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Περίληψη

Ηπαρούσαδιατριβήπραγματεύεται πολυομογενήκαι αραιάπολυωνυμικάσυστήματα
απόθεωρητικήκαι υπολογιστικήάποψη. Αυτήη εργασίαπεριέχει δύο διαφορετικούς
τρόπους συσχέτισης πινάκων με πολυωνυμικά συστήματα με τρόπο που εκμετα-
λλεύεται τη δομή της αραιότητας τους. Πρώτον, δίνουμε μια οικογένεια μικτών
υποδιαιρέσεων που ικανοποιούν τον τύπο Canny-Emiris για τον υπολογισμό της
αραιής απαλοίφουσας και παρέχει μια οικογένεια πινάκων των οποίων το μέγεθος
μπορεί να μειωθεί χρησιμοποιώντας την άπληστη προσέγγιση σε αυτόν τον τύπο.
Δεύτερον, επεκτείνουμε την κατασκευή τωνμορφών Sylvester στην περίπτωση μιας
ομαλής τορικής ποικιλότητας που ικανοποιεί μια ορισμένη ιδιότητα. Τέλος, μελετάμε
τησχέσημεταξύ της πολυ-oμογενούς κανονικότητας Castelnuovo-Mumfordκαι των
βάσεωνGröbner με τρόποπουμας επιτρέπει νακατανοήσουμεποιες είναι οι ελάχιστοι
βαθμοί στις βάσειςGröbner ενός ιδεώδους, σε γενικές συντεταγμένες χρησιμοποιώντας
την αντίστροφηβαθμού λεξικογραφική διάταξη μονωνυμων. Προσθέτουμε παρα-
δείγματα σε εφαρμογές όπως σε Υπολογιστική Οραση και Γεωμετρική Σχεδίαση,
μαζί με τον κώδικα JULIA ορισμένων από τις υλοποιήσεις.

Abstract

This thesis deals withmultihomogeneous and sparse polynomial systems from
the theoretical and computational point of view. This work contains two different
ways of associating matrices to polynomial systems in a way that exploits their
sparsity structure. Firstly, we give a family of mixed subdivisions that satisfy the
Canny-Emiris formula for the computation of the sparse resultant, providing a fam-
ily of matrices whose size can be reduced using the greedy approach to this for-
mula. Secondly, we extend the construction of Sylvester forms to the case of a
smooth toric variety satisfying a certain property. Finally, we study the relation
between the multigraded Castelnuovo-Mumford regularity and Gröbner bases in a
way that allows us to understand which are the minimal bi-degrees in a Gröbner
bases of an ideal, in generic coordinates using the degree reverse lexicographical
monomial order. We add examples in applications such as Computer Vision and
Geometric Design, together with JULIA code of some of the implementations.
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Chapter 1

Introduction

Systems of polynomial equations appear everywhere in science and engineering.
Making computations with them, finding their zeros or handling the different pos-
sible representations of their solution set is a vast area for research, which we
can comprise under the name of computational algebraic geometry [CLO98; MS21;
Sch03]. A smooth communication between the theoretical mathematics coming
from commutative algebra and the knowledge of the insights of each application
has been producing a vast number of advances over the last centuries. We can list
some of the areas where these advances have been relevant.

▶

Figure 1.1: Implicit surface of a map
given by three bilinear forms.

Geometricmodelling: Transforming poly-
nomial maps into implicit equations is a
fundamental problem of computer-aided
design (see Figure 1.1). This problem can
be seen from the point of view of spar-
sity [BCD03]. One might also want to com-
pute directly with the parametric form and
study its topology [Kat+22]. On the other
hand, Bezier surfaces play a central role in
the manipulation of the algebraic objects and they can also be seen from the
perspective of toric geometry [CC20; Kra02].

▶ Biology: In chemical reaction network analysis, parameter-dependent sys-
tems arise when modeling the steady states of dynamical systems associated
with the networks [Fel20]. Studying these parameters can be helpful to de-
termine the number of steady states, especially when deciding whether the
systemhas a unique solution over the real positive numbers [BDG18; FHPE23;
Con+17]. These systems can also exhibit some toric structure [Cra+09].

▶ Kinematics: Polynomial systems are often used to parametrize the move-
ments of a robotic arm. In this area, the typical tasks involve eliminating the
parameters [Emi+06] or seeking geometric descriptions of the solution set to
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avoid the singularities of these systems [Le+23]. Paradoxical behaviours may
arise if the space of mobility of the arm has more dimension than one could
expect from the equations [Sch21].

▶

Figure 1.2: A single point A expressed
from two different camera positions,
with a, a′ being the images. The condi-
tion of both images corresponding to A
is expressed as a polynomial system.

Computer vision: Many polynomial
systems arising in vision consist of
matching problems between snapshots
captured by cameras (see Figure 1.2).
Usually, thousands of polynomial sys-
tems have to be simultaneously solved
[Duf+18; Kuk13] so small differences
in the computations will be helpful in
the final result. As one thinks of the
cameras as linear projections, interest-
ing algebraic objects with sparse struc-
ture (Chow forms [OT19], distortion va-
rieties [Kil+16]...) arise.

▶ Physics: A-hypergeometric systems arise naturally in the study of Euler in-
tegrals in particle physics. The structure of the Newton polytope that we will
discuss in this thesis is closely attached to these systems and their sparse struc-
ture [MHMT23].

▶ Other applications include multivariate cryptography [CG20; CG23; FVP08],
coding theory [JA11; Sop13], optimization [Lau14], topological data analysis
[Sch22], game theory [PS22] or algebraic statistics [Sul18].

Findingdifferent representations of the solution set, eliminating variables from
the systemor solving polynomial systemswith afinite number of solutions are com-
putationally hard problems: the complexity of the algorithmswill, in general, grow
exponentially in the number of variables. Therefore, if we want to find robust and
efficient algorithms, we cannot just tell the computer ”solve this” and expect it
to respond in reasonable time: we ought to look at the structure of those polyno-
mials and see if we manage to find better algorithms that take advantage of the
properties of each family of systems. On the other hand, understanding the struc-
ture of the polynomials from the point of view of commutative algebra or algebraic
geometry is an interesting problemon its own. In this thesis, we focus on the sparse
(or toric) structure of polynomial systems and propose some novel constructions
that intend to describe and exploit such structure.

Newtonpolytopes andprojective toric varieties Whenwe look at a polynomial,
only a finite number amongst its coefficients will be nonzero. Thus, using only the
monomials with nonzero coefficient provides a shortcut to understand the struc-
ture of polynomial equations. Namely, every F ∈ C[x1, . . . , xn] is of the form:

F =
∑

ubx
b b ∈ Zn xb = xb11 · · ·x

bn
n (b1, . . . , bn) ∈ Zn
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with a finite number of nonzero coefficients ub ∈ C. The exponents b appearing
in a polynomial F form a finite subset A ⊂ Zn, which we refer as the supports of
F . The convex hull of the set of supports in Rn are named the Newton polytope
∆ = conv(A).

From the point of view of algebraic geometry, we would like to understand
the solution set of a polynomial system from the algebra described by these poly-
nomials. Namely, the solution set of a system given by polynomials F1, . . . , Fr ∈
C[x1, . . . , xn] over a subset K ⊂ C is:

VKn(F1, . . . , Fr) = {(x1, . . . , xn) ∈ Kn Fi(x1, . . . , xn) = 0 for all i = 1, . . . , r}. (1.1)

The usual candidates for K in the above applications are the complex numbers C,
the nonzero complex numbersC∗ = C−{0}, the real numbersR or the real positive
numbers R>0. A possible way of introducing the connection between the structure
of the Newton polytopes and the geometry of polynomial systems is stating the
famous theorem of Bernstein-Khovanskii-Kushnirenko that counts the number of
solutions over C∗ in terms of the mixed volume of the polytopes [Ber75; Kus75].

Theorem. Given a polynomial system

F1 = · · · = Fn = 0 (1.2)

of n equations and n variables, with finitely many zeros and Newton polytopes
∆1, . . . ,∆n ⊂ Rn, the number of solutions of this system in

(
C∗)n (counting multi-

plicity) is bounded above by the mixed volume of the polytopes,

MV(∆1, . . . ,∆n)

which is the coefficient of t1 · · · tn in the polynomial Vol(t1∆1 + · · · + tn∆n). This
bound is attained for a general choice of the coefficients of F1, . . . , Fn.

The beauty of this theorem expresses the type of results that have motivated
many lines of research in the last decades (and, actually, centuries): the geometry
of the solution set is related to the properties of the Newton polytopes! Therefore,
studying the relations between algebra, geometry and combinatorics underlying to
a polynomial system is a very wide and interesting mathematical challenge.

The generic conditions for the number of solutions over (C∗)n to be exactly the
mixed volume can be found in [HS95; Roj94]. On the other hand, if the previous
bound is not attained, we can see that the ”missing” solutions lie in a certain variety,
which is defined from the Newton polytopes of the system. For simplicity, consider
∆ to be Newton polytope of all the polynomials in the system (1.2) and let A =
∆ ∩ Zn = {m1, . . . ,ms} be the lattice points in this polytope. Then, we can look at
the following map:

ΦA : (C∗)n −→ Ps−1 t := (t1, . . . , tn) −→ (tm1 : · · · : tms) (1.3)
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and consider the varietyX∆ defined by the Zariski closure of the image of ΦA. One
can see that the natural action of the torus (C∗)n on itself extends to an action on
X∆, providing the name projective toric variety [CLS12]. The theory that motivates
the use of this type of relations between polytopes (as well as other combinato-
rial objects) and the geometry of polynomial systems is known as toric geometry
and goes back to the seminal works of Danilov, Demazure or Khovanskii [Dan78;
Dem70; Kho77].

Revisiting the problem of the ”missing” solutions of the polynomial system
F1 = · · · = Fn = 0, we can find a version of the Bernstein-Khovanskii-Kushnirenko
[Tel22; GKZ94; Roj96] theorem considering the solutions in X∆ after homogeniz-
ing the system with respect to this toric variety: if the homogeneous system still
has a finite number of solutions, this number is exactly the mixed volume. This
homogeneization can also be described in terms of the Newton polytopes. The so-
lutions of this new homogeneous polynomial system which do not lie in (C∗)n are
in the lower dimensional orbits of the action of (C∗)n in X∆ and are often refered
as ”solutions at infinity”.

The construction above demonstrates the suitability of using toric varieties to
analyze the geometry of polynomial systems. However, the paradigm of trying to
exploit the combinatorial structure underlying to polynomial systems exceeds the
definition that we provided. In general, any variety X at which the torus (C∗)n

is in correspondence with an open dense subset of X and the natural action of
torus (C∗)n extends to the rest of the variety is called toric (not even necessarily
projective). The ideals defining these varieties are prime and binomial [ES96] and
appear in many applications. The ubiquity of this type of structures allows us to
claim that the world is toric [MS21].

The point of view of looking at the solutions set from the perspective of the
Newton polytope allows us to classify polynomial systems in the following three
categories (see Fig. 1.3):

▶ Dense (or homogeneous) polynomial systems: The simplest case of study
are dense polynomial systems, in which we allow all the monomials up to
a certain degree d to have a nonzero coefficient. In this case, the Newton
polytopes are simplices and homogenizing means adding a new variable x0
and multiplying every monomial by a power of x0 until all the monomials
have degree d. Most of the results presented in this thesis were already well-
established for this type of systems. In this case, the underlying projective
toric variety is the projective space Pn.

▶ Multihomogeneous polynomial systems: In a slightlymore general case, we
can group the variables x1, . . . , xn into r families for r ≥ 1 and consider polyno-
mial systems inwhich the degree of themonomialswith respect to each group
of variables does not exceed a certain tuple of degrees (d1, . . . , dr). In this case,
we homogenize by adding one variable for each group of variables and the
underlying projective toric variety is the multiprojective space Pn1 × · · ·×Pnr .
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This intermediate case is present in numerous applications. Some of the com-
putational problems that we will adress have already been widely studied for
the multihomogeneous case. However, some other studies, specially those
dealingwith the relation between themultigraded Castelnuovo-Mumford reg-
ularity and Gröbner bases, are already quite intricate in this case, and the
literature is more scarce.

▶ Sparse polynomial systems: In the most general case, we only fix the New-
ton polytopes of the polynomial system, and thus allow any of the monomials
corresponding to lattice points in the polytope to have a nonzero coefficient.
If the Newton polytopes of the system are ∆1, . . . ,∆r the toric variety that we
consider is associated to the polytope ∆ =

∑r
i=1∆i, as in (1.3). In the flavour

of the Bernstein-Khovanskii-Kushnirenko theorem, the combinatorics of the
polytopes takes a very interesting role in the description of the properties of
these systems. For instance, the homogenization can described in terms of the
Newton polytopes; see (2.21).

Type of systems Newton polytope Polynomials Underlying compact space

Dense polynomial systems 1 + x+ x3 + y + yx2 + y2 + y3 Pn

Multihomogeneous polynomial systems 1 + x+ y + xy + y2 + y2x Pn1 × · · · × Pnr

Sparse polynomial systems 1 + x+ y + xy + y2 A projective toric variety

Figure 1.3: Exploiting the Newton polytope structure of polynomial systems is advantageous for com-
putations.

Symbolicmethods for computingwithpolynomial systems The computational
tools that we consider in this thesis belong to the category of symbolic methods.
These methods comprise algorithms that output the solution as the result of a se-
ries of computations that consider the variables and coefficients as symbols. On
the other hand, the coefficients of polynomial systems coming from scientific ap-
plications are usually represented as floating point numbers and thus, they may
come with numerical errors that have to be taken into account. The compacity of
projective toric varieties is also advantageous in this case as small perturbations
in the coefficients will not derive in big differences in the solution set. The details
on numerical algebraic geometry exceed the scope of this thesis and the expertise
of the author. For a thorough exposition on the relation of the discussed methods
with numerical analysis, we refer to [SW05].
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The methods that we consider are elimination matrices and Gröbner bases. Of
course, the methods of algebraic computation are much broader and interact with
each other in many ways. However, in this thesis we stick to the basic idea that
having a good understanding of these two methods and how they relate to the ge-
ometry of polynomial systemswill provide a general knowledge on their structure,
specially in the case of systems with a finite number of solutions.

▶ Eliminationmatrices: A classical approach towards non-linear algebra is lin-
earization, this is, the exploitation of linear algebra methods (gaussian elimi-
nation, eigenvalues, eigenvectors...) after transforming a problem given by a
polynomial system into a linear one. A possible way to make such transfor-
mation is the following: consider a polynomial system F1 = · · · = Fr = 0 in a
ring S = C[x1, . . . , xn] of degrees d1, . . . , dr i.e.

Fi =
∑

deg(xa)≤di

ui,ax
a i = 1, . . . , r. (1.4)

Consider the polynomial ideal I ⊂ S generated by F1, . . . , Fr and the polyno-
mial mapM defined as:

M : Sr −→ S (G1, . . . , Gr) −→
r∑

i=0

GiFi. (1.5)

This map is a very natural way to present the algebra of the polynomial sys-
tem: a polynomialG ∈ S belongs to the ideal I , if and only if,G is in the image
of M. Moreover, once we consider a degree ν ∈ Z≥max di , the previous map is
transformed into a map between vector spaces:

Mν : ⊕r
i=1S≤ν−di −→ S≤ν (G1, . . . , Gr) −→

n∑
i=0

GiFi (1.6)

where S≤ν is the vector space spanned by all the monomials of degree lower
or equal than ν. The map Mν is a map between two vector spaces and thus,
by employing the degree ν, we have turned a non-linear structure of poly-
nomials into a linear problem. The matrixMν associated with the map Mν

in monomial bases appeared for the first time in the study of resultants by
Sylvester [Syl18] and Macaulay [Mac03]. For this reason, it is often refered as
theMacaulay (or Sylvester-Macaulay) matrix.

Example. Consider the following three polynomials in C[x1, x2]:

F0 = 1− x1 + x21 F1 = 2 + x1 + 2x1x2 + x22 − 2x21 F2 = 1− x1 + x2

of degrees 2, 2 and 1, respectively. If ν = 3, the Macaulay matrixMν is the
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following:



1 x1 x21 x31 x2 x1x2 x21x2 x22 x1x
2
2 x32

F0 1 −1 1 0 0 0 0 1 0 0
x1F0 0 1 −1 1 0 0 0 0 1 0
x2F0 0 0 0 0 1 −1 1 0 0 1
F1 2 1 −2 0 0 2 0 1 0 0

x1F1 0 2 1 −2 0 0 2 0 1 0
x2F1 0 0 0 0 2 1 2 0 −2 1
F2 1 −1 0 0 1 0 0 0 0 0

x1F2 0 1 −1 0 0 1 0 0 0 0
x2F2 0 0 0 0 1 −1 0 1 0 0
x21F2 0 0 1 −1 0 0 1 0 1 0

x1x2F2 0 0 0 0 0 1 −1 1 0 0
x22F2 0 0 0 0 0 0 0 1 −1 1



.

The matrix-based constructions offer the advantage of universality in coeffi-
cients: once the degrees of the polynomials are fixed (or, more broadly, the
Newton polytopes), the coefficients can be specialized to any values, and the
matrix construction remains the same. Consequently, extracting properties
of the solution set via these matrices relies solely on identifying the degrees
ν at which the geometric properties of the system can be retrieved. This ver-
satility enables us to employ these matrices in solving various computational
problems effectively.

Motivated by the applications in geometric modelling and the theory of re-
sultants, we can consider the case where there are n + 1 polynomials in n
variables and find degrees ν at which the matricesMν such that we recover
the following two properties: i) their corank is positive when we specialize
to systems that have a solution (over the corresponding projective toric vari-
ety) and ii) if the specialized system is 0-dimensional (i.e. has a finite number
of solutions), then the corank is precisely this number of solutions, counting
multiplicities [Bus06; EM99; Tel20]. If the degree is big enough (ν � 0), the
matrixMν always has both properties and thus, the focus usually relies in
trying to find the smallest ν with those properties.

Once we have fixed ν, we can useMν to eliminate variables from a polyno-
mial systemor find the solutions of 0-dimensional systems. To describe how to
perform those operations, we can turn to conventional methods involving re-
sultants or eigenvalue methods. We outline the description of these methods
for the case of dense polynomial systems, but the tecniques we will describe
also follow in the multihomogeneous and sparse cases; see [CLO98, Chapter
3, Chapter 8] for a longer and more precise description.

- Resultant-based methods: As we mentioned above, the Macaulay matrix
appeared in the first place in the study of resultants, which considers the
case of n + 1 polynomials F0, . . . , Fn ∈ C[x1, . . . , xn] of degrees d0, . . . , dn.
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For general values of the coefficients, these systems will not have any so-
lution in C. A powerful tool for elimination is to find a polynomial in the
coefficients of the system whose zeros provide precisely those systems
that have solutions. This polynomial is known as the resultant of the sys-
tem, i.e.

Res(F0, . . . , Fn) = 0 ⇐⇒ F0 = · · · = Fn = 0 has a solution in Cn.

The resultant depends only on the degrees of F0, . . . , Fn, so we can de-
note it as Resd0,...,dn . These polynomials can be very useful for solving
systems with a finite number of solutions. Namely, if we are given a sys-
tem F1, . . . , Fn with a finite number of solutions, we can introduce an ad-
ditional linear polynomial F = u0 + u1x1 + · · · + unxn and consider the
resultant of F, F1, . . . , Fn. If the system F1 = · · · = Fn = 0 has no solutions
at infinity, the resultant decomposes as:

Res1,d1,...,dn(F, F1, . . . , Fn) = C
∏

x∈V(C∗)n (F1,...,Fn)

(
u0 + u1x1 + · · ·+ unxn

)µx

where C is a nonzero constant and µx is the algebraic multiplicity of the
point x in the variety V(C∗)n(F1, . . . , Fn) [CLO98, Chapter 3].

Another possibility could be to consider F1, . . . , Fn as polynomials in the
variables x1, . . . , xn−1 whose coefficients are polynomials in xn. Then,
Resxn

d1,...,dn
(F1, . . . , Fn) is a polynomial in xn whose roots are precisely the

xn-components of the roots of the system; see also [CLO98, Chapter 3].
This tecniquemakes resultants veryuseful for eliminating variables from
polynomial systems, independently of the dimension of the solution set.
However, if the polynomial system F1 = · · · = Fn = 0 has components of
positive dimension, the resultant will vanish identically when evaluated
to the coefficients of the system (which depend on x1, . . . , xn−1) difficult-
ing the recovery of the solutions. This problem can be treated with some
techniques [Can90; Pog24; Roj97], but still remains a challenge of the use
of resultants.

Resultants are naturally attached to the linearization method above: if
Mν is an elimination matrix, the resultant can be computed as the great-
est common divisor of the nonzero maximal minors ofMν considered as
polynomials in the coefficients, i.e.

Resd0,...,dn = gcd(Nonzero maximal minors ofMν).

