(7) in terms the co-
homology of I. However, the dimension discussions we have next depend on the
local cohomology with respect to S/I, which can be more standard. However, we
can always consider the short exact sequence:

0=-1—-S—=S/I—0

As Hi (S)@p = 0foralli € Z>o and (a,b) € Z%,. As a consequence, we have
HEPY ) ap) = Hy (S/1) (@ for (a,b) € Z2. Indeed, as we are studying the degrees

ZQ
in 72 ), as study the cohomological dimension in this subset, denoted as cdp (I).

Remark 5.6. A different approach to the bound that we tried to can be given by the
Mayer-Vietoris spectral sequence which, as it is the case of the results of Chardin
and Holanda that we used in the previous sections; see [CHN23; MBZ18].

Our way to give a bound on the cohomological dimension is considering Noether
normalization; see Theorem 2.3, which implies that there are algebraically inde-
pendent elements v, ..., y, such that S/I is a finite module over K[y, . .., y,]. More-
over, if k is an infinite field, then y,...,y, can be chosen to be linear forms in
To, ..., Tn; See [BHI8, Theorem 1.5.17]. We recall that the Cech complex with re-

spect to (y1,...,y.) is bounded above by r. Therefore, H(iy1 yr)(M) =0fori>r.
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Notation 5.4. For v € Z, we denote by M, , the module ©,cz M, ).
Lemmas.9. Ify;, ..., y, isa Noether normalization of the K[z, . .., z,]-module (S/I) . o),

then
VW .y) = V(o z0)
as ideals in (S/I) ). Therefore, H, (S/I ) = H("thyr)(S/I(*vo)).

Proof. The inclusion +/(y1,...,y,) C \/(zo,...,z,) 1S trivial as y,...,y, are linear
forms in xy,...,z,. On the other hand, if f € \/(xo,...,z,), then there is r € Z>g
such that f" € (zo,...,x,)" for some M € Zso. The finiteness of (S/I)(. ) over
K[y1,...,y,] implies that there is a set of generators z",...,2% € (S/I)() as a
K[yi,...,y-]-module. Let M’ € Z>, be an integer such that these generators are
of degree < M'. Therefore, every monomial z* of degree M’ in xzy,...,z, can be
written as:

S
% = Z Pio(y1,--.,y.)2% modulo I
=1

for some polynomial P, , which must be of degree > 1 in the variables y,,...,y,.
Therefore, if we consider ' such that »» > M’, we must have:

()" € oo ur)-

Thus, f € /(y1,...,y,). The second part follows from [Bus06, Proposition 3.5] O

Aslocal cohomology can be defined as the homology of the Cech complex using
Remark 5.5, we get:
Cdmm (I(*,O)) <r+41. (5.18)

Moreover, for any v € Zx, the (S/I)(, ¢-module (S/I) ) is finite. Thus, these
modules are also finite over K[y, ...,y,] for all v € Z, getting the same result for

Lemma 5.10. [CH22, Lemma 3.7] If v € Z, we have H}, (M(,,)) = H}, (M)(.)-

Theorem 5.10. Let I C S be a bihomogeneous ideal. Then,

2

Zg .
cdw>" (1) < dimpn ((S/1)(x.0)) + 2, (5.19)

where dimp~ ((S/1)(,,0)) is the dimension of Proj((S/I).0)). Geometrically, if 7 is sat-
urated with respect to m,, then dimp~ ((S/1) . o)) corresponds to 7(Vpn xpm (1)) Where
7 is the natural projection:

m: P x P — P

Proof. The theorem of Noether normalization indicates that r is the Krull dimen-
sion of (S/I)(.). Using (2.1), we can see that this corresponds to the dimension of
Proj((S/1).0)) plus one, where Proj is considered with respect to P, i.e. all homo-
geneous ideals P in the ring (S/I)(. ) such that P 3 m,.
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As a consequence, using Lemma 5.10 and (5.18), we get that for i > r + 1:
Hy (S/T) = @pezHy, (S/1) () = SvezHy, (S/10)) = 0,

which provides the proof of (5.19). The Main Theorem of elimination theory [BCP23,
Chapter 3, Theorem 3.14] implies that the ideal:

%857 O\ Ko, . . . , 2]

Therefore, if 153%* = ], then the dimension of (S/I ) (%,0) corresponds to the dimen-
sion of 7(Vpnypm (1)), finalizing the proof of Theorem 5.10. O
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Chapter 6

Applications and computations

In this final chapter, we provide examples of the use of resultants in concrete ap-
plications such as geometric modelling or computer vision.