In the best case, the matrixMν is already square and one has a deter-
minantal formula Resd0,...,dn = det(Mν). For instance, this is the case of
the classical Sylvester matrix for the resultant of two polynomials in one
variable [Syl18]. However,Mν is usually not square, and computing the
greatest common divisor of the maximal minors of the matrix can be
quite challenging. Instead, we can just note that Resd0,...,dn divides the
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determinant of every nonzero maximal minor ofMν . Therefore, a stan-
dardway to find formulas for the resultant is considering the ratio of two
determinants:

Resd0,...,dn =
det(H)
det(E)

where H is a maximal submatrix ofMν with nonzero determinant. The
matrix E might correspond to a submatrix of H [Mac03; CE95] or to an-
othermatrix closely related toMν . For instance, it is common to consider
the resultant as a determinant of a complex (such as the Koszul complex
[GKZ94] or the Weyman complex [WZ92]). The computations for solv-
ing 0-dimensional systems or eliminating variables can be performed di-
rectly with the matrix H, but one has to take into account the presence
of the factor det(E) whose vanishing at the coefficients of the system is a
potential inconvenient.

There are other formulas for computing the resultant inwhich the entries
of the matrix can be other polynomials in the coefficients. Examples of
such formulas appear in the very classicalworks of Bézout [Bez79], Dixon
[Dix09] or Morley and Coble [MC27]. Most of these formulas follow from
the basic idea of adding inertia forms [Hur13], i.e. polynomials in the
saturation of the given ideal. The literature for computing these forms in
different degrees includes the works of Hurwitz, Mertens, Van derWaer-
den and Zariski [Zar37].

All in all, the search for more compact formulas for the resultant, spe-
cially in its more sparse versions, is a very extense area of research at
which the work of this thesis aims to contribute [Jou97; EM12; Ben+21;
CDS97; DE03; EM99; D’A01; GKZ94; Ben+21; SZ94].

Other types of resultants also become interesting if one wants to exploit
further structure of polynomial systems with the purpose of algebraic
elimination. Here, we can mention the special cases of residual resul-
tants [Bus01; EM01] and subresultants [DJ05; ADTGV09; Sza08].
• Eigenvalue methods: In the same line of trying to exploit the linear al-
gebra associated to polynomial computations, one can also recover the
solutions of a 0-dimensional polynomial system as the eigenvalues of a
matrix. Namely, if A is the (finite) algebra C[x1, . . . , xn]/(F1, . . . , Fn), then
one can consider a polynomial F ∈ C[x1, . . . , xn] and the multiplication
map:

mF : A
·F−→ A.

A classical result, firstly due to Stickelberger [Cox21] but developed in the
modern language byAuzinger and Stetter [AS88], states that the eigenval-
ues of the map mF correspond to the evaluations of F at the solutions of
the polynomial system F1 = · · · = Fn = 0. Under good numerical con-
ditions, this result can be very advantageous from the point of view fast
computations.
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In seeking ways to construct the maps mF , one method involves finding
a basis for A and subsequently multiplying this basis by F . However, the
challenge arises when determining the representation of this multiplica-
tion result in the basis of A. To streamline this process, a more efficient
strategy is to consider the maximal minors of the elimination matricesH
associated with the system F1, . . . , Fn, F and considering the Schur com-
plement construction. This means writing the matrix H as:

H =

(
M11 M12

M21 M22

)
where last rows and columns associated to the polynomial F . Then, the
multiplication map can be constructed as:

mF =M11 −M12M
−1
22 M21.

Another similar construction from exploiting the cokernel of the matrix
Mν . Namely, ifMν is an elimination matrix, a cokernel matrix Nν has
rank equal to thenumber of solutions. Therefore, themultiplicationmaps
mF can be recovered as nonzero maximal submatrices of

Nν

(
MF

ν

)T
whereMF

ν (at degree ν) is theMacaulaymatrix formed solely by the poly-
nomial F [Ben22; BT21].

▶ Gröbner bases: Finding generators of an ideal I with good properties is an
intrinsic problem to multivariate non-linear algebra. A classical way to intro-
duce the need for good basis of the ideal I is decidingwhether a homogeneous
polynomial F ∈ C[x1, . . . , xn] belongs to the ideal generated by F1, . . . , Fr ∈
C[x1, . . . , xn].

In the univariate case, this can be done through the divison algorithm and
noting that for any polynomial G ∈ C[x], any polynomial F with deg(F ) ≥
deg(G) can be written as:

F = GQ+R

where deg(R) < deg(G). In this case, R is zero, if and only if, F belongs to the
ideal generated by G.

However, in themultivariate case, we could findways to write the polynomial
F as:

F =
r∑

i=1

GiFi +R

where R 6= 0 but F belongs to the ideal generated by F1, . . . , Fr. Imposing de-
gree conditions in R is usually not sufficient for using R to decide whether F
belongs to the ideal generated by F1, . . . , Fr [CLO98, Chapter 1]. As we men-
tioned in the case ofmatrices, the problem thatwe are treating can be decided
by checking whether the polynomial F belongs to the image of the Macaulay
map.
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Example. Consider the ideal generated by the following homogeneous poly-
nomials in C[x1, x2]:

F1 = 1− x1 + x22 + x21 F2 = 1− x1 + x2

which geometrically consists of two points in C2. In some applications, it is
relevant to checkwhether a polynomial F (or some power of it) belongs to the
ideal generated by F1 and F2, as it allows to decide whether these polynomials
vanish at these two points.

As an example, we consider F = 1 + x21 + x22 and ν = 2, we can consider
Macaulay matrixMν :



x21 x1x2 x22 x1 x2 1
F1 1 0 1 −1 0 1

x1F2 −1 1 0 1 0 0
x2F2 0 −1 1 0 1 0
F2 0 0 0 1 −1 1
F 1 0 1 0 0 1

.

If F is a combination of the polynomials F1 and F2, then the last row of the
matrix (in blue) is a combination of the rest of rows and thus, the abovematrix
cannot be of full rank. An effective way to check the rank of the matrix is
to perform Gaussian elimination and transform the matrix to a row echelon
form. If we consider the row echelon form of the first rows of the matrix in
the previous example (associated to F1, F2) , we get:



x21 x1x2 x22 x1 x2 1
F1 1 0 1 −1 0 1

x1F2 + F1 0 1 1 0 0 1
(x1 + x2)F2 + F2 0 0 2 0 1 1

F2 0 0 0 1 −1 1
F − F1 − F2 0 0 0 0 1 −1

.

With this form, we can write the row associated to F so that it has zeros in
the rows of the pivots associated to the Gaussian elimination (in purple). This
implies that F can be written as:

F = F1 + F2 +R where R = x2 − 1.

The condition of imposing that none of themonomials associated to the terms
of R divides the monomials associated to the pivots, is the key for guarantee-
ing that R 6= 0 implies that F is not a combination of F1 and F2. However,
writing the matrix in the previous form depends on the order of the monomi-
als corresponding to the columns.

This order must come from a total order in the monomials. If the monomial
order is multiplicative (i.e. xα < xβ , implies that xαxγ < xβxγ for every triple
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ofmonomials xα, xβ , xγ ∈ S), then the pivots of the gaussian elimination in the
matricesMν for all ν ∈ Z form a monomial ideal in S.

By the Hilbert basis theorem [CLO98, Chapter 1], this is a finitely generated
ideal generated by all the initial terms in the ideal I . Note that once we fixed
the order, the process of choosing the pivots of the gaussian elimination con-
sists on being able to choose the initial terms (or leading terms) for each poly-
nomial F , i.e. finding the highest term of F with respect to the monomial
order, denoted as in(F ). Thus, the previous ideal corresponds to

in(I) = (in(F ) F ∈ I)

which is known as the initial ideal.

Definition. A Gröbner basis [Buc65] of I is a set of generators of I such that
their initial terms generate the initial ideal in(I). The Gröbner basis is called
minimal if the set of initial terms is a minimal set of generators of I .

Employing Gröbner bases is very advantageous in many senses: many of the
algebraic operations that one can try to performwith I can be performed first
in in(I), and then lifted to I; see [Sch80] for the case of computing syzygies (2.2)
of I using the initial ideal.

In the best case, the computations are independent of which monomial order
we are choosing, getting universal Gröbner bases. However, this is not the
general case and choosing of a good monomial order can be important. The
following two monomial orders are specially important when using Gröbner
bases in algebraic elimination.

Definition. The degree lexicographical monomial order takes two different
monomials xb, xb′ ∈ C[x1, . . . , xn] where b, b′ ∈ Zn and orders xb <lex x

b′ , if and
only if,

deg(xb) < deg(xb′) or deg(xb) = deg(xb′) and the first entry of b′ − b is positive.

The degree reverse lexicographical considers xb <DRL x
b′ , if and only if,

deg(xb) < deg(xb′) or deg(xb) = deg(xb′) and the last entry of b′− b is negative.

In the case of the degree lexicographical monomial monomial order elimi-
nate variables in an easy way. Usually, if one wants to eliminate the variables
x1, . . . , xl the ideal to consider (elimination ideal) is:

Il = I ∩ C[xl+1, . . . , xn].

Then, if Glex is a degree lexicographical Gröbner basis of I , the set Gl = Glex ∩
C[xl+1, . . . , xn] is a Gröbner basis of Il. With this, one can also solve polynomial
systems with a finite number of solutions by successively finding the zeros of
univariate polynomials generating each of the elimination ideals.
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Regarding the methods to compute Gröbner bases, the Buchberger algorithm
[Buc65] is the most used method to find them. This algorithm consists on
choosing two generators F,G ∈ I and consider the least common multiple
of their initial forms. With this, one can consider the S-polynomial:

S(F,G) =
lcm(in(F ), in(G))

in(G) G− lcm(in(F ), in(G))
in(F ) F.

Once this is done, one can consider the residue of dividing the S-polynomial
in the given set of generators and add this residue as a new generator. A well-
known result in commutative algebra (Hilbert’s syzygy theorem) implies that
the algorithm consisting of repeatedly adding these elements terminantes and
provides a Gröbner basis.

The introduction of Gröbner bases through gaussian elimination inMacaulay
matrices is not arbitrary. Some variants of the Buchberger’s algorithm [Fau99;
Fau02] try to reduce the computational workload through using theMacaulay
matrices with theminimal possible unnecessary calculations of S-pairs. Find-
ing the best strategy for choosing the S-pairs is a problem which has aroused
a large number of studies [LL91; Gio+91; Tra96].

Furthermore, the elimination algorithm discussed in the preceding sections
relies on employing the lexicographical order. However, employing other or-
ders may lead to shorter computation times. Therefore, another interesting
problem is to find algorithms for transforming a Gröbner basis with respect
to any monomial order into a lexicographical one; see [Fau+93].

Themethods of elimination thatwedescribed above are rather standard. There
is awide literature on how to exploit themultihomogeneous or sparse structure for
polynomial systems both for the case of elimination matrices [Emi14; Stu94; BT21;
DJS22] and for Gröbner bases [BFT18; FSS14; FM17]. In this thesis, we will focus in
themeasure of the degrees involved in theGröbner bases computations asmeasure
of the complexity of using thesemethods, specially in the case ofmultihomoeneous
and sparse polynomial systems. For the case of matrices, themain focus of this the-
sis is to find ν (corresponding to amulti-degree or a Newton polytope) such thatMν

is an elimination matrix of the smallest possible size.

For the above description, we choose monomial bases for the vector spaces in
(1.5) as it is coherent with the idea of exploiting the the monomial structure given
by the Newton polytopes. However, it is not difficult to find computational prob-
lems for which this paradigm is not sufficient. For instance, in computer-aided
design, the Bernstein basis [MRR05] is commonly employed. Additionally, various
other bases have been proposed for different purposes [BPT23; MT14; MTVB18] for
other notable cases. The use of methods of computational algebra that do not rely
Gröbner bases and depend on other combinatorial constructions has been a topic
of discussion [CLM22] in the last years.
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Figure 1.4: Some methods of computation. This thesis deals with elimination matrices and Gröbner
bases.

A third family of methods (which we will not discuss in this thesis) related
to polynomial computations consists on deforming an initial system with known
solutions to the given target system [VVC94; MS87; HS95], providing the homotopy
continuation method. These methods have many advantages and also exploit the
underlying algebraic structure of the solutions; see [Duf+18; Duf+21; BT18]. All in
all, we can situate the studies of this thesis in the green region of Figure 1.4.

In the above descriptions, we assumed that the field over which we aim to
find the solutions is C, which algebraically closed. However, many of the problems
appearing in applications require finding solutions in the field of real numbers R
or other fields of positive characteristic. However, another big family of methods
applied to real algebraic geometry also exploit the representations of matrices and
Gröbner bases that we will discuss; see [BPR06] for more details on real algebraic
geometry.

The Castelnuovo-Mumford regularity and the complexity of computing with
Gröbner bases. Aswe discussed in the description of algebraic eliminationmeth-
ods, the degree involved in computations serves as a important measure of their
complexity. Adopting this perspective offers the advantage of exploiting the alge-
braic structure of the polynomial system, providing an effective communication
between computational and commutative algebra. In the case of dense polynomial
systems., the Castelnuovo-Mumford regularity [MB66] arises as a bound for the de-
grees implicated in these computations.

Definition. Let S = C[x1, . . . , xn] be a polynomial ring, let I ⊂ S be an ideal and let
m ∈ Z. The ideal I is called m-regular if the degrees of its j-th syzygies (Betti num-
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bers) are bounded above by m + j. The Castelnuovo-Mumford regularity reg(I) is
the minimalm such that I ism-regular; see Chapter 2 for a review on commutative
algebra.

From the point of view of commutative algebra, this invariant also reflects
many interesting properties of I , through its relation with local cohomology mod-
ules [EG84]. As it bounds the degrees of the syzygies, the regularity of in(I) bounds
the degrees in a Gröbner basis of I , i.e.

max{degrees of the minimal generators of in(I)} ≤ reg(in(I)).

Moreover, a relation between the computations made with the initial ideal and the
algebraic structure of I arises by noticing that

reg(I) ≤ reg(in(I)).

Due to the difficulty of determining, in general, the degrees at which the Gröbner
basis is generated, Bayer and Stillman [BS87a] provided a criterion to determine
when computations at degrees higher than reg(I) are redundant, or dependent on
the monomial order. Their criterion enlightened the following two ideas:

- Choosing the degree reverse lexicographical monomial order [Eis95, † 15.2]
is advisable to minimize the size of the degrees involved in the computa-
tions. This idea had already appeared in the work of Lazard [Laz83] or Trinks
[Tri78].

- Considering a generic linear change of coordinates in the ideal is also recom-
mended. In other words, one should compute with the generic initial ideal
gin(I) as defined by Galligo in [Gal74], instead of in(I).

Most computer algebra systems incorporate these two concepts. The algebraic
explanation for the answer of Bayer and Stillman follows from the fact that, under
these two assumptions, the complexity of computing Gröbner bases relies solely on
the Castelnuovo-Mumford regularity of I , and not of its initial ideal. Namely, under
the assumption of using the degree reverse lexicographical monomial order, they
proved the equalities

max{degrees of the minimal generators of gin(I)} = reg(gin(I)) = reg(I). (1.7)

As a consequence, the Castelnuovo-Mumford regularity describes tightly the com-
plexity of computing with Gröbner bases.

Unfortunately, the bounds for the regularity appearing in the works of Giusti
[Giu84] and Galligo [Gal79] are doubly exponential.

Theorem. Let I ⊂ C[x1, . . . , xn] be an ideal, which is generated by polynomials of
degree ≤ d.

reg(I) ≤ (2d)2
n−2
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These bounds cannot be imporoved, as shown by a famous example due to
Mayr and Meyer [MM82]. For this reason, performing computations by Gröbner-
basedmethods is discardedbymanydifferent problemsof non-linear algebra. How-
ever, under general assumptions in the polynomials, the bounds for the regular-
ity can be a better than this case. For instance, if one takes generic polynomials
f1, . . . , fr ∈ C[x1, . . . , xn], they form a regular sequence [Par10]. Namely, for each
r′ ∈ {2, . . . , r}, fr′ is a nonzero divisor in C[x1, . . . , xn]/(f1, . . . , fr′−1). For these se-
quences, the minimal free resolution is given by the Koszul complex providing the
following value for the Castelnuovo-Mumford regularity.

Theorem. (Macaulay bound) If I = (f1, . . . , fr) is a regular sequence, then

reg(I) = d1 + · · ·+ dr − r + 1.

This bound also explains the relation between the Castelnuovo-Mumford regu-
larity and eliminationmatrices. For r = n+1, ν = d0+· · ·+dn−n is the first degree at
whichMν is an elimination matrix. Moreover, this is precisely the degree at which
the classical resultant formula of Macaulay [Mac03] can be built.

In terms of solving 0-dimensional polynomial systems through using the coker-
nel for extrating the solutions as eigenvalues of a matrix, it is also possible to show
that the first degree at which one can do that is the Castelnuovo-Mumford regular-
ity [TMVB17]. Overall, the Castelnuovo-Mumford regularity, extensively studied
in commutative algebra, governs the complexity of computations using the meth-
ods outlined above in the dense case. A key objective of the research described in
this thesis is to establish invariants that clarify and characterize the complexity of
computations in the multihomogeneous and sparse cases.

Contributions The contributions of this thesis are based in the three following
papers, which will appear in journals and have been presented in international
conferences.

▶ The Canny-Emiris formula [CE22; CE23]: The choice of theminor ofMν pro-
viding the resultant formulas in the sparse case comes from a combinatorial
rule given by Canny and Emiris [CE93] which resembles the classical formula
of Macaulay for the densemultivariate resultant [Mac03]. In this formula, the
rows of the minor correspond to lattice points in a translation of the polytope
∆ =

∑n
i=0∆i

B = Zn ∩ (∆ + δ) (1.8)

where δ is a generic translation vector. Providing a mixed subdivsion on ∆
corresponds to matching the rows and some of the columns ofMν and giving
a maximal minor of this matrix. The mixed subdivision also indicates the
rows and columns that form the matrix appearing in the denominator of the
formula.
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A proof of this formula was given by D’Andrea, Sombra and Jerónimo [DJS22]
under certain hypotheses. In [CE22], we gave a family of subdivisions satis-
fying these hypotheses. Moreover, different possible algorithms for dealing
with the lattice points may provide smaller matrices.

We considered using the greedy algorithm proposed by Canny and Peder-
sen [CP93] for the previous family of subdivisions under suitable hypotheses
on the Newton polytopes (n-zonotopes and multihomogeneous systems) and
characterized combinatorially the lattice points of B labeling the rows and
columns of these matrices. We also provide a JULIA implementation of the
Canny-Emiris formula based in the above combinatorial characterization.

▶ Toric sylvester forms [BC22]: For dense polynomial systems, it is possible
to reduce the size of the elimination matricesMν to the cost of introducing
forms in the saturation Isat = (I : m∞), where I is the ideal generated by the
homogeneous polynomials andm is the irrelevant ideal of Pn [Jou97]. The con-
struction of these forms consists on noticing that under suitable hypotheses
on ν, themodule (Isat/I)ν is free and explicitly finding a basis in terms of some
elements of Isat known as Sylvester forms. With these, we can transform the
matrices of (1.5) to:

Mν :
(
⊕n

i=0 S(−αi)⊕ SI −→ S
)
ν

(G0, . . . , Gn, lµ) −→
n∑

i=0

GiFi +
∑
µ∈I

lµ sylvµ (1.9)

for some set of indices I labeling the basis of (Isat/I)ν . This construction was
extended first to themultiprojective case in [BCN22] andwe reproduced it for
any smooth projective toric variety satisfying a certain hypothesis [BC22]. As
a consequence of this construction, we also found novel formulas for comput-
ing sparse resultants and toric residues.

▶ MultigradedCastelnuovo-Mumford regularity andGröbnerbases [Ben+24]:
From the perspective of commutative algebra, it is rather well-established
that the generalization of the Castelnuovo-Mumford regularity that preserves
many of the good geometric properties of the dense case was provided by
Maclagan and Smith [MS04]. An important part of my research was devoted
to studying the relationbetweenGröbner bases andmultigradedCastelnuovo-
Mumford regularity in themultihomogeneous case, i.e. XΣ = Pn1×· · ·×Pnr . In
this case, the generic change of coordinates must preserve the grading, prov-
ing the multi-generic initial ideal. Unlike in the classical case, the relative
order of the variables of different degree plays a very relevant role.
In this context, we established bounds on the degrees involving the degree re-
verse lexicographical Gröbner basis for anmultihomogeneous ideal and com-
pared our results with other type of descriptions appearing in the literature
[ACDN00; Röm01]. In ourwork, the central object in the relation between reg-
ularity and initial ideals is provided by a partial regularity region described
in terms of local cohomology.
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The results that appear in the rest of chapters comprise most of the results
and ideas appearing in [CE22; CE23; BC22]. However, there are a few results which
are not contained in any of these papers. These are Theorem 2.12, which presents a
slightmodification of the existence of the bigeneric ideal; Corollary 4.1, which gives
a family of toric varieties which satisfy the σ-positive property and Theorem 5.10,
regarding the bound on the cohomological dimension. Moreover, in the section
of computations, the package of Sylvester forms had not appeared in any of the
articles. The manuscript is structured as follows:

▶ In Chapter 2, a list of preliminaries from commutative algebra, toric geometry,
sparse resultants and multigraded regularity are presented.

▶ In Chapter 3, we present the results regarding the Canny-Emiris formula, the
greedy algorithm and the study of the case of n-zonotopes and multihomoge-
neous systems. We also added a chapter on how to refine mixed subdivisions
using tropical geometry.

▶ In Chapter 4, we have listed all the results regarding toric Sylvester forms,
hybrid eliminationmatrices and the applications in the computation of sparse
resultants and toric residues.

▶ In Chapter 5, we listed the results regardingmultigradedCastelnuovo-Mumford
regularity and its relation with Gröbner bases, specifically with multigeneric
initial ideals. In this chapter, we give a special focus to the partial regularity
region and its properties.

▶ In Chapter 6, we aplpy some of our constructions to problems in geometric
modelling and computer vision, such as finding the implicit equation of a ra-
tional surface or the 5-point problem. Moreover, we describe some of the
JULIA code that we developed as implementation of the results in the chap-
ters 3 and 4.

▶ In Chapter 7, we list a long series of open problems or interesting questions
that were discovered during the research.
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Chapter 2

Preliminaries

In this chapter, we review all the results that are required for the presentation of
our contributions. Some of the results of this section are quite standard in commu-
tative algebra and algebraic geometry and can be found in the books of Eisenbud
[Eis95] and Hartshorne [Har77], to which every student in these areas is familiar.
On the other hand, some knowledge on toric geometry is also required for the state-
ments and proofs in the next sections. Our main reference for that topic is the
book of Cox, Little and Schenck [CLS12]. In the introduction, we already provided
a quick review on Gröbner bases, resultants and regularity. However, in this sec-
tion we also provide the concrete definitions of the sparse resultants [CLO98] and
generic initial ideals [Gre98], which are required in the contributions. The results
of Bayer and Stillman [BS87a] which we aimed to generalize to the multigraded
setting are also reviewed. In the last section, we also discuss the topic of the multi-
graded Castelnuovo-Mumford regularity, which is very relevant to the results in
Chapter 5.

1. Aspects of commutative algebra and algebraic geometry

In this first preliminaries section, we review aspects of commutative algebra and
algebraic geometry that are relevant to the further developments of the thesis.

Polynomial ideals and affine varieties. Let k be a field and let R = k[x1, . . . , xn]
be a polynomial ring.

Definition 2.1. A (left) R-module M is an abelian group (M,+) with an action (·) :
R×M −→M satisfying that for every x, y ∈ R andm,n ∈M :

- x · (f + g) = x · f + x · g

- (x+ y) · f = x · f + y · f
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- x · (y · f) = xy · f

- 1 · f = f

A (left) R-submodule N ⊂ M is a subgroup of M which is closed under the action
of R. A morphism of R-modules is a map δ : M −→ N preserving all the above
properties. An R-moduleM is free of dimension n if it is isomorphic to Rn.

In particular, when encoding the structure of polynomial systems, we are in-
terested in a precise type of modules called ideals.

Definition 2.2. A polynomial ideal I ⊂ R is a submodule of R, considered as an
R-module with the multiplication as an action over itself.

The Hilbert basis Theorem [Eis95, Chapter 1, Theorem 1.2] implies that polyno-
mial rings over a field are noetherian, i.e. every ascending chain of ideals stabilizes.
As a consequence, every polynomial ideal I ⊂ R has a finite number of generators.
The following constructions are quite standard when one works with polynomial
ideals.

Definition 2.3. Let I, J ⊂ R be two polynomial ideals.

- The sum I + J is the ideal generated by the sums f + g where f ∈ I and g ∈ J .

- The intersection I ∩ J is the ideal generated by the polynomials that belong to
I and J .

- The product IJ of two ideals is the ideal generated by fg where f ∈ I and
g ∈ J .

- For k ∈ Z≥1, the power ideal Ik is recursively defined as Ik = (Ik−1)I , where
I0 = R.

- The radical
√
I the ideal generated by the polynomials f ∈ R such that fk ∈ I

for some k ∈ Z≥1.

- The colon ideal I : J is the ideal generated by the polynomials f ∈ R such that
f · J ⊂ I .

- The saturation of I with respect to I , I : J∞, is the ideal generated by the
polynomials f ∈ R such that f · Jk ⊂ I for some k ∈ Z≥1.

- An ideal I is prime if for every pair of polynomials f, g ∈ R such that fg ∈ I ,
then either f ∈ I or g ∈ I .

- An ideal I is primary if for every pair of polynomials f, g ∈ R such that fg ∈ I ,
then either f ∈ I or gk ∈ I for some k ∈ Z≥1.
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Theorem 2.1. [Eis95, Theorem 3.10] Let I ⊂ R be a polynomial ideal. Then, there
are primary ideals Q1, . . . , Qr ⊂ R such that:

I = Q1 ∩ · · · ∩Qr

such that for every i ∈ {1, . . . , r}, Qi 6⊃ ∩j ̸=iQj and for every i, j ∈ {1, . . . , r} such
that i 6= j,

√
Qi 6=

√
Qj . This decomposition is not unique but the prime ideals√

Q1, . . . ,
√
Qr are always the same.

Definition 2.4. The set Q1, . . . , Qr is a minimal primary decomposition of I . The
prime ideals

√
Qi for i ∈ {1, . . . , r} are called the associated primes of I . Theminimal

ideals in
√
Qi with respect to inclusion are called the minimal primes of I and the

others are called the embedded primes of I .

Let An
k be the affine space of dimension n over k. We can consider the polyno-

mials f ∈ R as functions f : An
k −→ k.

Definition 2.5. Let I ⊂ R be an ideal. The affine variety V(I) is the subset of An
k

defined as:
V(I) = {p ∈ An

k f(p) = 0 ∀f ∈ I}.

The sets of the form V(I) are closed under intersections and finite unions.
Therefore, they constitute the closed subsets of a topology in An

k, which is known
as the Zariski topology.

Definition 2.6. Let V ⊂ An
k be a a subset. The ideal of V is the ideal of polynomials

that vanish in all the points of V , i.e.

I(V ) = {f ∈ R f(p) = 0 ∀p ∈ V }.

The Zariski closure of an affine subset V ⊂ An
k is the smallest closed subset in the

Zariski topology containing V , i.e. V := V(I(V )).

Theorem 2.2. [Eis95, Theorem 1.6] (Hilbert’s Nullstellensatz) Given an ideal I ⊂ R,

I(V(I)) =
√
I.

In other words, if a polynomial f ∈ R vanishes at all the points of the variety V(I),
then there is k ∈ Z≥1 such that fk ∈ I . In particular, if V(I) = ∅ then 1 ∈ I .

All in all, there is a correspondence between affine varieties and ideals which
can be summarized in the following features. Let I, J ⊂ R be ideals and V,W be
affine varieties.

- Radical ideals are in correspondence with affine varieties.

- Inclusion of ideals I ⊂ J corresponds to the reverse inclusion between vari-
eties V(I) ⊃ V(J), and viceversa.
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- The sumof two ideals I+J is sent to intersection of varietiesV(I)∩V(J). The in-
tersection of two varieties V ∩W is sent to the radical of the sum

√
I(V ) + I(W ).

- The product of ideals IJ corrersponds to the union of affine varieties V(I) ∪
V(J). Conversely, V ∪W corresponds to the intersection of ideals I(V ) ∩ I(W ).

- Considering the colon ideal I : J corresponds to considering the Zariski clo-
sure of the set-theoretical difference of varieties V(I)− V(J). Conversely, the
Zariski closure of the set-theoretical difference of two affine varieties V −W
corrresponds to the ideal I(V ) : I(W ).

- If an ideal is prime, then V(I) is irreducible, i.e there is no pair of affine va-
rieties V1, V2 such that V(I) = V1 ∪ V2 and V(I) 6= V1, V2. Conversely, if V is
irreducible, then I(V ) is prime.

Definition 2.7. Let I ⊂ R be an ideal. The quotient ring R/I is the ring defined by
the classes of equivalence of polynomials through the relation f 'I g, if and only
if, f − g ∈ I .

The same correspondence between ideals and affine varieties as above can be
described by considering the set of prime ideals of the ring R/I (Spec(R/I)), which
is known as the affine scheme of R/I . The idea of dimension, to which we might
have a geometric intuition, can also be described in terms of this correspondence
between varieties and ideals.

Definition 2.8. The dimension of a variety V is the supremumof all integers n such
that there is a chain of distinct irreducibe subvarietiesW0 ⊂ · · · ⊂Wn = V .

Definition 2.9. The height of a prime ideal P is the supremum of all integers n such
that there is a chain of distinct prime ideals P0 ⊂ · · · ⊂ Pn = P . The Krull dimension
of a ring R is the maximum of all the heights of its prime ideals P ⊂ R. The Krull
dimension of the ring R/I coincides with the dimension of the variety V(I).

We end this section with the famous theorem of Noether normalization [Eis95,
Section 8.2.1] which describes an interesting way to look at the dimension of an
ideal.

Theorem 2.3. A set of elements y1, . . . , ym ∈ R is algebraically independent ele-
ments if there is nononzero polynomialP ∈ k[y1, . . . , ym] such thatP (y1, . . . , ym) = 0.
Let d be the dimension ofR/I . For every chain of prime ideals P0 ⊂ · · · ⊂ Pd ofmaxi-
mal height inR/I , there are algebraically independent elements y1, . . . , yd ∈ R such
that R/I such that R/I is a finite module over k[y1, . . . , yd] and Pi ∩ k[y1, . . . , yd] =
(y1, . . . , yi) for i = 0, . . . , d.

In the case that R/I is 0-dimensional, this theorem implies that R/I is k-vector
space. The dimension of the vector space corresponds (up to multiplicity) to the
number of points in V(I) [Eis95, Corollary 2.15].
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Graded ideals and projective varieties. In the introduction, we motivated the
need of working with homogeneous polynomial systems and projective varieties.
Next, we provide the basic notions of graded modules and homogeneous polyno-
mial ideals.

Definition 2.10. A ring R is Zr-graded if it can be written as a direct sum R =
⊕d∈ZrRd whereRd is a finite k-vector space, such that R0 = k andRdRd′ ⊂ Rd+d′ . An
R-moduleM is Zr-graded if it can be decomposed as asM = ⊕d∈ZrMd whereMd is a
k-vector space, such that RdMd′ ⊂ Md+d′ . For any Zr-graded module and d, d′ ∈ Zr,
the twisted moduleM(−d) whose graded piece of degree d′ isMd′−d.

IfM,N be two Zr graded modules, a homomorphism of modules δ : M −→ N is
Zn-graded of degree d ∈ Zr if for every d′ ∈ Zr, δ(Md′) ⊂ Nd+d′ .

From now on, R is a polynomial ring over a field with n+ 1 variables, i.e. R =
k[x0, . . . , xn]. The grading in R = k[x0, . . . , xn] is defined by a map deg : R −→ Zr

such that deg(1) = 0 and for two polynomials f, g ∈ k[x0, . . . , xn], one has deg(fg) =
deg(f) + deg(g). Thus, the grading is defined solely by the degrees of the variables
x0, . . . , xn. The vector space Rm is spanned by the monomials of degreem.

The grading provided by deg is standard if deg(xi) is an element of the canoni-
cal basis of Zn for i ∈ {1, . . . , r}. For instance, the only standard Z-grading considers
all the variables as elements of degree 1.

Definition 2.11. Apolynomial f ∈ R is homogeneous if it belongs toRd for some d ∈
Zn. An ideal I ⊂ R is homogeneous if it is generated by homogeneous polynomials.

In the rest of this section, we restrict to the case of the standard Z-grading in
R = k[x0, . . . , xn]. However, once we have defined the setting of toric varieties,
we will show that some of the constructions that appear in the next pages can be
reproduced in that case.

Definition 2.12. The projective space Pn is the quotient Cn+1 − {0}/C∗, where C∗

acts in Cn+1 − {0} by homotheties λ(a0, . . . , an) = (λa0, . . . , λan) for λ ∈ C∗.

Polynomial functions are not well-defined over the projective space as they do
not necessarily behave well under the action that defines it. However, the zeros
of homogeneous polynomials are well defined in the projective space. Namely, for
d ∈ Z≥0 and f ∈ Rd, we have

f(λa0, . . . , λan) = λdf(a0, . . . , an) (a0, . . . , an) ∈ Cn+1 − {0} λ ∈ C∗

and so
f(λa0, . . . , λan) = 0 ⇐⇒ f(a0, . . . , an) = 0.

This allows us to give the following definition.
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Definition 2.13. Let I ⊂ R be a homogeneous ideal. The projective variety VPn(I) is
defined as:

VPn(I) = {p ∈ Pn f(p) = 0 ∀f ∈ I}.

Similarly as before, this defines the Zariski topology in Pn.

The polynomials in the ideal m = (x0, . . . , xn) only vanish simultaneously in
An+1
k at the point 0. This point was removed in the definition of the projective space,

implying that VPn(m) = ∅. This justifies that the ideal m is known as the irrelevant
ideal. Thus, if I ⊂ R is any homogeneous ideal, considering the colon ideal with
respect to any power of m does not change the variety VPn(I). In other words, the
saturation with respect to m, i.e.

Isat = (I : m∞)

will satisfy VPn(I) = VPn(Isat). In fact, Isat is the largest ideal in the class of all ideals
giving the same projective variety as I [BS87b]. This justifies the use of saturations
to understand the set of projective points that vanish in an ideal.

Definition 2.14. Let V ⊂ Pn be a subset. The homogeneous ideal IPn(V ) is defined
as:

IPn(V ) = {f ∈ R f(p) = 0 ∀p ∈ V f homogeneous}.

Theorem 2.4. [Eis95, Theorem 1.6] (Projective Hilbert’s Nullstellensatz) Given a
homogeneous ideal I ⊂ R,

IPn(VPn(I)) =
√
I.

In particular, if VPn(I) = ∅, then for every i = 0, . . . , n, there is k ∈ Z>0 such that
xki ∈ I .

The definition of the dimension of a variety can be reproduced also in this
case as maximal chain of distinct irreducible varieties. However, if we consider
the Krull dimension of of the quotient ring R/I , we will find the affine dimension
of that quotient ring, which involves one more variable. Therefore, the geometric
dimension will coincide with the algebraic Krull dimension minus one, i.e.

dim(VPn(I)) = dim(R/I)− 1. (2.1)

On the other hand, the projective varierty VPn(I) can be described in terms of the
homogeneous prime ideals in R/I that do not contain the irrelevant ideal, getting
the projective scheme Proj(R/I).

Proj(R/I) = {P homogeneous prime ideal of R/I such that P 6⊃ m}.

Using the graded structure, we can provide another object that allows us to
understand the dimension of the variety VPn(I).

Definition 2.15. The Hilbert function of R/I is the function:

HFR/I : Z≥0 −→ Z≥0 d −→ dimk(R/I)d.
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It is standard in commutative algebra [Eis95] that there is a univariate polyno-
mial HPR/I such that:

HPR/I(t) = HFR/I(t) t� 0.

If this polynomial is of degree D, then the dimension of VPn(I) is D. Moreover, the
Hilbert polynomial can be written as:

HPR/I(t) =
e

(dimR/I − 1)!
tD + {terms of lower degree in t}

for some e ∈ Z≥0; see [Eis95, Section 1.9]. Geometrically, it can be shown that e
corresponds to the number of intersection points between with D general hyper-
planes Hi = {li = 0} for i = 1, . . . , D where l1, . . . , lD are general linear forms, i.e.
considering the varietyVPn(I, l1, . . . , lD). This provides a geometric definition of the
degree of the variety VPn(I).

Homological constructions. Some of the tools of commutative algebra that we
will use are based on homological algebra, which studies of properties of modules
(in particular, of polynomial ideals and quotient rings) in terms of the homology of
chain complexes.

Definition 2.16. Let R be a ring. A chain complex (Mi, δi)i∈Z is a sequence of R-
modules (Mi)i∈Z together with a sequence of morphisms δi :Mi −→Mi−1, i.e.

M• = (. . .
δi+1−−→Mi

δi−→Mi−1
δi−1−−→ . . . )

satisfying δi−1 ◦ δi = 0 for i ∈ Z, in other words, im(δi) ⊂ ker(δi−1). A chain complex
is bounded if there are a, b ∈ Z with a < b such thatMi = 0 for all i such that i < a
or i > b. The i-th homology of a complex is the module:

Hi =
ker(δi−1)

im(δi)
.

A chain complex is exact is Hi = 0 for all i ∈ Z.

If the ring R, the modules (Mi)i∈Z and the morphisms δi : Mi −→ Mi−1 are Z-
graded, then the complexM• inherits the graded structure, and so do its homology
modules. Considering the graded pieces of degree d of a chain complex, as a com-
plex of k-vector spaces is known as considering a strand of a complex and denoted
as (M•)d.

A possible way to comprise the algebraic structure of anmoduleM is precisely
by attaching to it a chain complex, called free resolution. Initially, the algebra ofM
is described by a minimal set of generators, f1, . . . , fr, where every other element
in I can be written as a combination of them and none of them can be removed.
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However, the algebraic relations between these generators are also part of the de-
scription of M . For this purpose, it is natural to consider the syzygies of f1, . . . , fr,
i.e.

Syz(f1, . . . , fr) = {(g1, . . . , gr) ∈ ⊕r
i=1R

r∑
i=1

gifi = 0} (2.2)

With this, we get an exact chain complex (short exact sequence) of the form:

0 −→ Syz(f1, . . . , fr) −→ ⊕r
i=1R(−di)

ϕ−→M −→ 0.

However, the algebra of I is also comprised by the generators of Syz(f1, . . . , fr) as
an R-module. Thus, we can find a set of generators f ′1, . . . , f ′r′ of this R-module of
degrees d′1, . . . , d′r′ . Finding these generators is equivalent to finding a surjective
map from ⊕r′

i=1R(−d′i) to ker(ϕ), getting a new exact chain complex of the form:

0 −→ Syz(f ′1, . . . , f ′r) −→ ⊕r′
i=1R(−d′i) −→ ⊕r

i=1R(−di)
ϕ−→M −→ 0.

If we repeat this process, we will get a chain complex formed by free R-modules.
Hilbert’s syzygy theorem [Eis95, Theorem 1.13] implies that this process will finish
after a finite number of steps, which is bounded by the number of variables in R.

Definition 2.17. A finite free resolution of a gradedR-moduleM is a bounded chain
complex of the form

0 −→ Fs
δs−→ . . . −→ F1

δ1−→ F0 −→ 0

satisfying:

- The 0-th homology equalsM , i.e. H0 =M .

- For i > 0, the i-th homology vanishes, i.e. Hi = 0.

- Each of the modules Fi is free.

Free resolutions need not be unique. For instance, one can consider the trivial
exact chain complex induced by the identity map on R, i.e.

0 −→ R −→ R −→ 0.

If we are given a free resolution F• ofM , we canmodify its i-th map by considering
the map:

δi : Fi ⊕R −→ Fi−1 ⊕R (m, r) −→ (δi(m), r)

Then, the new chain complex after this modiffication is still a free resolution; see
[Eis95, p. 20.1]. In order to avoid the presence of these trivial complexes, we can
consider minimal free resolutions.

Definition 2.18. A minimal free resolution of a graded R-module M is a free reso-
lution such that:

δi(Fi) ⊂ mFi−1 ∀i ≥ 1.

Equivalently, Fi maps to aminimal set of generators of coker(δi); see [Eis95, Lemma
19.4].
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Minimal free resolutions exist and they are unique in the graded setting [Eis95,
p. 1.1.6], thus they provide a method to comprise the algebraic structure ofM . The
minimal free resolution is described in terms of the Betti numbers. Namely, as the
Fi are free modules, one can write them as:

Fi = ⊕dS(−d)βi,d(M).

Here, βi,d(M) are the Betti numbers ofM and only a finite number of them can be
nonzero.

Definition 2.19. Given an ideal I ⊂ R generated by r polynomials f1, . . . , fr of de-
grees d1, . . . , dr ∈ Z, the Koszul complex is

K•(I) : Kr(I)
δr−→ · · · −→ K1(I)

δ1−→ K0(I)

where the terms are the free modules Ki(I) =
⊕

1≤j1<...ji≤k R(−
∑

k∈{j1,...,ji} dk). The
differentials δi : Ki(I) −→ Ki−1(I) are defined as the direct sum of the maps δi =⊕

1≤j1<···<ji≤k δ
j1,...,ji defined as:

δj1,...,ji : R(−
∑

k∈{j1,...,ji}

dk) −→
⊕

j∈{j1,...,ji}

R(−
∑

k∈{j1,...,jr}−{j}

dk)

δj1,...,ji(g) =
∑

k∈{j1,...,ji}

(−1)τ(k)fkg (2.3)

where τ(k) is such that jτ(k) ≤ k ≤ jτ(k)+1.

If we are given homogeneous polynomials f1, . . . , fr with degrees d1, . . . , dr and
general coefficients, theKoszul complex provides theminimal free resolution [Eis95,
Corollary 19.3]. This result is based on the fact that general polynomials of degrees
d1, . . . , dr form a regular sequence, i.e.

(f1, . . . , fi−1 : fi) = (f1, . . . , fi−1).

As we will often consider this general case for the coefficients of the system, the
Koszul complex will be a very useful tool in many of our construcitons.

Finally, there is another homological algebra construction which we can use
to summarize the properties of R-modules.