- Geometric modelling: A classical problem where polynomials appear in computer-
aided design is the implicitization of curves or surfaces. Namely, given a poly-
nomial or rational map which models a curve or surface, one aims to find the
implicit equation of that surface by manipulating the entries of the map. For
instance, in the case of surfaces, consider the following polynomial map

Qb : RQ — X C Rga (Svt) - (¢1(S’t)’¢2(5’t)7¢3(87t))' (61)

The polynomials ¢ typically correspond to piecewise information coming from
the representation of an object, for instance B-splines; see [Sha+06]. Repre-
senting X in its implicit form has the advantage of being able to check more
easily whether a given point p € R? belongs to X or finding the intersection of
X with some other surface. Moreover, matrix representations of the implicit
equation also exhibit some advantages; see [BLY19; Bus14].

In particular, we would like to find a polynomial equation in three variables
P(X,Y, Z) that represents the surface, i.e.

X ={P(X,Y,Z) =0}

Therefore, we are obliged to eliminate the variables s, ¢ from the polynomial
system:
X — qbl(s, t), Y — d)g(S, t), 7 — gf)g(s, t).

A plausible way to eliminate these variables is computing the resultant, which
can be done by exploiting the monomial structure of the polynomials with the
methods that we explained in the previous sections. Other methods include
Grobner bases; see [Big16], or approximation complexes; see [Bot11; Cha06].
The setting of overdetermied polynomial systems which is explored in this
thesis is naturally attached to this problem.
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All in all, we can use the examples provided in this thesis to give representa-
tions of the matrices in the computation of the resultant.

Example 6.1. Consider the problem of finding the implicit representation a
surface S given by the following polynomials:

b1(s,t) = ap + a15 + ass® + ast + ayst
o1 (S, t) =by+bis+ 5282 4 bst + byst  ¢3 = cop + c15 + cot (6.2)
Under generic assumptions in the coefficients, the system ¢; = ¢» = ¢3 = 0 has

no solutions. Under these assumptions, resultants can be used to eliminate the
variables s and ¢. In particular, the following matrix

ag — X al as az a4

bp —Y b1 ba b3 by

M(Q’l)(X, YV, Z) = Cco — Z C1 0 C3 0
0 Co C1 0 C3

(013]  [023] +[014] O [024] ©

has a rank drop after evaluating (X,Y, Z) at a point p = (p1, p2, p3) € R3, ifand
only if, p € S.

Computer vision: A variety of polynomial systems arising in vision consists of
matching problems between snapshots captured by cameras. In this type of
problems, thousands of polynomial systems will have to be simultaneously
solved [Duf+18; Kuk13; BKH19] so small differences in the computations will
be helpful in the final result. As one thinks of the cameras as linear projec-
tions, interesting algebraic objects such as Chow forms [OT19] or distorion
varieties [Kil+16] also arise.

A typical problem consists in computing the displacement of a calibrated cam-
era between two positions in a static environment. Namely, we would like to
find the displacement of a rigid body between two snapshots taken by a sta-
tionary camera. The identifiable features of the body include only points.

Usually, a minimum number of 5 point matches is available. The algebraic
problem reduces to a well-constrained system of polynomial equations and
we are able to give a closed-form solution. Typically, computer vision appli-
cations use at least 8 points in order to reduce the number of possible solu-
tions to one, in generic coordinates. In addition, computing the displacement
reduces to a linear problem and the effects of noise in the input can be dimin-
ished [LH81].

Let a; € (R®) fori = 1,...,5 be the 5 points in the first snapshot and a} € (R?)
fori = 1,...,5 be the points in the second snapshot. A quaternion formula-
tion of this problem was proposed in [Hor91]. This quaternion formulation
reduces the problem to solving the polynomial system given by the following
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equations in the variables ¢ € R3 (representing a rotation) and d € R? (repre-
senting a translation)

(af )(d"a}) +af aj+ (ai x @) aj+ (ai x @) (d x af) +af (dxaj) =0, i=1,...,5,
1—d"q=0, (6.3

where x represents the usual exterior product. The first five equations rep-
resents each of the 5 displacements while the last one represents a normal-
ization between the vectors ¢, d. This system is bilinear in the two groups of
variables. We can solve it by building the u-resultant. Namely, we introduce
anew linear equation P, = ug + u1dy + uads + usds + usqr + usqa + uggs. Once we
consider the resultant of this system, we get a polynomial that factors into lin-
ear forms, whose coefficients are the values of the solutions (they are a finite
number in this case); see also [Emi94] for a similar approach.

1. Some JULIA code for resultants and elimination matrices

The Canny-Emiris formula In [CE22], we included an JULIA implementation
of the Canny-Emiris formula for the cases of n-zonotopes and multihomogeneous
systems. Instead of applying the formula to polynomials of any Newton polytope
(which has already been done in other implementations), our goal was to provide
the rows of the Canny-Emiris formula by simply providing the type functions of
each of the lattice points that are used after the greedy implementation, as we de-
scribed in Chapter 3. The package can be found in the URL

https://github.com/carleschecanualart/CannyEmiris.

As input, one can introduce the vectors generating the n-zonotope (the matrix H
below) and the q; ; appearing in (3.1) (the matrix A below).

using CannyEmiris

A = [[1,1] [1,1] [1,1]1]
2x3 Matrix{Int6d}:
1 1 1
1 1 1

H = [[1,0] [e,1]]
2x2 Matrix{Int6u}:
1 ©
0 1

The command CannyEmiris.Zonotopes considers the setting given by A and
H and produces the matrix # in the Canny-Emiris formula. In particular, the com-
mand specifies which are the exponent vectors in the greedy subset G and their
corresponding polynomials providing the rows of # (the matrix CE below) and the
principal submatrix £ (the matrix PM below).
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CE, PM = CannyEmiris.Zonotopes(A, H,true)
rows of the Canny-Emiris matrix x"{b-a(b)}F_{i(b)} are:
11-> x"[0, 1]*F_2
2]-> x*[0, 1]*F_1
0]-> x*[1, 0]*F_2
1]-> x"[1, 1]*F_2
21-> x"[0, 1]*F_0
0]1-> x*[1, @]*F_1
1]1-> x"[1, ©1*F_0
2]-> x"[1, 1]*F_1

size of the greedy Canny-Emiris matrix is: 8
degree of the resultant is: 6

sparse resultant is the ratio of the determinants of the returned matrices to the power 1.0

CE
8%x8 Matrix{SymPy.Sym}:
(u_{2, [0, 0]}) (u_{2, [0, 11}) [} _12, [1, (u_{2,
(u_{1, [0, ©]}) (u_{1, [e, 11}) [} (u_{1,
[} 0 (u_{2, [e, 01})
0 0 2] . Lo, (u_{2,
(u_{e, [0, 0]}) (u_{e, [e, 1]1}) [} (u_{o,
0 0 (u_{1, [0, 0]})
[} 0 (u_{o, [0, 01}
2] 0 2]

(u_{1,

In the case of multihomogeneous systems, the command CannyEmiris.Multihomogeneous
takes the list of the exponents of the projective space P"! x --- x P, i.e. (ny,...,n,)
(the vector N below). Moreover; it also considers the matrix of multi-degrees of the
polynomials (the matrix D below) and provides the matrices # and £ as in the case
of zonotopes.