Definition 2.20. Let M be an R-module and let f1, . . . , fr ∈ R be a sequence of el-
ements generating an ideal J ⊂ R. The Čech complex is formed by the modules
Cif1,...,fr(M) where:

Cif1,...,fr(M) =
⊕

1≤j1≤···≤ji≤r

M(fj)j∈{j1,...,ji}

whereM(fj)j∈{j1,...,ji}
= 〈{ g

fj
g ∈M j ∈ {j1, . . . , ji}}〉 (2.4)
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and thedifferentials∆i : Cif1,...,fr(M) −→ Ci+1
f1,...,fr

(M)definedas∆i = ⊕1≤j1<...ji≤rδ
j1,...,ji

where:
δj1,...,jr(m) =

∑
k/∈{j1,...,ji}

(−1)τ(k)ϕk(mj1,...,ji)

where τ(k) is such that jτ(k) ≤ k ≤ jτ(k)+1 and ϕk : M(fj)j∈{j1,...,ji}
−→M(fj)j∈{j1,...,ji,k}

is
defined by inclusion.
Definition 2.21. The homology of the Čech complex is independent of the choice
of the set of generators of the ideal J and known as local cohomology. We denote it
as H i

J(M).
Definition 2.22. The cohomological dimension ofM with respect to J is:

cdJ(M) = max({0} ∪ {i ∈ Z>0 s.t. H i
J(I) 6= 0}). (2.5)

For our case of interest of polynomial systems, we study local cohomology
modules of the ideal I and the quotient ring R/I with respect to the irrelevant
ideal m. In this cases, local cohomology exhibits very interesting properties. For
instance, the 0-th cohomology module with respect to m corresponds to the quo-
tient Isat/I [Bus06, Section 1], i.e.

H0
m(R/I) = H1

m(I) = Isat/I. (2.6)

Moreover, as we will base many of the computations of local cohomology modules
on minimal free resolutions, an important object to understand is the local coho-
mology of the ring R itself, which is well understood.
Theorem 2.5. [Bus06, Section 1.3.4] For R = k[x0, . . . , xn] and m = 〈x0, . . . , xn〉, we
have:

H i
m(R) =

{
0 i 6= n+ 1

1
x0···xn

k[x−1
0 , . . . , x−1

n ] i = n+ 1
.

In particular, H i
m(R)d = 0 unless i = n+ 1 and d ≤ −(n+ 1).

In order to derive the non-vanishing graded pieces of the local cohomology
modules H i

m(I) for an ideal I , we will often use the the study of the spectral se-
quences associated to a Čech-resolution (or Čech-Koszul) double complex C•m(F•).
These two spectral sequences [Wei94, Section 5.6] appear after taking homologies
in the two different possible directions. If one considers the homologies with re-
spect to F• first, then in the second page of the spectral sequence, we will obtain
H•

m(I). On the other hand, if we start taking homologies with respect to C•, the
first page will be formed by modules of the form H•

m(F•), whose supports can be
computed using the description in Theorem 2.5. The two spectral sequences must
converge to the same limit, providing a method to understand H•

m(I).

In order to connect the importance of local cohomology with the geometric
ideas that we introduced at the beginning of this section, we can state a formula,
usually named after Grothendieck and Serre, which relates local cohomology with
Hilbert functions and polynomials.
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Theorem 2.6. [BH98, Theorem 4.3.5] For any homogeneous ideal I ⊂ R, and d ∈ Z
we have:

HFR/I(d) = HPR/I(d) +
n∑

i=0

dimkH
i
m(R/I)d.

The Castelnuovo-Mumford regularity. As a way to end the review on commu-
tative algebra, we state the classical definition of the Castelnuovo-Mumford regu-
larity [MB66].

Definition 2.23. Let I ⊂ R be a homogeneous ideal. The ideal is called m-regular
form ∈ Z, if it satisfies any of the following three equivalent conditions:

- H i
m(I)d for i ≥ 0 and d > m− i

- βi,d = 0 for i ≥ 0 and d > m+ i.

- The truncated ideal I≥m = ⊕d≥mId has a linear resolution.

The Castelnuovo-Mumford regularity is the set ofm-regular degrees, i.e.

reg(I) = {m ∈ Z I ism-regular}

There is a wide literature on understanding the insights of this invariant; see
[Cha07] for a summary. In this literature, the Castelnuovo-Mumford regularity is
often seen as the minimal degree in reg(I). However, for the insights that we will
describe Chapter 5, it is interesting to see the regularity as a subset of degrees in
Z. The equivalence between the three definitions was provided by Eisenbud and
Goto in [EG84]. An elegant proof can be found in [Eis05, Proposition 4.16].

Remark 2.1. Using Theorem 2.6, we can see that for d ∈ reg(I), then:

HFS/I(d) = HPS/I(d).

2. Newton polytopes and toric varieties

In this section, we discuss the theory of projective toric varieties, which forms the
foundation for much of the progress made in this thesis. It is important to have
in mind that the starting point of our description are the Newton polytopes. The
theory of toric geometry has many more insights (see [CLS12]), which exceed the
results that we required in our work.
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Figure 2.1: Two lattice polytopes in R2, defined as the convex hull of the sets S =
{(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (0, 2)} and S = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)},
respectively.

Polytopes and normal fans. In order to develop the theory of toric varieties for
polynomial systems, one can work over the lattice Zn. However, one can also con-
sider that the polynomials lie in some other lattice (for instance, 1

DZn for some
D ∈ Z>1), providing the same theory for generalized polynomials with rational ex-
ponents. Moreover, in most of our developments in Chapter 4, we will require that
k is the field of complex numbers C. The theory of toric varieties can be developed
for any other field, even of positive characteristic.

Notation 2.1. We denote by N = HomZ(Zn,Z) the dual of Zn. Let (C∗)n be the
complex torus of dimension n. We also set NR the dual vector space to Rn. Denote
as 〈·, ·〉 the natural pairing between Zn and N .

Definition 2.24. Let S ⊂ Zn be a finite subset. The convex hull of S is the subset of
Rn given as:

conv(S) =
{∑

u∈S
λuu λu ∈ R≥0

∑
u∈S

λu = 1
}
⊂ Rn

A lattice polytope∆ is a subset of Rn of the above form. The dimension of a polytope
is the minimal d such that there is an affine linear subspace V ⊂ Rn of dimension d
such that ∆ ⊂ V .

The affine linear subspaces defining the dimension can be described in terms
of affine hyperplanes:

Hu,a = {m ∈ Rn 〈u,m〉 = a}

for some u ∈ N quad a ∈ Z. Similarly, one can describe the closed half-subspaces
associated to to u, a as:

H+
u,a = {m ∈ Rn 〈u,m〉 ≥ a}.

A face ∆′ of a polytope ∆ is a polytope, denoted as ∆′ ≲ ∆, such that there are
u1, . . . , ur ∈ N and a1, . . . , ar ∈ Z such that:

∆′ = ∆ ∩Hu1,a1 ∩ · · · ∩Hur,ar ∆ ⊂ H+
u1,a1 ∩ · · · ∩H

+
ur,ar .

The faces of a polytope can be classified in terms of their dimension. In particular,
we can discuss facets (of dimension dim∆ − 1), edges (of dimension 1) or vertices
(of dimension 0).
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Remark 2.2. Most of the properties that we will discuss are invariant under con-
sidering translations of the polytopes, this is:

∆+ t = {m ∈ Rn m = m′ + t m′ ∈ ∆}.

for some t ∈ Zn.

Using the notation above, any lattice polytope ∆ can be presented as an inter-
section of closed half-spaces, i.e.

∆ = H+
u1,a1 ∩ · · · ∩H

+
ur,ar .

If there are two indices i, j ∈ {1, . . . , r} such that ui = −uj and ai = aj , then ∆ is
not n-dimensional. In that case, up to a translation of the polytope, we can study
its properties in the sub-lattice of Zn defined by the equation 〈m,ui〉 = 0. Thus, for
the next discussions, we can assume that ∆ is n-dimensional. In that case, ∆ can be
presented as the intersection of the inequalities defining its facets, i.e.

∆ = {m ∈ Rn 〈uF ,m〉 ≥ −aF F facet}

where the facet F ≲ ∆ is defined by as ∆ ∩HuF ,−aF for some uF ∈ N and aF ∈ Z.

If the polytope ∆ is very ample (see [CLS12, Definition 2.2.17]), then a toric
variety X∆ associated with this polytope can be constructed by using the Zarizki
closure of the map ΦA, i.e.

ΦA : (C∗)n −→ Ps−1
C t := (t1, . . . , tn) −→ (tm1 : · · · : tms), (2.7)

whereA = ∆∩M = {m1, . . . ,ms}. If we are given any n-dimensional lattice polytope
∆ (not necessarily very ample) the toric variety to consider is the one associated
to l∆ for l � 0, which has the same normal fan and is very ample; see [CLS12,
Definition 2.3.14].

Example 2.1. Consider the simplex∆n in Rn, which is the convex hull of the lattice
pointsA = {0, e1, . . . , en}where (ei)i=1,...,n is a canonical basis of Zn, then the closure
of the image of ΦA is Pn.

Definition 2.25. Let S ⊂ N be a finite subset. The conic hull is the subset of NR
given as:

Cone(S) =
{∑

u∈S
λuu λu ∈ R≥0

}
⊂ NR.

A rational cone σ is a subset of NR of the above form. A cone σ is strongly convex if
σ ∩ (−σ) = 0. The dual cone of σ∗ in Rn is the subset:

σ∗ = {m ∈ Rn 〈u,m〉 ≥ 0 ∀u ∈ σ}.

A face of a cone is a subcone σ′ ≲ σ for the form: σ′ = σ ∩ Hm,0 for some m ∈ σ∗.
The dimension of a cone σ is the smallest dimension of the linear subspace V ⊂ NR
such that σ ⊂ V .
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Definition 2.26. A fan Σ is union of strongly convex cones of Rn such that:

- If σ ∈ Σ, every face of σ is also in Σ.

- The intersection σ1 ∩ σ2 of two cones σ1, σ2 ∈ Σ is a face of each.

A fan Σ′ refines another fan Σ, if every cone σ′ ∈ Σ′ is contained in a cone σ ∈ Σ, i.e.
σ′ ⊂ σ. We denote asΣ(d) the set of d-dimensional cones of a fan. The 1-dimensional
cones are called rays.

Figure 2.2: The normal fans of the polytopes in Figure 2.1.

If∆ is a polytope and∆′ ≲ ∆ is a face of it, definedby thehyperplanesHu1,b1 , . . . , Hur,br ,
one can consider the cones of the form:

σ∆′ = Cone(ui i ∈ {1, . . . , r}) ⊂ NR.

These cones are independent of b1, . . . , br and thus, invariant under translations of
the polytope.
Definition 2.27. The normal fan Σ of a polytope ∆ is the union of the cones σ∆′ for
all the faces ∆′ ≲ ∆.

From the dual cones of the normal fan Σ, one can recover the affine varieties
defining ∆. Namely, one can consider the semigroup Sσ = σ∗ ∩ Zn and study the
affine toric variety

Spec(k[Sσ]) k[Sσ] = k[xm m ∈ σ∗ ∩ Zn].

where k[Sσ] is the semigroup algebra generated by Sσ. The generators of Sσ as a
semigroup provide the generators of k[Sσ] as an algebra. Gluing the affine vari-
eties defined by the semigroup algebras for every cone σ ∈ Σ, following the face
structure of the fan, one can recover the variety X∆; see [CLS12, Chapter 3, 3.1].
Example 2.2. The normal fan Σ of the first polytope in Example 5.1 is the fan with
rays {e1, . . . , en,−

∑n
i=1 ei}; see Figure 2.2. If we consider the cone σ generated by

e1, . . . , en, then the semigroup algebra is generated by the lattice points in Zn
≥0 and

the affine toric variety is An
k; see Figure 2.3. Thus, gluing the semigroup algebras

defined by Σ corresponds to the gluing of affine spaces that provides the projective
space Pn.
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Figure 2.3: In green, the dual of the cone generated by (1, 0) and (0, 1). In red, the lattice points in this
dual cone. In green and orange, the dual to the cone generated by (0, 0). In red and blue, the lattice
points in this dual cone.

The Cox ring and the quotient construction Finally, we can provide a definition
of a toric variety which relies directly on the fan Σ and does not require to glue
affine pieces. Recall that the starting point of our discussion is a polytope ∆. As
we assumed that ∆ is n-dimensional, its normal fan is formed by strongly convex
cones and it is complete, i.e.

∪σ∈Σσ = NR.

The normal fan of a polytope must have n + r rays for r ≥ 0. Moreover, we can
assume that the generators of the rays uρ ∈ N for ρ ∈ Σ(1) are primitive and span
the vector space NR. By [CLS12, Corollary 3.3.10], this condition is equivalent to
the toric variety XΣ having no torus factors. Thus, we denote as u1, . . . , un+r the
generators of the rays in some order. In addition, if we denote the class group of
XΣ by Cl(XΣ), there is a short exact sequence:

0 −→ Zn F−→ Zn+r π−→ Cl(XΣ) −→ 0, (2.8)

where F is an (n + r) × n matrix whose rows are the generators of the rays
in Σ(1) and π is chosen accordingly to be a cokernel matrix; see [CLS12, Theorem
4.1.3].

Definition 2.28. The Cox ring is defined as the ring R = k[x1, . . . , xn+r]. This ring
is Cl(XΣ)-graded through the map π. Namely, a monomial

∏n+r
i=1 x

ai
i has degree

π((ai)i=1,...,n+r).

This short exact sequence induces a transposed short sequence of groups by
considering the functor Hom(−,C∗).

0 −→ G
πT

−−→ (C∗)n+r FT−−→ (C∗)n −→ 0, (2.9)
where G = Hom(Cl(XΣ),C∗). In particular, one can show that G is the subgroup of
(C∗)n defined by the equations:

G = {(tρ)ρ∈Σ ∈ (C∗)n+r
∏

ρ∈Σ(1)

t
⟨uρ,m⟩
ρ = 1 ∀m ∈M}.
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Thus, the natural action of (C∗)n+r in Cn+r induces an action of G in Cn+r.

Definition 2.29. The irrelevant ideal is:

b = (x̃τ such that τ ∈ Σ(n)), where x̃τ =
∏

ρ/∈τ(1)

xρ. (2.10)

The irrelevant subset is defined as V (b) = {x ∈ Cn+r f(x) = 0 ∀f ∈ b}.

The primary decomposition of b can also be defined in terms of the combina-
torics of the fan Σ.

Definition 2.30. A subset C ⊂ Σ(1) is a primitive collection if:

- There is no cone σ ∈ Σ such that C = σ(1).

- For every proper subset C ′ ⊊ C, there is a cone σ ∈ Σ such that C ′ = σ(1).

The irrelevant ideal satisfies b = ∩C(xρ ρ ∈ C) where the intersection runs
over all the primitive collections in Σ; see [CLS12, Definition 5.1.6]. Thus, the irrel-
evant subset can be decomposed as:

V (b) = ∪CV (xρ ρ ∈ C). (2.11)

We can pay particular attention to the toric varieties for which the primitive col-
lections are disjoint.

Definition 2.31. A fan Σ splits if the primitive collections are disjoint. A toric vari-
ety XΣ has a splitting fan if the fan Σ splits.

Each of the irreducible components in (2.11) is an orbit of the action of (C∗)n+r

in Cn+r. Thus, G also induces an action in Cn+r − V (b).

Definition 2.32. The toric variety XΣ defined from the normal fan of ∆ is defined
as:

XΣ := Cn+r − V (b)//G

This definition is equivalent to the two definitions above; see [CLS12, Proposition
5.1.9].

Example 2.3. The irrelevant ideal of the fan giving the projective space is precisely
m = (x0, . . . , xn) and G = {(λ, . . . , λ) ∈ (C∗)n+1 λ ∈ C∗}. With this, one recovers
Definition 2.12.

The action of (C∗)n+r in Cn+r − V (b) induces an action of (C∗)n inXΣ after con-
sidering the quotient by G. There are other possible definitions of a toric variety
which do not involve starting with a polytope or a fan. All of them involve the idea
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Figure 2.4: In the first drawing, the cone generated by (1, 0) and (0, 1) is smooth as its generators are
a basis of Z2. In the second case, the cone generated by (1, 2) and (2, 1) is not smooth.

of having a variety X where the torus (C∗)n is an open and dense subset with re-
spect to the Zariski topology and such that the action of (C∗)n in this subset extends
to the rest of the toric variety.

Further algebraic structure can be analyzed on toric varieties, by noting that
their defining ideals are prime ideals generated by binomials [ES96]. With the com-
binatorial information of polytopes and fans, one can easily this structure in the
ideals defining these varieties; see [CLS12, Proposition 1.1.9]. In some areas of com-
putational algebraic geometry, one can find ideals defining toric varieties whose
polytopes and fans can be more difficult to grasp; see [MS21, Section 8.3].

Defining toric varieties form the combiatorics of polytopes and fans gives us
the advantage of connecting the geometric properties of XΣ with the properties of
the fan Σ.

Definition 2.33. A rational cone σ is simplicial if its generators are linearly inde-
pendent over Zn. The fan Σ is simplicial if every cone σ ∈ Σ is simplicial. A rational
cone σ is smooth if its generators are part of a basis of Zn. The fan is smooth Σ if
every cone σ ∈ Σ is smooth.

Theorem 2.7. The varietyXΣ is simplicial, if and only if, Σ has, at most, finite quo-
tient singularities. The variety XΣ is smooth, if and only if, Σ is smooth. Moreover,
the variety XΣ is compact (in the classical topology), if and only if, Σ is complete;
see [CLS12, Theorem 3.1.19].

Polytopes and divisors By looking a bit more closely at the short exact sequence
in (2.9), one can see that the elements ofZn+r correspond toWeil divisors in the toric
variety XΣ, which are invariant under the action of (C∗)n. Namely these divisors
are of the form:

Dν =

n+r∑
j=1

νjDj
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where Dj is the Weil divisor defined by the equation {(xi)i=1,...,n+r ∈ XΣ xj = 0};
see [CLS12, § 4.1]. In particular, by (2.9), the principal Weil divisors are of the form:

F(m) =
n+r∑
j=1

〈uj ,m〉Dj (2.12)

for some m ∈ Zn. On the other hand, to each Weil divisor
∑n+r

j=0 νjDj , one can asso-
ciate the following polytope:

∆ν = {m ∈ Rn : 〈uj ,m〉 ≥ −νj , j = 1, . . . , n+ r}. (2.13)

Properties of divisors, such as being Cartier, nef or ample, can be understood from
the combinatorics of the polytope∆ν ; see [CLS12, Theorem 4.2.8, Proposition 6.1.1,
Theorem 6.3.12, Proposition 7.2.3] for proofs.

Theorem 2.8. Let Dν =
∑n+r

j=0 νjDj be a Weil divisor in XΣ and let ∆ν be the associ-
ated polytope.

- The Weil divisor Dν is Cartier, if and only if,

∀τ ∈ Σ(n), there ismτ ∈M such that if ρj ∈ τ(1) 〈uj ,mτ 〉 = −νj . (2.14)

- The Cartier divisor Dν is nef, if and only if,

∀τ ∈ Σ(n), there ismτ ∈ ∆ν ∩M such that if ρj ∈ τ(1) 〈uj ,mτ 〉 = −νj . (2.15)

Moreover, the previous conditions are equivalent to Dν being basepoint free.

- The divisor Dν is ample, if and only if, the normal fan of ∆ν is Σ.

Assumption 2.1. Our goal is to construct homogeneous polynomial systems that
only depend on a polytope∆ and its normal fanΣ. Under this assumption, ifDν is a
Weil divisor inXΣ, then thenormal fan of∆ν is refinedbyΣ; see [CLS12, Proposition
6.2.5].

In some of our results, we will require that XΣ is a smooth projective toric
variety. We can make this assumtion by considering a resolution of singularities
of XΣ which is constructed through a fan Σ′ which refines Σ; see [CLS12, Theorem
10.1.10]. After changingXΣ byXΣ′ ,Dν remains a nef divisor inXΣ′ and the normal
fan of ∆ν is refined by Σ′. Moreover, if the lattice polytope ∆ν is fixed, we can also
assume thatDν is nef and Cartier divisor, by choosing (νj)j=1,...,n+r to be of the form:

νj = −min
m∈∆
〈uj ,m〉.

minimum is attained at a vertex m ∈ ∆ν ; see [CLS12, Proposition 6.2.5]. All in all,
our constructions will be based on a correspondence between nef Cartier divisors
in XΣ and lattice polytopes, i.e.{

Nef Cartier divisors Dν in XΣ

}
←→

{
Lattice polytopes ∆ν whose
normal fan refines Σ

}
. (2.16)
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The assumption thatXΣ is smooth also implies that everyWeil divisor is Cartier. In
other words, the class group Cl(XΣ) coincides with the Picard group Pic(XΣ), which
is a free abelian group isomorphic to Zr; see [CLS12, Proposition 4.2.5, Proposition
4.2.6].

On the other hand, if two polytopes ∆ν ,∆ν′ correspond to Weil divisors in the
same class in Cl(XΣ), then by (2.9) they are translations of each other, i.e. there is
m′ ∈ Zn such that:

νj − ν ′j = 〈uj ,m′〉 j = 1, . . . , n+ r

which implies that ∆ν +m′ = ∆ν′ ; see [CLS12, §4.2, §4.3].