N = [2]
1-element Vector{Intéu}:

D=1[221]
Matrix{Int6u}:
2 1

CE,PM = CannyEmiris.Multihomogeneous(D,N,true)
rows of the Canny—Emiris matrix x*{b-a(b)}F_{i(b)} are:
1]-> x~[2, 1]*F_2
1]-> x~[3, 1]*F_2
2]-> x~[1, 2]*F_2
2]-> x~[2, 2]*F_2
3]-> x~[1, 3]*F_2
1]-> x~[2, 1]*F_1
2]-> x"[1, 2]*F_1
3]1-> x"[2, 1]*F_0
ul-> x°[1, 2]*F_@

size of the greedy Canny—-Emiris matrix is: 9
degree of the resultant is: 8

We also included the implementation of the resultant matrix for the equations
of the 5-point problem in (6.3) (the two sets of 5 random points in R3 are the matrices
Al and A2 below).

Al = rand(3,5); A2 = rand(3,5)
3x5 Matrix{Float6u}:
0.606563 0.137791 .347151 ©.677246 0.790655
0.157243 ©.116453 .897549 ©.369342 0.182918
0.189332 ©0.325438 .793318 ©.0780656 ©.934121

CE, a = CannyEmiris.Matrix0fTheFivePointsLinearForm(Al,6A2)
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Sylvester forms The package regarding Sylvester forms was notincluded in [BC22].
However, we included it here as part of showing the potential computational inter-

est of Sylvester forms in the framework of elimination matrices. In this package, we

only develop the construction of the matrix. However, this construction can be in-
cluded in other packages for solving polynomial systems such asAlgebraicSolvers.jl
or EigenvalueSolver. jl. It is relevant to note that we give the construction for
affine polynomials and so the cokernel of the matrix will also contain the solutions

at infinity. The package can be found in the URL

https://github.com/carleschecanualart/Sylvester.

For the case of dense polynomial systems, we initialize the packages and use DynamicPolynomials
to manage the variables.

using DynamicPolynomials

@polyvar x[1:2]

(PolyVar{true}[x1, xz2],)

using Sylvester

Assuming that we manage with polynomials of a certain list of degrees (the
vector ds below) which we use to generate random polynomials of those degrees
(the list f below). One can also introduce any list of given polynomials.

ds = [2; 2; 3]
3-element Vector{Int64}:

f = EilgenvalueSolver.getRandomSystem_dense(x,ds)

3-element Vector{Polynomial{true, Float64}}:
-1.6923041859862062X12 - 1.5323841354928134x1Xz + 1.163862279944845x22 + 2
- 0.08793758894274863
-0.47345770172033036X12 - 0.7805926804371628x1Xz + 0.8670343715925974x22 +
Xz - 1.5577804668722373
0.797566920072599x%17 + 2.155253114690668Xx12xz - 1.475642808383832x1Xz2? - 0
- 0.48623192983748753Xx1Xz - 0.09694876902940987xz22 + 0.4813182319424892

The command Sylvester.getResDense outputs the elimination matrix M,
(written as res below) at the smallest possible degree v, which is given by

=0 !

if dy,...,d, are the degrees of the system. The command also outputs the list of
monomials of degree v (the list S below), which label the columns of the matrix.
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res, S = Sylvester.getResDense(f, x)
(ComplexF64[-1.6923041859862062 + 0.01m -1.5323841354928134 + 0.0im ..
859862062 + 0.0im .. -0.08793758894274863 + 0.0im 0.0 + 0.0im; .. ;
2407659645 + 0.0im -2.0376139336777808 + 0.0im; 0.0 + 0.0im -
4.605474537430942 + 0,0im], Monomial{true}[x13, x1?xz, Xi1Xz?, Xz23%, x1?, X

I

res

10x18 Matrix{ComplexF64}:
-1.6923+0.01im -1.53238+0. 1.16386+0. .. -0.0879376+0.

0.0+0.01im -1.6923+0. -1.53238+0. 0.0+0.
0.0+0.01im 0.0+0.01 0.0+0. 2.07407+0.
-0.473458+0.01im -0.780593+0. 0.867034+0. -1.55778+0.
0.0+0.01m -0.473458+0. -0.780593+0. 0.0+0.
0.0+0.01m 0.0+0.01 0.0+0.01 0.319124+0.
0.797567+0.01im 2.15525+0. -1.47564+0. 0.481318+0.
0.901239+0.01im 1.94951+0. -2.90787+0. 4.50515+0.
0.0+0.0im -0.256917+0. -0.308325+0. 0.135512+0.
0.0+0.01im -1.38521+0. -2.76035+0. 4.61975+0.

In the case of multihomogeneous polynomial systems, the groups of variables
can be assigned using the below vargroups vector and specifying the number of
variables of each group with the varsize vector. Moreover, one can specify the
multi-degrees of the polynomials (with the matrix ds below) and provide a polyno-
mial system with n + 1 polynomials.

vargroups = [[x[1:1]];[x[2:2]]]
2-element Vector{Vector{Polyvar{truel}}}:
[x1]
[xz]

varsize = [1;1]
2-element Vector{Int64}:
1
1

ds = [11; 1 1; 1 1]

3x2 Matrix{Int64}:

1 1

1 1

1 1

f = [x[1]1*x[2] - 1; x[1] - 1; x[2] -

t Vector{Polynomial{true, Int64}}:

1

The command Sylvester.getMultiResDense outputs the elimination ma-
trix M, (written as res below) of the smallest bi-degree which as before is given by
the multigraded analogue of (6.4). In this case, one can also specify more than n+1
polynomials but, following the construction of Section 4.9 in Chapter 4, one has to
specify a set S of polynomials satisfying the hypotheses of Theorem 4.8.

res, S = Sylvester.getResMultiDense(f,x,vargroups,varsize,ds,[1:3;])
(ComplexF64[1.0 + 0.0im 0.0 + 0.0im 0.0 + 0.0im -1.0 + 0.0im; 0.0 + 0.0im 1.0
0.0im 0.0 + 0.0im 1.0 + 0.8im -1.0 + 0.0im; 0.0 + 0.0im 0.0 + 0.0im 1.0 + 0.0
X1, Xz, 1])

res

4=x4 Matrix{ComplexF64}:
1.0+0.0im 0.0+0.0im 0.0+0.0im -1.6+0.01im
0.0+0.0im 1.0+0.0im 0.0+0.06im -1.0+0.0im
0.0+0.0im 0.0+0.0im 1.0+0.0im -1.0+0.0im
0.0+0.0im 0.0+0.0im 1.0+0.0im -1.0+0.0im

In the most general sparse case, one has to specify the vectors generating the
fan of the toric variety (see the matrix U) and, after this, the integer vector (a; ;)
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defining the inequalities of each Newton polytope (see the matrix ). Once these
are clarified, the Julia interface of the famous package Polymake [KLT20] is used
to generate the lattice points and the command Sylvester.randomSparsePoly
generates random polynomials with these Newton polytopes. Note that the matrix
U that we specify below is the negative of the matrix in (2.9).

U=[-10; 6 -1; 1 1; & 1]
4=x2 Matrix{Int64}:

1
<]
1
¢]

a=[0B821;0021; 081 1]
atrix{Int64}:
2 1
2 1
1 1

3x4

x4 M
6 0
6 0
6 o

f = Sylvester.randomSparsePoly(U,a,x)
3-element Vector{Any}:
-0.6428514048554059%1% - 0.9055582043989475x1xz2 - 0.5439562378001662x1 - 1.06736
-0.698419385047925x%12 - 0.4165717279595798x1 - 2.8163569091729745x1 + 0.969390§
-1.4195710741863383%x1 + 0.016049160747017312xz2 - 0.9864555867154953

Once these are specified, the command Sylvester.getResSparse outputs
the elimination matrix M, (written as res below) of the smallest bi-degree which
as before is given by the sparse analogue of (6.4).