Assumption 2.2. Some of the constructions that we will cosnider (for instance,
sparse resultants) are invariant under translations of the polytope ∆ν . Therefore,
for each

∑n+r
j=1 νjDj , we will choose a representative of its class in Cl(XΣ) in the

following way: each maximal cone σ ∈ Σ(n) corresponds to a vertex in ∆ν . In par-
ticular, under Assumption 2.1, we can fix a smooth n-dimensional cone σ ∈ Σ(n)
and we can translate ∆ν so that the vertex associated to σ is 0 ∈ Zn. This choice of
the representative of the class of ∆ν has the following implications:

- Choosing σ ∈ Σ(n) allows us to order and label the variables in the Cox ring as
x1, . . . , xn for those variables associated to rays ρ ∈ σ(1) and z1, . . . , zr for the
rest of variables.

- The matrix π which is a cokernel for F in the short exact sequence (2.9) can
be written as:

π =
(
P Idr

)
, (2.17)

whereP is a blockmatrix (Pj,k)1≤j≤r,1≤k≤nwith entries inZ. Thefirstn columns
of π correspond to the rays ρ ∈ σ(1). The rows of π correspond to the relations
between un+j and the basis given by u1, . . . , un for j = 1, . . . , r, i.e. relations of
the form:

un+j +
n∑

k=1

Pj,kuk = 0 j = 1, . . . , r. (2.18)

- If 0 ∈ ∆ν is the vertex associated to σ, we imply that νj = 0 for all j = 1, . . . , n.
Hence, we are choosing a representative of the class of polytopes of ∆ν that
only depends on νn+1, . . . , νn+r.

- Under Assumptions 2.1, the Cox ring is Zr-graded by the map π. In particu-
lar, the way we wrote the map π in (4.2) implies that every monomial xµ =
xµ1
1 · · ·x

µn
n z

µn+1

1 · · · zµn+r
r of degree ν is mapped via π to (νn+j)j=1,...,r ∈ Zr and

thus satisfies the relations:

νn+j = µn+j +

n∑
k=1

Pj,kµk for all j = 1, . . . , r. (2.19)
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- The lattice points in∆ν correspond to themonomials inR of degree ν ∈ Pic(XΣ).
We will use this idea to homogenize and dehomogenize polynomials in the
toric setting.

Example 2.4. LetXΣ = Pn and σ is the cone generated by the canonical basis of Zn,
the polytopes ∆ν only depend on a positive integer a ∈ Z>0 and one recovers the
Newton polytopes of the polynomials of degree a.

Remark 2.3. Writing the polytopes in the presentation (2.13) and imposing that 0 ∈
∆ also implies that for any ν ∈ Cl(XΣ), we have νn+j ≥ 0 for j = 1, . . . , r. Otherwise,
0 = 〈un+j , 0〉 ≥ −νn+j > 0. In particular, if νn+j < 0 for some j ∈ {1, . . . , r}, then there
are no lattice points in ∆.

Generic polynomial systems and homogenization Going back to the polyno-
mial systems, we will consider polynomials with supports in a subset A ⊂ Zn, i.e.

F̃ =
∑
m∈A

cmx
m ∈ R̃ = k[x1, . . . , xn] cm ∈ k (2.20)

where xm = xm1
1 · · ·xmn

n is a monomial that can be identified with a character xm :
(C∗)n −→ C∗. This is the general form of a polynomial whose Newton polytope is
∆ = conv(A) ⊂ Rn. However, the polynomial F̃ is not homogeneous in the setting
of the Cox ring that we previously defined.

Using Assumptions 2.2, we can assume that 0 ∈ ∆ and the cone σ associated to
0 is smooth. Moreover, we write the variables in the Cox ring as x1, . . . , xn for the
variables of the rays in σ and z1, . . . , zr for the rest of variables. If ∆ is the polytope
associated to a nef Cartier divisor

∑n+r
j=1 νjDj in a toric variety XΣ, then we can

homogenize F̃ to be a homogeneous polynomial in the Cox ring by considering:

F̃ −→ F =
∑
m∈A

cmx
Fm+ν ∈ k[x1, . . . , xn, z1, . . . , zr] (2.21)

where F is the matrix in (2.9). We note that we can chose a monomial basis of the
graded piece ofR of degree ν (denoted asRν) corresponding to xµ where µ = Fm+ν
for each m ∈ A. On the other hand, if we are given a homogeneous polynomial,
given as a sum of the monomials in Rν , i.e.

F =
∑

xµ∈Rν

cµx
µ ∈ Rν cµ ∈ k

then, we can dehomogenize by first changing z1 = · · · = zr = 1 getting an affine
polynomial of the form:

F −→ F̃ =
∑
m∈A

cµx
Fm ∈ k[x1, . . . , xn, z1, . . . , zr]. (2.22)

where F is the submatrix of F considering the rows. This matrix is invertible over
Z as we assumed that σ is a smooth cone and the generators of the rays ρ ∈ σ(1)
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Figure 2.5: Affine and homogeneous monomials of a polynomial system.

form a basis of the lattice Zn, implying that the matrix has determinant ±1. As the
elimination constructions we will describe are invariant under a change of bases
of the lattice, we can replace xFm by xm, recovering a polynomial with supports in
A.

Example 2.5. The polynomial in Figure 2.5 has a Newton polytope whose normal
fan has rays:

ρ1 = (1, 0) ρ2 = (0, 1), ρ3 = (−1, 0) ρ4 = (−1,−1) ρ5 = (0,−1).

Therefore, the matrices F and π are of the form:

F =


1 0
0 1
−1 0
−1 −1
0 −1

 π =

1 0 1 0 0
1 1 0 1 0
0 1 0 0 1

 .

Therefore, the polytope∆ν in the Figure canbedefinedas in (2.13)with ν = (0, 0, 2, 3, 2),
providing the monomials and their homogenizaiton in Figure 2.5.

We refer the reader to [BT22, Section 2.2] for more details about homogeniza-
tion and dehomogenization of sparse polynomial systems.

Homological constructions over the irrelevant ideal In the case of projective
toric varieties, the irrelevant ideal b assumes the role previously held by m, as dis-
cussed in Section 1.. Consequently, local cohomology modules over b gain signif-
icance in the when we try to distinguish the geometry of XΣ from the algebra of
homogeneous ideals in the Cox ring. However, ifXΣ 6= Pn, then the irrelevant ideal
is (in general) not a prime ideal and the structure of H i

b(R) cannot be described as
in Theorem 2.5. Nonetheless, alternative techniques exist for its characterization,
such as exploring its relationship with sheaf cohomology modules.

Let S be a finitely generated Cl(XΣ)-gradedR-module with associated coherent
sheaf S in XΣ and α ∈ Cl(XΣ). If p ≥ 2, then

Hp
b (S)α ' H

p−1(XΣ,S(α)), (2.23)
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where Hp
b (S)α is the graded piece of Hp

b (S) of degree α and S(α) is the sheaf de-
fined by S ⊗ OΣ(D), for a divisor D with [D] = α and OΣ the structure sheaf of XΣ;
see [CLS12, Theorem 9.5.7] for proofs. Furthermore, the following exact sequence
holds:

0 −→ H0
b (S)α −→ Sα −→ H0(XΣ,S(α)) −→ H1

b (S)α −→ 0.

If S = R, then Rα = H0(XΣ,OΣ(α)) and therefore

H0
b (R) = H1

b (R) = 0. (2.24)

Notation 2.2. For the sake of simplicity in the notation, for any Cartier divisor D
and any integer p ≥ 0, we will write Hp(XΣ, α) in place of Hp(XΣ,OΣ(D)), where
α = [D] ∈ Cl(XΣ).

The following theorems, that are originally due to Demazure and Batyrev-
Borisov, will be our main tools to analyze the vanishing of sheaf cohomology mod-
ules over toric varieties; see [CLS12, Theorem 9.2.3, Theorem 9.2.7] for proofs.

Theorem 2.9 (Demazure). Let XΣ be a toric variety such that Σ is complete and D
be a nef Cartier divisor, then Hp(XΣ, α) ' 0 for all p > 0 and α = [D].

Theorem 2.10 (Batyrev-Borisov). LetXΣ be a complete toric variety andD be a nef
Cartier divisor, then

Hp(XΣ,−α) '

{
0 if p 6= dim∆α

⊕m∈Relint(∆α)∩Mkχ−m if p = dim∆α

where α = [D] ∈ Cl(XΣ) and Relint(∆α) denotes the relative interior of the polytope
∆α associated with α.

Remark 2.4. Wenotice that the two above theorems are proved inmore generality
in [CLS12], we stated them with assumptions that are sufficient in our context.

Another important result we will use is the toric version of Serre duality (see
[CLS12, Theorem 9.2.10] for a proof): for any Cartier divisor D and any integer
p ≥ 0,

Hp(XΣ, α) ∼= Hn−p(XΣ,−KX − α)∨, (2.25)

where KX is the anticanonical class in Cl(XΣ) and α = [D] ∈ Cl(XΣ).

Let XΣ be a projective toric variety and let R be its Cox ring. The Hilbert func-
tion of a finitely generated graded R-module S is defined by

HF(S,−) : Cl(XΣ)→ Z≥0 α 7→ HF(S, α) := dimk(Sα). (2.26)

Assuming that XΣ is a smooth toric variety, then for α � 0 (component-wise), this
function becomes a (multivariate) polynomial called the Hilbert polynomial and is
denoted by HP(S, α); see [MS03, Lemma 2.8].
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Remark 2.5. If S = R/J with J homogeneous ideal of R defining a 0-dimensional
subscheme in XΣ, then the Hilbert polynomial of S is a constant which is equal to
the number of points (over an algebraic closure of k) in this subscheme, counted
with multiplicity.

The Grothendieck-Serre formula appearing in Theorem 2.6 also generalizes to
the case of the irrelevant ideal, namely, for any α ∈ Cl(XΣ),

HF(S, α) = HP(S, α) +
n∑

i=0

(−1)i dimkH
i
b(S)α. (2.27)

see [MS03, Proposition 2.14] for a proof.

3. The sparse resultant

In the introduction, we motivated resultants as central tools in elimination theory,
refering to several a wide literature on various methods to compute them; see for
instance [GKZ94; DD00; WZ92; DJS22; Ben+21]. However, when we move towards
the sparse (or toric) setting, their definition can be intricate. Classically, sparse
resultants are studied in the situation where the family of exponents of the given
monomials is essential, that is, when the sparse resultant depends on the coeffi-
cients of all the polynomials and, in addition, the affine span of these families of
exponents coincides with the ambient lattice; see [Stu94]. In this section, we give
the definition provided in [DJS22], which is more general than the one provided for
an essential family and recall some of the properties of these objects.

Moreover, it is important that we are able to manage an object that eliminates
variables also in the case of homogeneous polynomials in the Cox ring of a toric
variety. This object was also defined in the book Discriminants, resultants and mul-
tidimensional determinants by Gelfand, Kapranov and Zelevisnky [GKZ94]. Under
some assumptions on the supports of the polynomials, these two objects coincide,
thus the methods for computing the resultant can be used both in the affine and
homogeneous settings.

The affine case. The setting for the resultant is that of n + 1 sets of supports
A0, . . . ,An ⊂ Zn, providing a universal system of polynomials:

F̃i =
∑
m∈Ai

ci,mx
m i = 0, . . . , n (2.28)

Let ∆i = conv(Ai) for i = 0, . . . , n be the Newton polytopes of F0, . . . , Fn.
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Definition 2.34. The family of polytopes∆0, . . . ,∆n is essential if dim(
∑n

i=0∆i) = n
and for every J ⊂ {0, . . . , n}, we have:

dim(
∑
j∈J

∆j) ≥ |J |. (2.29)

The fundamental subfamily is the unique family (∆i)i∈I for a subset I ⊂ {0, . . . , n}
satisfying dim(

∑
i∈I ∆i) = |I| − 1 and dim(

∑
j∈J ∆j) ≥ |J | for every J ⊂ I .

From this definition, we derive that if the family (∆0, . . . ,∆n) is essential, then
it is the fundameltal subfamily of that system of polytopes. On the other hand, if
the family is not essential, there is strictly smaller fundamental subfamily (∆i)i∈I
for some proper subset I ⊂ {0, . . . , n}. In this setting, it makes sense to consider that
the lattice spanned by this subfamily, i.e.

LI =
{∑

i∈I
λimi λi ∈ Z mi ∈ Ai i = 0, . . . , n

}
. (2.30)

This lattice might not be saturated, i.e. there might be lattice points in the real
vector space it spans that do not belong to LI . For this reason, we can consider the
following lattice.

Lsat
I = (LI ⊗ R) ∩ Zn. (2.31)

The space of coefficients of the F̃i’s has a natural structure of multi-projective
space

∏n
i=0 PAi , as the zeros of F̃0 = · · · = F̃n = 0 are not modified after multiplica-

tion by a nonzero scalar. Consider the incidence variety

Z(F̃ ) = {x× (. . . , ci,m, . . .) ∈ (C∗)n ×
n∏

i=0

PAi F̃0(x) = · · · = F̃n(x) = 0}

and let π be the canonical projection onto the second factor

π : (C∗)n ×
n∏

i=0

PAi −→
n∏

i=0

PAi .

Definition 2.35. The sparse resultant, denoted as ResA, is a primitive polynomial
in in Z[ci,m] defining the direct image π∗(Z(F̃ )). This polynomial is a power of the
sparse eliminant, denoted as ElimA, which is the irreducible polynomial defining
the closure of the image of Z(F̃ ), i.e. π(Z(F̃ )), if this is a hypersurface, and 1 other-
wise. In other words,

ResA = ±ElimdA
A (2.32)

for some dA ∈ Z≥0.

Note that aswe are considering the closure of π(Z), the preimages of the zeroes
of ResA are of the form x × (. . . , ci,m, . . . ) where x lies in some compactification of
(C∗)n.
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From [Stu94, Corollary 1.1], we can derive that if (Ai)i∈I is the fundamental
subfamily of A0, . . . ,An, then the sparse resultant (and eliminant) only depend on
the coefficients of the polynomials in this family. In fact, we can recude the gen-
eral theory to working over Lsat

I . In [DJS22, Proposition 3.6], the exponent dA is
computed.

Proposition 2.1. Let (Ai)i∈I be the fundamental subfamily of A0, . . . ,An and sup-
pose that I 6= ∅. Then, dim(LI) = |I| − 1, and the exponent in (2.32) can be written
as:

dA = [Lsat
I : LI ]MVZn/Lsat

I
(π(∆j)j /∈J)

where π is the projection π : Zn −→ Zn/Lsat
I .

Imposing that the∆i’s are n-dimensional and theAi span the lattice Zn is suffi-
cient for ensuring that the fundamental subfamily isA0, . . . ,An and that the sparse
resultant is an irreducible polynomial, i.e. dA = 1; see [GKZ94, Chapter 8].

Lemma 2.1. [DJS22, Proposition 3.2] Let ϕ : M −→ M ′ be an injective morphism of
lattices of rank n. Then, Resϕ(A) = Res[M

′:ϕ(M)]
A .

Remark 2.6. Moreover, the sparse resultant is invariant under translations. There-
fore, we can always assume 0 ∈ Ai for all i = 0, . . . , n.

The degree of the resultant with respect to the coefficients of each equation
must coincide with the maximal number of generic solutions of the system, which
following Theorem 1, is the mixed volume.

Definition 2.36. The mixed volume of n polytopes P1, . . . , Pn ⊂ Rn, denoted as

MVM (P1, . . . , Pn)

is the coefficient of
∏n

i=1 λi in Voln(λ1P1 + · · · + λnPn) which is a polynomial in
λ1, . . . , λn; see [CLO98, Theorem 6.7].

Proposition 2.2. [Stu94, Lemma 1.2] For i = 0, . . . , n, the degree of the sparse resul-
tant with respect to the coefficients of the i-th polynomial can be computed as:

degAi
(ResA) =

∑
J⊂{0....,i−1,i+1,...,n}

(−1)|J | Vol(
∑
j∈J

∆j) = MV(∆0, . . . ,∆i−1,∆i+1, . . . ,∆n).

The homogeneous case. Let F0, . . . , Fn be homogeneous polynomials of degrees
α0, . . . , αn ∈ Cl(XΣ) corresponding to the Newton polytopes∆0, . . . ,∆n. Using (2.21),
these polynomials are of the form:

Fi =
∑
m∈Ai

ci,mx
Fm+ν ∈ C i = 0, . . . , n. (2.33)

forAi = ∆i∩Zn, i.e. these polynomials are general elements in the graded pieces of
the Cox ring of degree αi for i = 0, . . . , n, i.e. Sαi . By [Cox95, Proposition 1.1], these
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are global sections of the line bundlesOXΣ
(Di)whereDi are nef Cartier divisors in

the class of αi for i = 0, . . . , n.

Using Assumption 2.2 and the notation of the previous section, we write:

∆i = {m ∈ Rn : 〈uj ,m〉 ≥ −ai,j , j = 1, . . . , n+ r} (2.34)

where ai,j = 0 for j = 1, . . . , n under Assumptions 2.2. To begin with, we can re-
strict to the case where OXΣ

(Di) are very ample line bundles, which means that
the normal fan of∆i is Σ for i = 0, . . . , n. With this, we can define the homogeneous
incidence variety locus of

Z(F ) = {(x, ci,m) ∈ XΣ ×
n∏

i=0

H0(XΣ,OXΣ
(Di)) Fi(x) = 0 i = 0, . . . , n}

From [GKZ94, Chapter 3, Proposition 1.3], we can derive that the image of Z(F )
after the projection p : XΣ ×

∏n
i=0H

0(XΣ,OXΣ
(Di)) −→

∏n
i=0H

0(XΣ,OXΣ
(Di)) is an

irreducible hypersurface.

Definition 2.37. The homogeneous sparse resultant of F0, . . . , Fn, which we denote
as ResD, is the unique irreducible polynomial defining the closure image of Z(F )
after p.

Notation 2.3. Note that the study of the toric variety associated with the resultant
relates to using the Cox ring C = A[x1, . . . , xn, z1, . . . , zr] where:

A = k[ci,m m ∈ Ai i = 0, . . . , n].

In other words, we are studying a projection from the toric varietyXΣ×k
∏n

i=0 PAi .

However, the assumption that the polytopes∆i correspond to very ample divi-
sors can be to restrictive. The assumptions to overpass this restriction in [GKZ94,
Chapter 8] are the that the polytopes ∆i span the vector space Rn.

Under these conditions, these polytopes correspond to nef divisors Di and, as
in (2.7), there is a map:

ΦAi : (C
∗)n −→ PAi i = 0, . . . , n.

which, altogether, define a product map:

ΦA0 × · · · × ΦAn : (C∗)n −→ PA0 × · · · × PA0

whose image defines a toric variety X∆0,...,∆n , which is isomorphic to X∆ for ∆ =
∆0 + · · ·+∆n; see [GKZ94, Chapter 8, Proposition 1.4].

Now, the map ΦA0 × · · · × ΦAn provides the following injective map:

H0(PAi ,O(1)) −→ H0(X∆,OXΣ
(Di)) (2.35)
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which need not be surjective. It will be surjective if the variaety is linearly normal,
which means that X∆i is not contained in a hyperplane and it can not be repre-
sented as the projection from a higher dimensional projective space; see [GKZ94,
Chapter 1, Definition 4.6].

Using the above maps, we can see that if the starting points are the polytopes
whose span is Rn, then the affine and homogeneous resultant will coincide.

Proposition 2.3. [GKZ94, Chapter 8, Proposition 1.5] Under the map in (2.35) and
the assumptions above, the affine and homogeneous resultants coincide

Once this affine versus homogeneous situation that one encounters in the defi-
nition of resultants is clear, we can shift our attention to the methods of computa-
tion, whichwill occupy a big part of our time during this text. A classicalmethod for
computing the sparse resultant is to consider the determinant of the Koszul com-
plex K•(F ) of the sequence of homogeneous polynomials F0, . . . , Fn. Under these
assumptions, we can compute ResA as the determinant of some graded pieces of
the complex

K•(F ) : Kn+1 = C(−
∑

αi)
∂n+1−−−→ . . .

∂3−→ K2 = ⊕k,k′C(−αk − αk′)

∂2−→ K1 = ⊕kC(−αk)
∂1−→ C. (2.36)

As a consequence, we get that the resultant can be computed as the determi-
nant of some strands of this complex; see [GKZ94, Chapter 3, Theorem 4.2].

Theorem 2.11. There is a nonempty subset of Pic(XΣ) such that for α ∈ ΓRes ⊂
Pic(XΣ), the strandK•(F )α is an acyclic complex of freeA-modules andH0(K•(F )α) =
Bα. Moreover, if we also consider α such that (Isat/I)α = 0, then det(K•(F )α) equals
the sparse resultant ResA up to multiplication by a nonzero scalar.

4. Generic initial ideals and the regularity criterion

In the introduction, we gave the definition of a Gröbner bases as useful tools in al-
gebraic elimination; see the definition of Gröbner bases in Section 1. However, for
the developments of the results in Chapter 5, we do not deal with directly Gröbner
bases as much as with generic initial ideals. As we explained in the introduction,
these are the Gröbner basis that appear after performing a generic change of coor-
dinates that preserves the grading of an ideal.