res, S = Sylvester.getResSparse(f,x,U,a,[1:3;])
(ComplexF64[-1.037314088651869 + 0.01im -1.0673631220309368 + 0.0im .. -0.905558204398947
+ 0.01m; 1.4309016382099484 + 0.0im 0.9693908532865807 + 0.01m .. -0.4165717279595798 +
im; -0.9864555867154953 + 0.0im 0.016049160747017312 + 0.0im .. 0.0 + 0.0im 0.0 + 0.01im;
2292048735672 + 0.0im .. 0.0 + 0.0im 0.0 + 0.0im], Monomial{true}[1, Xz, X1, XiXz, X12])

res
4x5 Matrix{ComplexF64}:
-1.83731+0.01im -1.06736+0.01m -0.543956+0.0im -0.905558+0.01m -0.642851+0.0im
1.4309+0.01im 0.969391+0.01im -2.81636+0.01m -0.416572+0.0im -0.698419+0.01m
-0.986456+0.0im 0.0160492+0.01im -1.41957+0.01im 0.0+0.01im 0.0+0.0im
4.28553+0.01m 1.33229+0.01im 1.37649+0.01im 0.0+0.0im 0.0+0.01im
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Chapter 7

Open problems

All the contributions in the previous chapters leave many open discussions and
problems, which the author aims to dedicate in his future research. In the follow-
ing, we can list some of these problems and highlight their interest.

Resultants and sparse elimination

A conjecture on the greedy Canny-Emiris formula. A very natural question
for sparse polynomial systems is which are the matrices of smallest size that
one can build to represent the sparse resultant. In [CE23], we stated a conjec-
ture on the case of using the Canny-Emiris formula that can be described as
follows.

Assume that we are working with coefficients in the field of complex numbers
C. Consider Ay,...,A, be a family of supports corresponding to a multiho-
mogeneous system. Assume, also, that each of the A; can be associated to a
multidegree in d; € Z?. The generic Hilbert function is defined as:

HF(d) = dim(S/I)q deZ?

where I is the ideal in C[M] after specializing the v, , to generic values in C.
This generic Hilbert function exists as we cannot have two different generic
behaviours for coefficients in C. Using the correspondence between polytopes
and multi-degrees that we described in the preeliminaries, we can associate
some of the subsets G C B to multi-degrees.

In the case of generic coefficients (still in the homogeneous case), this coin-
cides with the degree at which one can build resultant matrices: the Macaulay
bound (1). There is a multihomogeneous analogue of the Macaulay bound
[Ben19, Proposition 8.2.2] but, in general, it is not tight for the resultant con-
struction [ACGO05]. We can relate these bounds to the mixed subdivisions that
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we considered in the previous sections. For instance, the whole set of lat-
tice points B can be naturally associated to the multi-homogeneous Macaulay
bound.

Conjecture 7.1. Assume that G C B is a set of lattice points in the translated
cells that corresponds to a multi-degree d € Z?. If HF(d) = 0, then there is a
lifting function w € [],R* such that g is the greedy subset of such system.
Moreover, if HF(d') # 0 for d’ < d, G contains no greedy subset.

This idea can easily be extended to the sparse case by considering generic
values of the Hilbert function associated to degrees in the Cox ring of a toric
variety. Following the use that we made of the degree reverse lexicographical
monomial order in Chapter 5, it is natural to think that this lifting function
must be related to the degree reverse lexicograpical order. Namely, that for
two monomials 24, 2% € k[M], we have:

z? <ppr 2P = w(A) <w(B).

Here w(A) refers to evaluating the exponents of 24 in the inf-convolution of w
as in Definition 3.1.

In [CE22], we only considered affine lifting functions, for the sake of simplic-
ity on the combinatorics of the greedy algorithm. However, the results are
known to be not optimal, in the sense that there exist other lifting functions
that provide smaller resultant matrices. Therefore, a natural question is to
ask which subsets G C B can be obtained using the greedy algorithm for some
lifting function and which of them are minimal.

Example 7.1. Consider the same bilinear system as in Example 3.1. Another
possible non-affine mixed subdivision S(p) is the following:

o o5
S\
The red dots indicate the greedy subset that one obtains by starting the algo-
rithm at the lattice points in mixed cells. A possible lifting function giving this
mixed subdivision is wy = (0,1,1,3),w; = (0,2,2,5),ws = (0,3, 3,7), which is not
affine. This lifting function satisfies this degree reverse lexicographical con-
dition. Moreover, the subset B obtained by considering all the lattice points
in translated cells can be related to the bi-degree (2,2). However, the greedy
subset G that we have found corresponds to the bi-degree (2, 1). In particular,
this bi-degree corresponds to some existing exact resultant formulas [DE03].

Where should we perform elimination? Throughout the whole thesis, it is
assumed that if we are given a polynomial system, Fy = --- = F,, = 0 with
Newton polytopes Ay,...,A,, then itis a good idea to exploit and understand
this structure for a better design of the algorithms of algebraic elimination
and thus, X (for A = 3" , A;) is the toric variety in which we should work.
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However, it might not always be the case that the best representations for
resultants and elimination matrices come from exploiting this sparse setting.
For intstance, it might be the case that there are polytopes A; D A; such that
computing the resultant in this setting is sufficient for performing elimination
we have simpler representations for the resultant. Namely, we have that:

Resy, . (Fo,...,Fn) #0.

In fact, D’Andrea, Jeréonimo and Sombra provided necessary and sufficient
conditions for that to happen in terms of mixed integrals [D]JS22, Theorem
3.19].

On the other hand, if we consider the greedy algorithm and the setting of
Conjecture 7.1, it is possible that the resulting polytope formed by the lattice
points in G does not correspond to a divisor in the same toric variety given
by the polytopes Ay, ..., A,. For instance, in Example 3.5, the resulting poly-
tope does not correspond to a nef divisor in P", even if the starting point were
polytopes corresponding to divisors in this variety. Thus, even in the dense
case, it is possible to consider elimination matrices and resultants which are
built from polytopes which do not correspond to divisors in the toric variety
defined by Ay, ..., A,.

As the rows of the Macaulay matrix for the resultant are related to the Castel-
nuovo-Mumford regularity, it is clear that in the resulting polytope, there will
be lattice points associated to the degree of regularity, but this does not mean
that all the lattice points of that degree belong to the Newton polytope of G.

All in all, it is possible to state the following big question: given a polynomial
system which is the best toric variety in which we can work for performing al-
gebraic elimination using resultants and elimination matrices?

Type functions. As we showed in the computational section, providing a de-
scription of the lattice points that are required after the greedy algorithm in
terms of type functions can simplify the implementation of the Canny-Emiris
formula. Can we give this type of description in a wider context that the cases
of n-zonotopes and multihomogeneous systems?

Generic dimension. The tecnique that D’Andrea, Jeronimo and Sombra used
in [DJS22] to derive that the Canny-Emiris matrix does not vanish is very in-
teresting. They used the fact that the lifting functions provide a tropical de-
generation of the polynomials and that the initial part of the determinant of
the matrix with respect to that degeneration is nonzero. This idea can be very
interesting to use this tecnique to derive the non-vanishing of Macaulay ma-
trices for computing the generic dimension depending on parameters. This
can be very interesting both in applications [FHPE23] or in the toric setting
[BS24].
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Sylvester forms

The o-positive property. The use of the o-positive property follows the intu-
ition coming from the dense and multihomogeneous case that if a polytope is
described in terms of a degree which has a negative entry, then there are no
lattice points in that polytope; see Remark 2.3. As noted in Conjecture 4.1, we
can expect that a broad range of toric varieties (specially smooth) satisfy this
property. On the other hand, we can notice that some relevant counterexam-
ples do not satisfy the o-positive property. For instance, the counterexample
given by Maclagan and Smith in [MS04, Example 6.11] of a toric variety such
that its Cox ring is not 0-regular does not satisfy this property.

Computational aspects of Sylvester forms. Further work is needed to an-
alyze if some toric Sylvester forms can be avoided or combined to gain in
efficiency. A more practical approach for future improvements would be to
add Sylvester forms step by step (similarly to the “degree-by-degree” approach
developed in [BT21]) until the expected corank is achieved, or some other cri-
terion needed to solve the polynomial systems is satisfied (see e.g. [BT21, Def-
inition 2.1]). An interestic topic related to further study of Sylvester forms is
how they might be included in computer algebra systems. The fact that they
are defined only in the case of n + 1 polynomials in » (affine) variables is a big
restriction for this use. However, in some cases, a part of the variables could
be considered as the parameters of the system and the Sylvester forms can
be computed with respect to the rest. With this, one can try to compute the
saturation with respect to some of the variables, which can be contained in
the saturation with respect to the irrelevant, which contains the interesting
geometric information of the polynomial system.