Generic initial ideals For general toric varieties, it is not clear that these objects
arewell-defined. In fact, as shown byMaclagan and Smith in [MS04, Example 4.11],
the grading might be too restrictive to allow changes of coordinates that alter the
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initial ideal. However, for standard gradings, these initial ideals exist, following
the work of Galligo in [Gal74]. For the standard Z-graded case, these ideals are
very well-studied; see [Gre98].

The generic inital ideal exists for standard Zn-gradings, where the underlying
toric variety is Pn1 × · · · × Pns . The ideal appearing in this case is known as the
multigeneric initial ideal. For the sake of simplicity, we stick to the bigraded case,
i.e. for Pn × Pm, and R = k[x0, . . . , xn, y0, . . . , ym] and thus, to the the bigeneric initial
ideal, denoted as bigin(I)

The proof of the existence of bigin(I) of follows from the same lines in [Eis95,
Proposition 15.12]. We aim to reproduce this proof in the coming pages. How-
ever, there are results in Chapter 5, in which using the generic coordinates is only
required with respect to one group of variables. In the next theorem, we show
that it is possible to consider the generic initial ideal ginx(I) after performing only
a change of coordinates with respect to the x block of variables and the results
that are shown in the previous sections are preserved. Our proof follows the same
lines as the proof of the existence of the generic initial ideal; see [Eis95, Proposition
15.18].

Notation 2.4. Let u ∈ GL(n+1)×GL(m+1) be block-diagonal matrix with nonzero
determinant and two blocks ux and uy. This matrix defines a linear change of co-
ordinates in S as:

u = (ux, uy) : R −→ R xi −→ uxi0x0 + · · ·+ uxinxn yi −→ uyi0y0 + · · ·+ uyimym. (2.37)

For each homogeneous polynomial f ∈ S, we define the polynomial u ◦ f as
f(u(x, y)), which has the same bi-degree as f . For each bihomogeneous ideal I ⊂ S,
u defines the ideal u ◦ I = 〈u ◦ f | f ∈ I〉. However, in the next theorem the change
of variables with respect to the second group of variables is fixed, and thus we
consider u = g × id for g ∈ GL(n+ 1).

Theorem 2.12. There is an open set U ⊂ GL(n + 1) such that for g ∈ U , the ideal
in((g × id) ◦ I) is constant. Moreover, this ideal is preserved by linear changes of
coordinates in GL(n+ 1).

Proof. Namely, consider (gij)i,j=0,...,n ∈ GL(n+ 1) as a general transformation. Con-
sider f1, . . . , fr to be the generators of I in degree (a, b). Consider g ◦ f := (g × id) ◦
f1 ∧ · · · ∧ (g× id) ◦ fr as an element of ∧rS(a,b). Assume thatm1 ∧ · · · ∧mr be the high-
est monomial in g ◦ f and let p(gij) be the coefficient of this monomial. Consider
U(a,b) ⊂ GL(n+1) to be the open set given by p(gij) 6= 0. Consider J(a,b) to be the ideal
generated bym1, . . . ,mr.

Next, we show that J = ⊕(a,b)∈Z2J(a,b) is an ideal. As U(a,b) and U(a+1,b) are open
and dense, we can find g ∈ U(a,b) ∩ U(a+1,b) such that in((g × id) ◦ I)(a,b) = J(a,b) and
in((g × id) ◦ I)(a+1,b) = J(a+1,b). Thus, S(1,0)J(a,b) ⊂ J(a+1,b) (similarly, S(0,1)J(a,b) ⊂
J(a,b+1)).
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Finally, we show that U = ∩(a,b)∈Z2U(a,b) is open and dense. Namely, we show
U is a finite intersection. Let J be the set of bi-degrees (a, b) such that there is
some generator of J of degree ≥ (a, b), this set is finite as J is an ideal. Consider
g0 ∈ ∩(a,b)∈JU(a,b). We know that in((g0× id) ◦ I)(a,b) = J(a,b) for (a, b) ∈ J . Therefore,
J ⊂ in(g ◦ I). Moreover,

dimk J(a,b) = dimk Id = dimk(g0I)(a,b) (a, b) ∈ Z2
≿0

implying that in((g0 × id) ◦ I) = J .

Claim 1: The strategy for showing that J is preserved by changes of coordinates
in GL(n + 1) is noting that if J(a,b) is a vector space of dimension t, then the vector
space ∧tJ(a,b) of dimension 1 is spanned by the greatest monomial appearing in
∧t in((g × id) ◦ I)(a,b) for all g ∈ GL(n+ 1).

The above claim is proved by showing that if g is lower triangular with one
nonzero entry gij for i < j then:

∧tJ(a,b) = ∧t in((g × id) ◦ I)(a,b).

If f1, . . . , ft are generators of J(a,b), we consider mi = in(fi) for i = 1, . . . , t assuming
that m1 > · · · > mt. Assume that g is strictly upper triangluar, implying that if
n ∈ S(a,b), we write n = xωi m for m not divided by xi. The monomials appearing in
g ◦ f are of the form xω−s

i xsjm for 0 ≤ s ≤ ω implying that in((g× id) ◦ f) = in(f) and
so in((g × id) ◦ f1 ∧ · · · ∧ (g × id) ◦ ft) = in(f1 ∧ · · · ∧ ft).

Finally, we show that the ideal J is preserved by lower triangularmatrices. For
simplicity, we assume that J = in(I). In particular, we will show that if g is a lower
triangular matrix γ with one nonzero entry gij 6= 0 for i > j, we have:

(1 + γ) ◦ in(I)(a,b) = in(I)(a,b). (2.38)

We prove this by considering a basis f1, . . . , ft of S(a,b) and consider f = f1 ∧ · · · ∧ ft.
If we assume that (2.38) does not happen, thenwe have (1+γ)◦in(f) 6= in(f). As γ is
lower triangular, all the terms of (1+ γ) ◦ in(f) are strictly bigger than in(f). There-
fore, we can get a contradiction with Claim 1 if we consider one of these monomi-
alsm and find a diagonal matrix δ such thatm appears with nonzero coefficient in
(1 + γ) ◦ δ ◦ f .

Consider theweight of amonomial n = n1∧· · ·∧nt ∈ ∧tS(a,b) to be themonomial
n1 · · ·nt ∈ S. The polynomial f can be summed as f =

∑
ω fω where fω is the sum of

the terms of weight ω ∈ S. Each of these terms can be a sum of differentmonomials
except for the term fω0 associated to in(f). Consider the action of a diagonal matrix
δ. Then, the result in:

(1 + γ) ◦ δ ◦ f = ω0(δ1, . . . , δn)(1 + γ) ◦ in(f) +
∑
ω ̸=ω0

ω(δ1, . . . , δn)(1 + γ) ◦ fω
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The coefficient ofm in (1 + γ) ◦ δ ◦ in(f) is:

a0ω0(δ1, . . . , δn) +
∑
ω ̸=ω0

aωω(δ1, . . . , δn).

This is a nonzero polynomial, so as thefield is infinite, we canfindadiagonalmatrix
δ such that the above polynomial is nonzero.

The same proof as above but applying the change of coordinates to two groups
of variables, provides the bigeneric initial ideal, denoted as bigin(I). In the case
that we only perform the generic change of coordinates with respect to the x block
of variables (resp the y block), we denote the corresponding monomial ideal as
ginx(I) (resp. giny(I)). In the next example, we can show that ginx(I) and bigin(I)
need not coincide.

Example 2.6. The ideal ginx(I) in the previous Theoremneed not coincidewith the
generic initial ideal gin(I). The example in P1×P1 (i.e., in the ring C[x0, x1, y0, y1]) is
I = (x0y1 − x1y0, x0y0y1 + x1y

2
1). The classical bi-generic initial ideal is

bigin(I) = (x1y1, x1y
2
0, x0y

3
1)

while the generic initial ideal ginx(I) is (x1y1, x1y20, x0y0y21).

Bi-generic initial ideals preservemany of the interesting properties of the clas-
sical generic initial ideals; see [Gre98]. In particular, the property that we will use
in the coming sections is the following; see [BS87a, Proposition 2.7] for a proof.

Lemma 2.2. Let k be a field of characteristic 0. Then, bigin(I) has the following two
properties:

- If xixαyβ ∈ bigin(I), then xjxαyβ ∈ bigin(I) for all j ∈ {i, . . . , n}.

- If yixαyβ ∈ bigin(I), then yjxαyβ ∈ bigin(I) for all j ∈ {i, . . . ,m}.

Using ginx(I) or giny(I), one can recover the properties of the above lemma,
only with respect to each group of variables. The property is also known as bi-Borel
fixed and can also be relevant from the point of view of monomial ideals [BGC13].

The Bayer-Stillman criterion To end this section, we give a bit more of detail on
the proof of the results by Bayer and Stillman [BS87a], which in Chapter 5 we will
try to extend to the bigraded setting. Assume that I is a homogeneous ideal in a
Z-graded ring S = C[x0, . . . , xn]. To highlight the problem, we recall that Bayer and
Stillman showed that using the degree reverse lexicographicalmonomial order and
generic coordinates, the following equaility holds:

max{degrees of the minimal generators of gin(I)} = reg(gin(I)) = reg(I). (2.39)

where reg(I) is the Castelnuovo-Mumford regularity as defined in 2.23. We can
remark the importance of using generic coordinates with the following example.
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Example 2.7. Consider the ideal I = 〈x22 − x20, x2x1 + x20〉 in the polynomial ring
C[x0, x1, x2]. If compute a Gröbner basis of I , using the degree reverse lexicographic
monomial order with x0 < x1 < x2, then in(I) is generated by 〈x22, x1x2, x21x20〉. How-
ever, if we first perform a generic change of coordinates, then gin(I) is generated
by 〈x22, x2x1, x31〉. Therefore, we see in Figure 2.6, the degree of the computations is
reduced to only depend on reg(I).

Figure 2.6: The Gröbner basis of I is generated in degree 4 which, in this case, coincides with the
regularity of in(I). After the change of coordinates, Bayer and Stillman’s result implies that gin(I) is
generated in degree 3, which coincides with the reguilarity of I .

Remark 2.7. Recall that reg(in(I)) is only a bound for the degrees of the generators
of theGröbner bases. It is possible to find ideals forwhich these generators have de-
gree lower than reg(I). However, this analysis requires understanding more struc-
ture of the ideal than only its Castelnuovo-Mumford regularity and the degrees of
its generators. The study of Bayer and Stillman is, since their prominent work in
the eighties, the most general answer that has been provided to this question.

In order to show the equalities in (2.39), they showed that the Castelnuovo-
Mumford regularity in Definition 2.23 can be characterized using the following
theorem; see [BS87a, Theorem 1.10].

Theorem2.13. Let dbe the dimension of VPn(I). Then, the following are equivalent:

- m ∈ reg(I).

- For d general linear forms h1, . . . , hd ∈ S1, we have:

(I, h1, . . . , hj−1 : hj)m′ = (I, h1, . . . , hj−1)m′ j = 1, . . . , d m′ ≥ m

and
(I, h1, . . . , hd)m′ = Sm′ m′ ≥ m

The idea of the proof of this criterion begins by noting that, in the case that
VPn(I) = ∅, the regularity is only determined by the degree of saturation, i.e.

HFS/I(m) = 0 ⇐⇒ dimC(I
sat/I)m = 0 ⇐⇒ m ∈ reg(I).

Moreover, a general linear form in S is not a zero divisor in the quotient ring S/Isat.
Thus, one can deduce that these forms h ∈ S1 will satisfy:

(I : h)m′ = Im′ ⇐⇒ Isatm′ = Im′ ∀m′ ≥ m
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In particular, if I is m-regular, then one can use this to compare the regularity of I
with the regularity of (I, h) and proceed by induction with the proof of the above
criterion; see [BS87a, §1].

In particular, after a generic change of coordinates, one can assume that the
general linear forms are the coordinate variables x0, . . . , xn, implying that:

m ∈ reg(I) ⇐⇒ (g◦I, x0, . . . , xj−1 : xj)m′ = (g◦I, x0, . . . , xj−1)m′ j = 1, . . . , d m′ ≥ m

for a general linear change of coordinates g ∈ GL(n + 1). Here is where the DRL
order (see the Definition in Chapter 1) plays a relevant role. The main property of
the degree reverse lexicographical monomial order that we need to use is that if x0
divides a monomial xα, then it also divides every monomial xα′

< xα. In particular,

if x0 divides in(f) −→ x0 divides f. (2.40)

This very simple property of the DRLmonomial order, allowed Bayer and Still-
man to also prove that the colon property above, behaves well under considering
initial ideals, i.e.

(gin(I), x0, . . . , xj−1 : xj)m′ = (gin(I), x0, . . . , xj−1)m′ j = 1, . . . , d m′ ≥ m

⇐⇒ (g ◦ I, x0, . . . , xj−1 : xj)m′ = (g ◦ I, x0, . . . , xj−1)m′ j = 1, . . . , d m′ ≥ m

for a general linear change of coordinates g ∈ GL(n + 1). Finally, using the Borel-
fixed property of gin(I), one can show that its generators must have degree ≤ m,
deriving that this degree is precisely reg(I). More knowledge on the structure of
generic initial ideals can be derived by using similar properties; see [BG06; Has12].

5. Multigraded Castelnuovo-Mumford regularity

The goal of the developments of Chapter 5 is to relate the generators of the multi-
graded generic initial idealswith themultigraded version of the Castelnuovo-Mum-
ford regularity. As a last part of this preliminary section, we review the main as-
pects of the study of the multigraded Castelnuovo-Mumford regularity, the sup-
ports of local cohomology and the multigraded Betti numbers that we will use in
Chapter 5. For the sake of simplicity, our results will be proved in the (standard)
bigraded case, even though they also hold in the (standard) multigraded setting.

Notation 2.5. Let k be a field of characteristic 0. Let S = k[x0, . . . , xn, y0, . . . , ym]
be a ring with a (standard) Z2-grading, such that deg(xi) = (1, 0) and deg(yj) =

(0, 1). We will write the monomials in S as xαyβ = xα0
0 · · ·xαn

n yβ0
0 · · · y

βm
m for a vector

(α, β) ∈ Zn+m+2. A monomial xαyβ has degree (a, b) if
∑n

i=0 αi = a and
∑m

j=0 βj = b.
Let mx (resp. my) be the ideal generated by the x (resp. y) variables. The ambient
biprojective space is Pn × Pm and the irrelevant ideal is b = mxmy.
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In Chapter 4, where themain tool to compute the supports of local cohomology
modules are the theorems of Demazure (Theorem 2.9), Batyrev-Borisov (Theorem
2.10) and Serre duality (Theorem 2.25). In the case of Chapter 5, the main idea is
to reduce the computations of local cohomology with respect to b to the local coho-
mology modules over mx and my. To state these results, we need first to introduce
the following notation.

Definition 2.38. Let E ⊂ Z2 be a subset. The subset E⋆ is defined as:

E⋆ = {(a, b) ∈ Z2 ∃(a′, b′) ≥ (a, b) (a′, b′) ∈ E}

where (a′, b′) ≥ (a, b) denotes (component-wise) a′ ≥ a and b′ ≥ b.

In particular, we are interested in the case where E are the supports of the
local cohomology modules with respect to a homogeneous ideal J (for instance,
with respect to b,mx or my).

Definition 2.39. Let J ⊂ R be a homogeneous ideal. The supports of the local
cohomology modules with respect to J are the bi-degrees (a, b) ∈ Z2 such that there
is i ≥ 1 with H i

J(I)(a,b) 6= 0, i.e.

SuppZ2(H•
J(I)) = {(a, b) ∈ Z2 ∃i ≥ 1 H i

J(I)(a,b) 6= 0}. (2.41)

The following theorem relates the supports of the local cohomology modules
with respect to b with the supports of the local cohomology modules with respect
to mx and my.

Theorem 2.14. [CH22, Theorem 3.11] Let I ⊂ R be a bihomogeneous ideal, then:

SuppZ2(H•
b (I))

⋆ = SuppZ2(H•
mx

(I))⋆ ∪ SuppZ2(H•
my

(I))⋆.

Remark 2.8. If I = R, then it is easier to obtain the supports of the local cohomology
with respect to mx, that is:

SuppZ2(H•
mx

(R)) = (−n− 1, 0) + (−N× N) (2.42)

and, similarly, for the supports of local cohomology with respect to my; see [CH22,
Example 2.3].

Another aspect which was analyzed by Chardin and Holanda is the relation of
local cohomology with truncated ideals.

Definition 2.40. For any bihomogeneous ideal I ⊂ R and (a, b) ∈ Z2, consider the
truncated ideal I≥(a,b) = ⊕(a′,b′)≥(a,b)I(a′,b′).

The next lemma relates the local cohomology with respect to mx of the trun-
cated modules I≥(a,b) with the local cohomology of I .
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Lemma2.3. [CH22, Proposition 4.4] Let I ⊂ R be a bihomogeneous ideal and (a, b) ∈
Z2, then:

i) For all i ≥ 0, if (a′, b′) ≥ (a, b), then:

H i
mx

(I≥(a,b))(a′,b′) = H i
mx

(I)(a′,b′).

ii) For all i ≥ 2, then:
H i

mx
(I≥(a,b)) = H i

mx
(I).

Once these tools are established, we can give the following definition of the
multigraded Castelnuovo-Mumford regularity, which was established byMaclagan
and Smith; [MS04, Definition 1.1].

Definition 2.41. Consider a bihomogeneous ideal I ⊂ S. The bigradedCastelnuovo-
Mumford regularity reg(I) is the subset of Z2 containing bi-degrees (a, b) such that,
for all i ≥ 1 and for all (a′, b′) ≥ (a− λx, b− λy), it holds

H i
b(I)(a′,b′) = 0,

where λx + λy = i− 1, with λx, λy ∈ Z≥0.

This definition of regularity preserves some of the classical properties of te
Castel-nuovo-Mumford regularity: it bounds the degrees of the equations that cut
out the variety defined by I . Moreover, Bruce, Cranton-Heller and Sayrafi proved
that (a, b) ∈ reg(I), if and only if, the truncated ideal I≥(a,b) has a quasi-linear resolu-
tion; [BHS21, Theorem A]. Another important feature of the bigraded Castelnuovo-
Mumford regularity is its relation with the generators of I .

Theorem 2.15 ([MS04, Theorem 1.3]). Let I ⊂ S be a multihomogeneous ideal. If
(a, b) ∈ reg(I) then, for all (a′, b′) ⪈ (a, b) there are no minimal generators of I of
degree (a′, b′).

Remark 2.9. Note that Theorem 2.15 implies that reg(bigin(I)) provides an upper
bound for the bidegrees generators of bigin(I). Moreover, along the same lines as
in [MS04, Proposition 3.16], we can prove that the following inclusion holds:

reg(bigin(I)) ⊂ reg(I). (2.43)

However, as we will see in Example 5.4, these two regions will, in general, differ.

Another classical definition of the Castelnuovo-Mumford regularity (in the single-
graded case) comes from the Betti numbers.

Definition 2.42. The minimal free resolution of I is of the form

0→
⊕

(a,b)∈Z2

S(−a,−b)βr,(a,b)(I) → · · ·
⊕

(a,b)∈Z2

S(−a,−b)β0,(a,b)(I) → I → 0.

Here, S(−a,−b) denotes a shift in the grading, namely S(−(a, b))(a′,b′) = S(a′−a,b′−b)

for (a′, b′), (a, b) ∈ Z2. We also denote βi(I) = {(a, b) ∈ Z2 βi,(a,b) 6= 0}.
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There have been several attempts to describe the bi-degrees appearing in Def-
inition 2.41 in terms of the Betti numbers, with some relevant relations between
the two descriptions; see [BC17; BHS21; CH22]. In the later discussions, we will use
the following relation, established by Chardin and Holanda.

Theorem 2.16. [CH22, Theorem 1.2] Let I be a bihomogeneous ideal, then,

∪iβi(I)⋆ ⊂ (n+ 1,m+ 1) +
(
SuppZ2(H•

mx
(I))⋆ ∩ SuppZ2(H•

mx
(I))⋆

)
.
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Chapter 3

The Canny-Emiris formula

In this chapter, we describe the Canny-Emiris formula [CE93], as one of the main
sources for formulas for the sparse resultant. The formula is based in the use of
mixed subdivisions of the Minkowski sum of the Newton polytopes. A proof of this
formula was provided by D’Andrea, Jerónimo and Sombra in [DJS22] under some
conditions in the mixed subdivision, which we will also explain. Therefore, our
main goal with this work was to provide mixed subdivisions that i) satisfy these
conditions and ii) the size of these matrices can be reduced using the greedy algo-
rithm of Canny and Pedersen [CP93] for the case of n-zonotopes and multihomoge-
neous systems. We end the chapter with a conjecture on the existence of resultant
formulas of Canny-Emiris type.

1. Mixed subdivisions and the Canny-Emiris formula

Definition 3.1. Let ∆ ⊂ Rn be a lattice polytope. A mixed subdivision of ∆ is a
decomposition of into a union of polyhedral cells ∆ = ∪D such that:

i) the intersection of two cells is either a cell or empty,

ii) every face of a cell is also a cell of the subdivision and,

iii) every cell D has a component structure D = D0 + · · · + Dn where Di is a cell
of the subdivision in ∆i.