Hybrid resultant formulas. In Example 4.7, we mentioned that the case
n = 2 and « = ¢ is the only case for which a method for choosing a minor
of the hybrid elimination matrices, extending in the Canny-Emiris formula;
see [DEO1]. Finding a more general method for choosing a minor of the hy-
brid elimination matrices could help generalizing the Canny-Emiris formula
to the matrices that use toric Sylvester forms could be interesting for finding
further compact representations of the sparse resultant.

Multigraded regularity and generic initial ideals

Complete the picture and relation with other objects. The definition of
xreg(I) is pivotal to the contribution of this paper, as it allowed us to general-
ize the criterion of Bayer and Stillman in [BS87a] to the case of the bi-generic
initial ideal bigin(7), using the DRL monomial order (5.4). This region is de-
scribed in terms of the local cohomology with respect to m,. The study of the
local cohomology modules by Chardin and Holanda in [CH22] allows us to re-
late xreg(7) with the Castelnuovo-Mumford regularity reg(/) [MS04]. On the
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other hand, this invariant preserves some of the properties of the degree of
regularity Rx(7) in [ACDNOO; RomO01], but allows us to describe the bi-degrees
of the generators of bigin(7) in terms of a region which, in general, is larger
than the one described by %Rx(7). All these results follow identically in the
multigraded case.

As we see Figure ??, there can be unbounded regions that do not intersect
xreg(I). Therefore, we cannot use xreg(/) to give a complete characteriza-
tion of the bi-degrees of the generators of bigin(7). The idea of the proof of
Theorem 5.7 can be used in further generality to derive that

(Je—1: Tr)(a—1,0) = (Je—1 +my(Je—1: T%)) a1y Yk =0,...,n
<= There is no generator of bigin(I) of degree (a,b). (7.1)

for Ji,_1 = (bigin(I), zo, ..., zx—1). Thislast resultis the closest we can get to the
complete characterization of de bi-degrees of the generators of bigin(7), gen-
eralizing (1.7) to the bigraded setting. However, we were not able to charac-
terize the left hand side of (7.1) in terms of the algebra of I (local cohomology,
Betti numbers...), generalizing xreg(7).

A sparse generic initial ideal. Knowing for which toric varieties there is an
analogue of the generic initial ideal can also be very helpful for extending the
theory we described for multihomogeneous systems to other toric varieties.

How to structure Grobner-based computations with multigraded polyno-
mials? In our work on multigraded regularity, we motivated the use of the
DRL monomial order (see Remark ??) and we assumed a fixed relative order
of the variables of different multi-degree. However, we do not derive that this
monomial order is necessarly going to provide the best approach towards the
computation of a Grobner. Proving that requires an extra study, considering
also therelative orders in which the variables of each block can be intermixed.

xreg(l) and effective computations. In Theorem 5.4, we showed that the
regularity region xreg(/) extends the criterion of Bayer and Stillman to the
setting of multidegrees. This criterion has been applied in other contexts, for
instance in the use of Macaulay matrices for the construction of normal formes;
see [TMVB17]. More concretely, as xreg(/) only depends on the structure of
the multigraded ideal with respect to one group of variables, we believe that
our criterion can be applied in the case that we want to recover the geometry
of the projection of the solution set to the projective space corresponding to
that group of variables. For instance, in the case that the projected solution set
is formed by a finite number of points, we could try to recover those points by
posing an eigenvalue problem, as we explained in the introduction. This idea
could be very interesting in the context of systems that depend on parameters.

Other applications. During the thesis, we focused on sparsity as a general and
widely used structure to exploit. However, the systems that usually appear in ap-
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plications have further structure which cannot always be seen from this paradigm.
For instance, the polynomial systems modeling the steady states of chemical reac-
tion networks. They sometimes exhibit toric structure [Cra+09], but their structure
is much more particular than the general type of polynomial systems we studied
in this thesis.
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