The usual way to construct mixed subdivisions is by considering piecewise
affine convex lifting functions ρi : ∆i −→ R as explained in [GKZ94]. A global lifting
function ρ : ∆ −→ R is obtained after taking the inf-convolution of the previous func-
tions, as explained in [DJS22, Section 2]. The graph of this function can be projected
to Rn, providing a mixed subdivision, which we denote as S(ρ); see Figure 3.1.
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Definition 3.2. A mixed subdivision of ∆ is tight if, for every n-cell D, its compo-
nents satisfy:

n∑
i=0

dimDi = n.

Figure 3.1: The usual way
to construct mixed subdivi-
sions is considering piecewise
affine convex lifting functions
ρi : ∆i −→ R. Then, take
the Minkowski sum of their
graphs of these functions as
polytopes in Rn+1. The image
source is the book [DE05].

In the case of n + 1 polynomials and n variables,
this property guarantees that every n-cell has a compo-
nent that is 0-dimensional. The cells that have a single
0-dimensional component are calledmixed (i-mixed if it
is the i-th component). The rest of the cells are called
non-mixed.

Let δ be a generic vector such that the lattice points
in the interior of ∆+ δ lie in n-cells. Then, consider:

B = (∆+ δ) ∩ Zn.

Each element b ∈ B lies in one of these translated cells
D + δ and let Di be the components of this cell. As
the subdivision is tight, there is at least one i such that
dimDi = 0.

Following the language of [MC00], we call tb =
(tb,0, . . . , tb,n) the type vector associated with b, defined as
tb,i = dimDi for b ∈ D + δ.

Definition 3.3. The row content is a function

rc : B −→ ∪ni=0{i} × Ai

where, for b ∈ B lying in an n-cell D, rc(b) is a pair
(i(b), a(b)) with

i(b) = max{i ∈ {0, . . . , n} | tb,i = 0} a(b) = Di(b).

This provides a partition of B into subsets:

Bi = {b ∈ B | i(b) = i}.

Finally, we construct the Canny-Emiris matricesHA,ρ whose rows correspond to the
coefficients of the polynomials χb−a(b)Fi(b) for each of the b ∈ B. In particular, the
entry corresponding to a pair b, b′ ∈ B is:

HA,ρ[b, b
′] =

{
ui(b),b′−b+a(b) b′ − b+ a(b) ∈ Ai

0 otherwise
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Remark 3.1. Each entry contains, at most, a single coefficient ui,a. In particular, the
row content allows us to choose a maximal submatrix of HA,ρ from the matrix of
the map sending a tuple of polynomials (G0, . . . , Gn) to G0F0+ · · ·+GnFn as in (1.5).
This class of matrices are called Sylvester-typematrices.

Let C ⊂ B be a subset of the supports in translated cells. The matrix HA,ρ,C
is defined by considering the submatrix of the corresponding rows and columns
associated with elements in C. In particular, we look at the set of lattice points lying
in translated non-mixed cells and consider:

B◦ = {b ∈ B | b lies in a translated non-mixed cell}.

With this, we form the principal submatrix:

EA,ρ = HA,ρ,B◦ .

The Canny-Emiris formula computes the sparse resultant is the quotient of the de-
terminants of these two matrices:

ResA =
det(HA,ρ)

det(EA,ρ)
.

This result was conjectured by Canny and Emiris [CE95] and proved by D’Andrea,
Jerónimo and Sombra [DJS22] under the restriction that themixed subdivision S(ρ)
given by the lifting ρ satisfies a certain condition, given on a chain of mixed subdi-
visions.

Definition 3.4. Let S(ϕ), S(ψ) be two mixed subdivisions of ∆ =
∑n

n=0∆i. We say
that S(ψ) refines S(ϕ) and write S(ϕ) � S(ψ) if for every cell C ∈ S(ψ) there is a
cell D ∈ S(ϕ) such that C ⊂ D. An incremental chain of mixed subdivisions S(θ0) �
· · · � S(θn) is a chain of mixed subdivisions of ∆ refining each other.

Remark 3.2. In [DJS22, Definition 2.4], a common lifting function ω ∈
∏n

i=0RAi is
considered and the S(θi) are given by the lifting functions ω<i = (ω0, . . . , ωi−1, 0) as
long as S(θi) � S(θi+1). The last zero represents the lifting on (∆i, . . . ,∆n). The re-
sultingmixed subdivision is the same as if we considered the zero lifting in

∑n
j=i∆j .

Given a tight mixed subdivision S(ρ), we can compute the mixed volume of
∆0, . . . ,∆i−1,∆i+1, . . . ,∆n by considering the volume of the i-mixed cells.

Proposition 3.1. [ER94, Theorem 3.4] Let S(ρ) be a tight mixed subdivision of ∆ =
(∆0, . . . ,∆n). For i = 0, . . . , n, themixed volume of all the polytopes except∆i equals
the volume of the i-mixed cells.

MV(∆0, . . . ,∆i−1,∆i+1, . . . ,∆n) =
∑

D i-mixed
VolnD

In particular, MV(∆0, . . . ,∆i−1,∆i+1, . . . ,∆n) equals the degree of the sparse re-
sultant in the coefficients of Fi; see [CLO98, Chapter 7, Theorem 6.3]. Each of the
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rows of HA,ρ will correspond to a lattice point b and each entry on that row will
have degree 1 with respect to the coefficients of Fi(b) (more concretely, it will be
one of its coefficients) and zero with respect to the coefficients of the rest of poly-
nomials. Therefore, if we add the lattice points in i-mixed cells, the degree of HA,ρ

with respect to the coefficients of Fi will be at least the degree of the resultant with
respect to the same coefficients.

Remark 3.3. Using Proposition 3.1, we can see that if the fundamental subfam-
ily is empty, then the resultant is equal to 1 while if the fundamental subfam-
ily is {i} then Ai is given by a single point {a} and the resultant is umi

i,a for mi =
MV(∆0, . . . ,∆i−1,∆i+1, . . . ,∆n). The Canny-Emiris formula holds [DJS22, Proposi-
tion 4.26] in both cases.

Definition 3.5. An incremental chain S(θ0) � · · · � S(θn) is admissible if for each
i = 0, . . . , n, each n-cell D of the subdivision S(θi) satisfies either of the following
two conditions

i) the fundamental subfamily of AD contains at most one support or

ii) BD,i is contained in the union of the translated i-mixed cells of S(ρD). Here,
BD,i is formed by the lattice points in D with row content i.

Amixed subdivision S(ρ) is called admissible if it admits an admissible incremental
chain S(θ0) � · · · � S(θn) � S(ρ) refining it.

With all these properties, together with the use of the product formulas, one
can reproduce the proof of the Canny-Emiris formula given in [DJS22, Theorem
4.27] under the conditions of admissibility in S(ρ); see also [DS15; Stu94].

2. The greedy algorithm

If the set B only contains the lattice points that lie in mixed cells, then one can
recover an exact determinantal formula for ResA. However, as we explained in the
introduction, this is not usually the case. On the other hand, different algorithms
for the construction of the Canny-Emiris matricesHA,ρ can be employed, providing
more compact representations.

The first of these algorithms, usually called incremental algorithm, was pro-
posed by Canny and Emiris in [CE95]. In this case, they tried to add the lattice points
that appeared in one direction, until the degree of the resultantwas achieved. Their
algorithmwas able to recover some of the existing determinantal formulas formul-
tihomogeneous supports. However, their algorithm did not take into account the
mixed subdivision in the cosntruction, so it is difficult to make sure that the con-
ditions on the proof of the Canny-Emiris formula were satisfied. Similarly, Canny
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and Pedersen [CP93] proposed a greedy algorithm for the construction of the ma-
trix, which we can describe as follows. Let b ∈ B be a lattice point in a translated
cell. The first step of the algorithm is to add the row of the matrix corresponding to
b, and then continue by considering the lattice points corresponding to the columns
that have a nonzero entry in this row. These lattice points are:

b− a(b) +Ai(b).

All these lattice points will have to be added as rows of the matrix. If we add the
lattice point b′ at some point of the algorithm after having added another lattice
point b, we say that we reach b′ from b. The algorithm terminates when there are
no more lattice points to add and it might give a square matrix HG which has less
rows and columns thanHA,ρ, whichwas constructed using all the lattice points inB.
The rows and columns associated to lattice points in non-mixed cells also provide
a minor EG of HG .

It was not proved by Canny and Pedersenwhether this approachwould always
include all the lattice points in mixed cells as rows of the matrix, independently
of the starting point. As these points are necessary to achieve the degree of the
resultant, we consider them to be the starting lattice points of the algorithm.

Remark 3.4. We know that the entry corresponding to the diagonal of the matrix
HA,ρ,C will be

∏
b∈C ui(b),a(b) for any subset C ⊂ B. This term can be used in order

to deduce that these matrices have non-zero determinant; see [DJS22, Proposition
4.13].

Theorem 3.1. If the Canny-Emiris formula holds for a mixed subdivision S(ρ) and
the greedy algorithm provides matrices HG and EG by starting at the lattice points
in mixed cells, then:

ResA =
det(HG)

det(EG)
.

Proof. In general, there is a subset G ⊂ B corresponding to the rows and columns
of HG . We are assuming that G contains all the lattice points in translated mixed
cells. Let HA,ρ be the matrix containing all lattice points in translated cells of S(ρ).
Without loss of generality, we can assume that the matrix takes the following form:

HA,ρ =

(
HG 0
• HB−G

)
whereHG is theminor corresponding to the lattice points inG andHB−G is theminor
corresponding to the lattice points not in G. The zeros appear due to the fact that
there is no pair b /∈ G, b′ ∈ G such that b ∈ b′−a(b′)+Ai(b). The same block-triangular
structure also appears in the principal submatrix EA,ρ and all the lattice points that
are not in G must be non-mixed, implying that EB−G = HB−G .

Finally, using the fact that the determinant of a block-triangular matrix is the
product of the determinants of the diagonal blocks, we can prove the resultant for-
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mula:
ResA =

det(HA,ρ)

det(EA,ρ)
=

det(HG)· det(HB−G)

det(EG)· det(HB−G)
=

det(HG)

det(EG)
.

Example 3.1. Let f0, f1, f2 be three bilinear equations corresponding to the sup-
ports A0 = A1 = A2 = {(0, 0), (1, 0), (0, 1), (1, 1)}. A possible mixed subdivision S(ρ)
is the following:

where the dots indicate the lattice points in translated mixed cells. The number of
lattice points in translated cells is 9. However, if we construct the matrix greedily
starting from the lattice points in translated mixed cells, we have an 8× 8matrix.

Example 3.2. Let f0, f1, f2 be three bihomogeneous equations with supports

A0 = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1)},

A1 = {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)}, A2 = {(0, 0), (1, 0), (0, 1), (0, 1)}.

The expectednumber of supports lying in translated cells is 16. Let ρ0 = (0, 3, 6, 3, 6, 9),
ρ1 = (0, 2, 2, 4, 4, 6) and ρ2 = (0, 1, 1, 2) be the lifting functions and δ = (−1

2 ,
1
2) give

the following mixed subdivision:

.

However, if we use the greedy approach, we have an 15 × 15 matrix, corre-
sponding to the lattice points marked in red.

Example 3.3. Let f0, f1, f2, f3 be four polynomials with

A0 = A1 = A2 = A3 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)}

and ρ0 = (0, 3, 6, 3, 6, 9), ρ1 = (0, 2, 4, 2, 4, 6), ρ2 = (0, 1, 2, 1, 2, 3) and ρ3 = (0, 0, 0, 0, 0, 0)
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gives the mixed subdivision:

If we take the translation δ = (−2/3,−2/3,−1/2) the number of points in traslated
mixed cells is 24, but the degree of the resultant is 3 + 3 + 3 + 3 = 12. If we start at
the point (0, 0, 0) and use the greedy algorithm, we achieve a matrix of size 20× 20.

3. A family of mixed subdivisions

In this section, we give a family of lifting functions associated to the polytopes
∆0, . . . ,∆n and we prove that the Canny-Emiris formula holds for the correspond-
ing mixed subdivisions.

Definition 3.6. We can define a hyperplane arrangement H ⊂ NR by considering
the span of the (n − 1)-dimensional cones of the normal fan of ∆; see [Zie95] for
more on polytopes and hyperplane arrangements.

Example 3.4. A polytope ∆ (green), together with its normal fan (blue) and the
hyperplane arrangement H∆ (red).

Definition 3.7. Let H be the hyperplane arrangement associated to ∆ and take a
vector v ∈ NR which does not lie in H. We consider lifting functions ωi : Ai −→ R
defined as:

ωi(x) = λi〈v, x〉 i = 0, . . . , n x ∈ ∆i

for λ0, . . . , λn ∈ R satisfying λ0 > · · · > λn ≥ 0 and small enough. Let ρ = (ω0, . . . , ωn)
be a lifting giving a mixed subdivision S(ρ).

Remark 3.5. This choice of the lifting function can also be seen as a case of the ap-
proach of [D’A01], in a first proof of the rational formula for generalized unmixed

60



systems. In particular, it is possible to think of the choice of the row content a(b)
associated to each lattice point as trying to solve the simplex method with the lift-
ing function as objective, which implies that S(ρ) is tight. This family guarantees
that we are always choosing this point in the same direction; see Figure 4.3 for a
description of this process.

Step Lifting Subdivision

S(θ0)
0 0 0a0,0 + a1,0 + a2,0

S(θ1)

0

λ0vj
λ0vj 0

a0,0

a0,0 + a1,0 + a2,0

S(θ2)

0

λ0vj

(λ0 + λ1)vj

(λ0 + λ1)vj 0
a0,0

a0,0 + a1,0
a0,0 + a1,0 + a2,0

S(ρ)

0
λ0vj

(λ0 + λ1)vj

(λ0 + λ1 + λ2)vj

0
a0,0

a0,0 + a1,0
a0,0 + a1,0 + a2,0

Figure 3.2: This table explains how the process of passing from the proposed lifting on ∆0, ∆1,∆2

to the mixed subdivision works in the j-th coordinate for vj < 0 for any of the two components of
Example 3.1. One clearly sees that, for instance, 0a0,0e0 ⊂ D0, if and only if, x0 ≤ a0,0 for x ∈ D. The
product of two subdivisions of this form gives the mixed subdivision in the figure of Example 3.1.

Theorem 3.2. S(ρ) is an admissible mixed subdivision.

Proof. Let S(θi) be the mixed subdivision obtained from θi = (ω0, . . . , ωi−1, 0, . . . , 0).
Using [DJS22, Proposition 2.11], for each i = 0, . . . , n, there is an open neighboor-
hood of 0 ∈ U ⊂ RAi such that for ωi ∈ U we have S(θi) � S(θi+1). For λi > 0 small
enough, ωi lies in U . Therefore, the S(θi) form an incremental chain.

All the lattice points with row content 0 are 0-mixed. Therefore, S(θ0) satisfies
ii) in Definition 3.5. Let D be an n-cell of S(θi). If dimDi = 0, then the fundamental
subfamily ofAD is atmost {i} as shown in Remark 3.3. We show that, for our choice
of the lifting function, the rest of cells D satisfy ii) in Definition 3.5.

LetD ∈ S(θi) such that dimDi > 0. Suppose that this cell contains a lattice point
b ∈ B that has row content i but is not i-mixed. Therefore, this lattice point bwill be
in a cell of S(ρ)with a 0-dimensional j-th component for some j < i. Take C ⊃ D in
S(θj) containing the previous lattice point b. If dimCj > 0, then the lifting function
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ωj = λj〈v, x〉 takes the same value in all the points of Cj . Therefore, the vector v
is normal to a face of Cj and has to be contained in the hyperplane arrangement
associated to ∆. As this is not the case, dimCj = 0 and consequently dimDj = 0,
contradicting the initial hypothesis.

Proving that S(ρ) is an admissible mixed subdivision consists on both proving
that it has an incremental chain satisfying S(θ0) � · · · � S(θn) � S(ρ) and that this
incremental chain satisfies the conditions in Definition 3.5.

In this proof, we considered the easiestway to prove the chain condition, which
is using [DJS22, Proposition 2.11]. In this case, for λi+1 small enough satisfying λi >
λi+1 > 0, ωi lies in U . Therefore, the S(θi) form an incremental chain. However, we
can drop the restriction that λi+1 is small enough by proving a more general result.
In Section 5., we explore this new proof in the more general context of tropical
geometry.

4. n-zonotopes and multihomogeneous systems

In this section, we study the previous family ofmixed subdivisions in the particular
cases of n-zonotopes and multihomogeneous syztems. For simplicity, we suppose
that our lattice is Zn.

Definition 3.8. A zonotope is a polytope given as a sum of line segments. An n-
zonotope is generated by n line segments, which span a lattice of dimension n.

Consider linearly independent v1, . . . , vn ∈ Zn and the line segments

0v1, . . . , 0vn ⊂ Rn

forming an n-zonotope Z = 0v1 + · · · + 0vn ⊂ Rn. If the Newton polytopes are n-
zonotopes whose defining line segments are integer multiples of the 0vj , we can
write the supports of the system as:

A′
i =

{ n∑
j=1

λjvj ∈ Zn | λj ∈ Z, 0 ≤ λj ≤ aij
}

(3.1)

for some ai,j ∈ Z>0. Let V be the nonsingular matrix whose columns are the vj for
j = 1, . . . , n and consider it as a monomorphism of lattices V : Zn −→ Zn of rank n.
Let e1, . . . , en be the canonical basis of Zn.

Corollary 3.1. Let A′
0, . . . ,A′

n be the previous family of supports, then ResA′ =

Res|det(V )|
A , where:

Ai =
{
(bj)j=1,...,n ∈ Zn | 0 ≤ bj ≤ aij

}
i = 0, . . . , n (3.2)
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Proof. Using Lemma 2.1, we can view the map V : Zn −→ Zn as a monomorphism of
lattices sending the canonical basis ei to vi for i = 1, . . . , n. The determinant det(V )
is the index of the image.

Remark 3.6. The results that follow in this section could be proved without using
Corollary 3.1, after changing bj by 〈b, ηj〉 for j = 1, . . . , n, where (ηj)j=1,...,n are the
normal vectors to the zonotope. However, this result extends to the matrices HG
and gives a major simplification when det(V ) > 1.

In order to prove our results, we assume that the aij are ordered, meaning that

0 < a0j ≤ a1j ≤ · · · ≤ an−1,j j = 1, . . . , n (3.3)

where we exclude An from this assumption. Consider a translation δ ∈ Rn such
that it is negative in each component. Then, the lattice points in translated cells of
a mixed subdivision of the previous system are:

B =
{
(bj)j=1,...,n ∈ Zn | 0 ≤ bj <

n∑
i=0

aij
}
.

Let v /∈ ∪ni=0{xj = 0} define the mixed subdivision S(ρ) as in the previous sec-
tion. We assume vj < 0 and get the following result.

Proposition 3.2. Let b ∈ B and i ∈ {0, . . . , n}. Then:

tb,i =
∣∣{j ∈ {1, . . . , n} | i−1∑

k=0

akj ≤ bj <
i∑

k=0

akj
}∣∣

and the row content i(b) is the maximum index in {0, . . . , n} such that:

6 ∃j ∈ {1, . . . , n} :
i(b)−1∑
k=0

akj ≤ bj <
i(b)∑
k=0

akj

with the support a(b) ∈ Ai(b) satisfying:

a(b)j =

{
0 bj <

∑i(b)−1
k=0 ak,j ,

ai(b),j bj ≥
∑i(b)

k=0 ak,j .

Proof. We analyze the structure of the mixed subdivision S(θ1) for vj < 0. The lift-
ing function assign a higher value to the face {xj = 0} ⊂ ∆0 with respect to the
face {xj = a0,j} ⊂ ∆0. When applied to the Minkowski sum ∆, this implies that
the hyperplane {xj = a0,j} will divide the cells D0 ∈ S(θ1) between those such that
0aj,0ej ⊂ D0

(
xj < a0,j

)
and those with 0aj,0ej 6⊂ D0

(
xj > a0,j

)
.

In terms of the lattice points, those b ∈ B lying in a cell D ∈ S(θ1) that contains
the line segment 0aj,0ej ⊂ D0 satisfy that 0 ≤ bj < a0j and the rest satisfy bj ≥ a0j .
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As a consequence, tb,0 will be the number of j ∈ {1, . . . , n} such that 0 ≤ bj < a0j .

We can reproduce this argument for i > 1. As S(θi) refines S(θi−1), the available
interval for Di is [

∑i−1
k=0 ak,j ,

∑n
k=0 ak,j), so the inequality corresponding to 0ai,jej ⊂

Di will be
∑i−1

k=0 ak,j ≤ bj <
∑i

k=0 ak,j . The second claim follows from the definition
of row content with respect to the type vector tb.

Let b ∈ B and let i(b) be its row content. For j = 1, . . . , n, we either have
bj <

∑i(b)−1
k=0 akj or bj ≥

∑i(b)
k=0 akj . In the first case, the vertex associated to the row

content, will be in the face of∆i(b) defined by the equality {xj = 0} and in the second
case, the one defined by the equality {xj = ai(b),j}.

Remark3.7. If vj > 0, wewould change the inequalities by
∑n

k=i akj ≤ bj <
∑i

k=i−1 akj ,
but the results that follow would not change. All the other mixed subdivisions of
the system can also be formed this way.

Definition 3.9. The type function φb : {1, . . . , n} −→ {0, . . . , n} associated to each
lattice point b ∈ B is defined as the vector of indices satisfying:

φb(j)−1∑
k=0

ak,j ≤ bj <
φb(j)∑
k=0

ak,j .

Following Proposition 3.2, it satisfies that tb,i = |φ−1
b (i)|.

From the components of a(b) in Proposition 3.2, we deduce that the range of
values for (b− a(b) +Ai(b))j is:{

[bj , bj + ai(b),j ] bj <
∑i(b)−1

k=0 akj

[bj − ai(b),j , bj ] bj ≥
∑i(b)

k=0 akj

Corollary 3.2. The range of possible type functions for b′ ∈ b− a(b) +Ai(b) are:

φb′(j) ∈

{
{φb(j)− 1, φb(j)} i(b) < φb(j)

{φb(j), . . . , i(b)} i(b) > φb(j)

Proof. Take I to be the index such that
∑I−1

k=0 ak,j ≤ bj <
∑I

k=0 ak,j . Then, we can
derive the inequalities:{

bj − ai(b),j ≥
∑I−1

k=0 ak,j − ai(b),j ≥
∑I−2

k=0 ak,j i(b) < I

bj + ai(b),j <
∑I

k=0 ak,j + ai(b),j ≤
∑i(b)

k=0 ak,j i(b) > I
.

In the first row, we used that ai(b),j ≤ aI−1,j .
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Definition 3.10. We define the greedy subset G ⊂ B to be formed by all the lattice
points b ∈ B such that:

I∑
i=0

tb,i ≤ I + 1 ∀I < n.

Theorem 3.3. Let b ∈ G and b′ /∈ G. Then, b′ /∈ b− a(b) +Ai(b)

Proof. Let I be the greatest index such that
∑I

i=0 tb′,i > I + 1. As it is the greatest,
we must have tb′,I+1 = 0 and

∑n
i=I+2 tb′,i < n− I − 1.

On the other hand,
∑I

i=0 tb,i ≤ I +1. Using Corollary 3.2, the previous sum can-
not grow in b− a(b) +Ai(b) when i(b) > I . If

∑I
i=0 tb,i = I + 1, then

∑n
i=I+1 tb,i < n− I

which implies that there is i > I with tb,i = 0 and i(b) > I .

Suppose
∑I

i=0 tb,i < I + 1 and i(b) < I . Using Corollary 3.2, we have:
n∑

i=I+1

tb,i ≥ n− I and
n∑

i=I+1

tb,i ≥ n− I − 1

for b ∈ b− a(b) +Ai(b). Therefore,
n∑

i=I+2

tb′,i < n− I − 1 ≤
n∑

i=I+2

tb,i

meaning that it is not possible that b′ has a type function on the range of b− a(b) +
Ai(b).

Definition 3.11. Let Ib ∈ {0, . . . , n} be the index satisfying:

Ib =

{
max{i ∈ {0, . . . , n} | tb,i ≥ 2} b lies in a non-mixed cell
0 b lies in a mixed cell

Let gb = |{i < Ib ti,b = 0}| be the number of zeros that tb has before Ib.

Lemma 3.1. Let b ∈ G and suppose that gb = 0. Then, b lies in a mixed cell.

Proof. Suppose that b lies in a non-mixed cell. This would mean that there is no
zero before Ib implying that

∑Ib
i=0 tb,i =

∑Ib−1
i=0 tb,i + tb,Ib ≥ Ib + 2.

Lemma 3.2. If tb,I = 0 and b ∈ G,
∑I

i=0 tb,i < I + 1.

Proof. Otherwise,
∑I−1

i=0 tb,i ≥ I + 1 implying b /∈ G.

Theorem 3.4. Let G be the greedy subset and b ∈ G such that gb = K for K > 0.
Then, there is b′ ∈ G with gb′ = K − 1 such that for some b ∈ b′− a(b′) +Ai(b), φb = φb.
As a consequence, we reach b from b′.
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Proof. Consider tb to be the type vector of b and suppose that tb has two or more
zeros after Ib. Then,

n∑
i=Ib+1

tb,i ≤ n− Ib − 2,

implying that
∑Ib

i=0 tb,i ≥ Ib + 2, and b /∈ G.

If tb has one zero after Ib, it implies that i(b) > Ib. If gb > 0, it needs to have at
least one zero before Ib. Therefore, the type vector contains a sequence of the form

(. . . ,

I′︷︸︸︷
0 , 1, . . . , 1,

I︷︸︸︷
tb,I , . . . )

for some I ′ < I ≤ Ib with tb,I ≥ 2. Consider the type function:

φb′(j) =

{
φb(j)− 1 I ′ < φb(j) ≤ I
φb(j) otherwise

The corresponding type vector tb′ contains a sequence:

(. . . ,

I′︷︸︸︷
1 , 1, . . . , 1,

I︷ ︸︸ ︷
tb,Ib − 1, . . . ).

Using Lemma 3.2,
∑I′

i=0 tb,i < I ′ + 1, therefore we will have:

I′∑
i=0

tb′,i ≤ I ′ + 1.

The same will hold for all the partial sums from I ′ to Ib implying there is b′ ∈ G
with type function φb′ . Using Corollary 3.2, φb is in the range of type functions in
b′ − a(b′) +Ai(b′). As long as i(b′) < n, we can find b′ ∈ G such that:

(b− b′ + a(b′))j ≤ aφb′ (j),j
≤ aj,i(b′),

so b ∈ b′ − a(b′) +Ai(b′).

If i(b) = i(b′) = n, we must have a(b) = a(b′) = 0, so we reach a point b ∈
b′ − a(b′) +Ai(b′) in the same cell as b such that:

(b− b)j < (b− b′)j ∀I ′ < φb(j) ≤ I

As i(b) is always the same, after a finite number of steps, we have b ∈ b−a(b)+Ai(b).

If tb does not have any zero after Ib, then i(b) < Ib. The vector contains a se-
quence that looks like

(. . . ,

i(b)︷︸︸︷
0 , tb,i(b)+1, . . . , tb,Ib , . . . )
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for tb,I ≥ 1 with i(b) < I ≤ Ib. In this case, consider the type function:

φb′(j) =

{
φb(j)− 1 i(b) < φb(j) ≤ I
φb(j) otherwise

,

with type vector (. . . ,
i(b)︷ ︸︸ ︷

tb,i(b)+1, . . . ,

Ib−1︷︸︸︷
tb,Ib ,

Ib︷︸︸︷
0 , . . . ). For these functions, we derive

n∑
i=i(b′)+1

tb′,i ≥ n− i(b) +
∑
tb,i≥2
i>i(b′)

(tb′,i − 1) =⇒

i(b)∑
i=0

tb′,i ≤ i(b)−
∑

tb,i≥2 i>i(b′)

(tb′,i − 1) ≤ i(b) + 1

which implies that

i(b)∑
i=0

tb′,i + tb′,i(b′)+1 ≤ i(b)−
∑
tb,i≥2
i>i(b′)

(tb′,i−1) + tb′,i(b′)+1 ≤ i(b′) + 1

This argument holds for bounding the partial sums for I > i(b) so there is b′ ∈ G
with type function φb′ and φb is in the range of type functions in b′ − a(b′) + Ai(b′).
In this case, it is not possible that i(b′) = n. The same argument as in the previous
case holds in order to say that b ∈ b′ − a(b′) +Ai(b′).

Theorem 3.3 and Theorem 3.4 imply that if we start the greedy algorithm from
the lattice points in mixed cells, we will reach exactly the lattice points in G. This
actually reduces the size of the Canny-Emiris matrices.

Corollary 3.3. The size of the matrix HG :∑
φb:{1,...,n}−→{0,...,n}

n∏
j=1

aφb(j),j

where the sum is over the functions that satisfy φ−1
b ({0, . . . , I}) ≤ I +1 for all I < n.

Proof. Each type function φb corresponds to a cellD ∈ S(ρ). The lattice points b ∈ D
satisfy Definition 3.9. Therefore, for each j, there are aφb(j),j possible values of bj .
The product over all of them gives the desired count.

Example 3.5. Let f0, f1, f2 be three homogeneous polynomials of degrees 2, 2, 1 re-
spectively. We choose v = (−1,−2) and δ = (−3/4,−3/4) and define an admissible
mixed subdivision S(ρ) in the Minkowski sum ∆ of their Newton polytopes ∆i. Let
B be the set of lattice points in∆+δ. Consider a system of polynomials whose New-
ton polytopes are n-zonotopes generated by the vectors w1 = (1, 0) and w2 = (−1, 1)
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and let a0,1 = a0,2 = a1,1 = a1,2 = 2 and a2,1 = a2,2 = 1 be the bounds of the supports
as in Section 4.. Let S(ρ) be the mixed subdivision in the Minkowski sum ∆ of ∆i

of this system given by the same v, δ as the previous, and let B be the set of lattice
points in ∆+ δ.

.

It turns out that themixed subdivision S(ρ) embeds into S(ρ), i.e. all the cells of S(ρ)
are contained in a cell of S(ρ). This implies that B = B∩∆. As the greedy reduction
applies to the second system, it must apply to the first as well. We get a 9× 9matrix
HG for the homogeneous system, excluding the black lattice point in the figure.

Similar to Example 3.5, consider multihomogeneous polynomial systems and
embed them into n-zonotopes. Let n1, . . . , ns ∈ N>0 be natural numbers and let
⊕s

l=1Znl be the lattice. Each multihomogeneous polynomial system can be written
as:

Fi =
∑
a∈Ai

ui,aχ
a, i = 0, . . . , n

where the supports are:

Ai =
{
(bjl)

j=1,...,nl
l=1,...,s ∈ ⊕

s
l=1Znl | bjl ≥ 0,

nl∑
j=0

bjl ≤ di,l
}

where di = (di,1, . . . , di,s) is the multidegree of Fi. Each of these supports can be
embedded into the following sets of supports:

Ai =
{
(bjl) ∈ ⊕s

j=1Znj | 0 ≤
nl∑
J=j

bJl ≤ di,l
}

l = 1, . . . , s j = 1, . . . , nl.

Let∆i,∆i be the Newton polytopes of each of the systems and∆,∆ be their respec-
tive Minkowski sums.

Lemma 3.3. The Newton polytopes ∆i of the system of polynomials with supports
inAi are n-zonotopes whose line segments (wj,l)

j=1,...,nl
l=1,...,s are given by the columns of

the matrix:

W =

W1 . . . 0
... . . .
0 . . . Ws

 , Wl =


1 −1 0 . . . . . .
0 1 −1 0 . . .
...

...
...

...
...

0 . . . 0 1 −1
0 . . . 0 0 1


where the square blocks Wl are of size nl for l = 1, . . . , s. Moreover, H = ∪sl=1 ∪

nl
j=1

{〈x,wj,l〉 = 0} ⊂
∏s

l=1Rnl is the hyperplane arrangement associated to ∆.
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Proof. Let b ∈ ⊕s
j=1Znj be a lattice point. As the columns of W form a basis of the

lattice, we can write b =
∑s

l=1

∑nl
j=1 λj,lwj,l and these coefficients are precisely λj,l =∑nl

J=j bJ,l. Then,

b ∈ Ai ⇐⇒ 0 ≤ λj,l ≤ di,l l = 1, . . . , s j = 1, . . . , nl.

The normal vectors to the faces of ∆ are given by the columns (ηj,l)
j=1,...,nl
l=1,...,s of the

matrix:

H =

H1 . . . 0
... . . .
0 . . . Hs

 , Hl =


1 0 0 . . . . . .
1 1 0 0 . . .
...

...
...

...
...

1 . . . 1 1 0
1 . . . 1 1 1

.

One can check that 〈wj,l, ηj′,l′〉 6= 0, if and only if, l = l′ and j = j′. Therefore, v ∈ H,
if and only if, it belongs to the span of

∑s
l=1 nl − 1 columns of H , and this will only

happen if 〈v, wj,l〉 = 0 for some pair j, l.

Remark 3.8. As a consequence of Lemma 3.3, we can apply the results of Section 4.
to the system with supports Ai. The matrix H gives the normals to our polytopes,
so we can use it in the sense of Remark 3.6.

Let v /∈ H and suppose that we take 〈v, wj,l〉 < 0, for l = 1, . . . , s and j = 1, . . . , nl.
Consider S(ρ) to be the admissiblemixed subdivision of∆ given by v as in Section 3..
Let S(ρ) be the mixed subdivision given by the same vector in∆. Using 〈v, wj,l〉 < 0,
one can check that this mixed subdivision is also admissible as v does not belong to
the hyperplane arrangementH associated to∆. Let B,B be the sets of lattice points
in translated cells of ∆ and ∆, respectively.

We can see the polytopes ∆i as a product of simplices ∆i,1 × · · · × ∆i,s in each
of the factors ofMR =

∏s
l=1Rnl .

Theorem 3.5. The mixed subdivision S(ρ) coincides with S(ρ) ∩∆.

Proof. We check the result for the cells of S(θ1) and the argument can be repeated
for all the mixed subdivisions in the corresponding incremental chain. The vector
v ∈

∏s
l=1Rnl has to satisfy that:

v1,l < 0 vj+1,l − vj,l < 0 j = 1, . . . , nl − 1,

which can also be written as:

vnl,l < vnl−1,l < . . . v1,l < 0.

This means that the mixed subdivision lifts the vertices of ∆0,l in the order

0, d0,lw1,l, . . . , d0,lwnl,l
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from higher to lower. As in Proposition 3.2, this means that the hyperplane

{〈x,wj,l〉 = d0,l} l = 1, . . . , s j = 1, . . . , nl,

divides the cells of S(ρ) between thosewith d0,lwj,l ⊂ D0 and thosewith d0,lwj,l 6⊂ D0,
respectively. This cell structure is the same as the one given in S(ρ). Therefore, S(ρ)
coincides with the intersection of S(ρ) with ∆.

Therefore, if we apply the greedy algorithm to the multihomogeneous system
with supports in the Ai, we will obtain the same greedy subset G ⊂ B, with the
restriction on the type vectors given in Definition 3.10. In particular, the domain of
the type functions will now be a multiset in each group of variables:

φb : {{1, . . . , n1}, . . . , {1, . . . , ns}} −→ {0, . . . , n}.

The following proposition gives conditions to guarantee that the type function φb

corresponds to a lattice point b ∈ B.

Proposition 3.3. A lattice point b ∈ B belongs to B iff its type function satisfies:

φb(j) ≤ φb(j
′), ∀j < j′ j, j′ = 1, . . . , nl, l = 1, . . . , s.

Proof. Suppose that there is φb for b ∈ B such that for some l ∈ {1, . . . , s} and some
pair j < j′ in {1, . . . , nl} the function satisfies φb(j) > φb(j

′). Using the definition of
the type functions and the matrix H , one sees that:

φb(j)−1∑
k=0

dk,l ≤
j∑

j=1

bj,l

φb(j
′)∑

k=0

dk,l >

j′∑
j=1

bj,l =⇒
j′∑
j=j

bj,l < 0.

Therefore, there must be j ∈ {j, . . . , j′} such that bj,l < 0 and b /∈ B. On the other
hand, if we find bj,l < 0, we can use the same argument to say that the type function
φb cannot satisfy the previous restriction.

Corollary 3.4. The size of the matrix HG for multihomogeneous systems is:

∑
φb

s∏
l=1

n∏
k=0

(
dk,l
nk,l,φb

)

where nl,k,φb
= |{j ∈ {1, . . . , nl} φb(j) = k}| and φb satisfies the restrictions of Corol-

lary 3.3 and Proposition 3.3.

Proof. Let D ∈ S(ρ) be the cell associated to a type function φb for b ∈ G. We can
consider that this cell has a decomposition:

D =

n∑
k=0

s∑
l=1

Dk,l
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where Dk,l is a cell of ∆k,l. The number of lattice points in D corresponds to the
product over the number of lattice points in each of the Dk,l. As a face of ∆k,l, Dk,l

is a simplex of degree dk,l and dimension the number of j ∈ {1, . . . , nl} such that
φb(j) = k.

The count follows by noticing that the lattice points in a translated simplex of
degree d and dimension n of size length are contained in a simplex of degree d− n
and same dimension. Therefore, there are

(
d
n

)
of them.

There exist exact determinantal resultant formulas for some multihomoge-
neous cases, obtained by using the Weyman complex and other tecniques [BFT18;
Ben+21; DE03; EM12; SZ94]. Our approach does not improve those cases, but the
use of type functionsmight be easier to generalize to a general case. We can give an
example of the size of thesematriceswith respect to some of the existsing formulas.
Example 3.6. For the polynomial system of Example 3.1, there are exact formulas
of Sylvester type [DE03] which give a matrix of size 6, smaller than that of size 8.

We could also exploit the incremental algorithm for constructing the Canny-
Emiris formula [CE95], butwewould be losing the combinatorial properties. There-
fore, wewould not have a proof of the formula for suchmatrices or wewouldn’t be
able to guarantee that they have a non-zero determinant as in Remark 3.4. More-
over, such implementation requires the precomputation of mixed volumes.

Apart from the treated cases, we could consider other systems for which the
mixed subdivision can be embedded in an n-zonotope and impose restrictions on
the type functions accordingly. We could also try to drop the hypothesis that a0,j ≤
· · · ≤ an−1,j : the examples show that, for that case, the reduction in the cells that
are not in G is lower. We also expect to measure is when the Newton polytopes are
m-zonotopes for m > n. In such cases, the examples show that there will still be
some reduction.
Example 3.7. Here an example for

A0 = A1 = A2 = {(0, 0), (1, 0), (−1, 1), (1, 1), (−1, 2), (0, 2)} ⊂ Z2

and our choice of the mixed subdivision would give:

.

In this case, there is a reduction on the lattice points of the cells not in G (lattice
points in black), but not all the lattice points can be excluded.
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5. Tropical refinement of mixed subdivisions

This section can be read independently with respect to the rest of sections of this
article. We describe, in much broader generality than we need, the refinement
of mixed subdivisions. In particular, we draw the full picture of when a coherent
mixed subdivision refines another one, by only changing the lifting function in∆i.
In terms of the previous notation, wewould like to knowwhetherS(θi) � S(θi+1) for
some i = 0, . . . , n. Instead of studying a given mixed subdivision, we define a dual
of such object by introducing tropical geometry. After proving such result using
tropical geometry, the family of lifting functions given in Section 3. will satisfy the
refinement.

Remark 3.9. As in this paper we are mainly interested in affine lifting functions,
we restrict to such case. However, the following results could be reproduced for
any piecewise affine lifting function.

The general context of tropical geometry consists ofworking over rings of poly-
nomials over R with the tropical operations:

x⊕ y = min(x, y) x⊗ y = x+ y

Definition 3.12. A tropical polynomial is the expression:

trop(f)(x) = ⊕a∈Aωax
⊗a = min

a∈A
(ωa + ax)

for x ∈ Rn where A is the support of f . A tropical hypersurface V (trop(f))) in Rn is
the set of points where the previous minimum is attained, at least, twice.

Remark 3.10. We can consider the coefficients ωa to be the values of a lifting func-
tion. If the lifting is affine, we have ωa = 〈v, a〉 for some vector v ∈ NR. Therefore,
the tropical polynomial with coefficients ωa would be:

min
a∈A

(a(x+ v))

Definition 3.13. A tropical system Tr is formed by r + 1 tropical polynomials with
supports P0, . . . , Pr ⊂M :

trop(fωi
i )(x) =

⊕
ai∈Pi

ωi,a ⊗ x⊗a = min
a∈Pi

(
ωi,a + a · x

)
where the coefficients of the system are given by some lifting function of the Pi. In
some references like [MS15], it is important to specify a valuation in the field but
here we can suppose it to be trivial.

In our context, as in Remark 3.2, we have a family of tropical systems Ti for
i = 0, . . . , n of the supports:

A0, . . . ,Ai−1,

n∑
j=i

Aj ⊂M
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The last tropical polynomial is formed by imposing 0 coefficients, therefore, it is
defined by:

min
a∈

∑n
j=r ∆j

〈a, x〉

which corresponds to the normal fan of
∑n

j=r ∆j . This coincides with the assump-
tions for S(θi) in Remark 3.2.

Proposition 3.4. The expressionmina∈A〈a, x〉 is achieved twice in the (n−1)-dimensional
cones of the normal fan of ∆ = conv(A).

Proof. A j-th dimensional cone NF ⊂ MR is a of the normal fan of ∆ corresponds
to a n− j-dimensional face of ∆. Take v ∈ NF , then mina∈∆〈a, x〉 is the same for all
a ∈ F , which is a face. Therefore, it is achieved, at least twice. On the other hand,
if the minimum is achieved at least twice at v, then consider the convex hull

conv{ai ∈ ∆ min〈ai, v〉 is achieved}

and it is a positive dimensional face F of∆, therefore v is in the a cone of dimension
at most (n− 1) in F .

Proposition 3.5. The expression mina∈A〈a, x + v〉 is achieved twice in the (n − 1)-
skeleton of the normal fan of ∆ translated after v ∈ NR.

Proof. The same proof as the previous works after translating by v.

In this context, we can see the tropical system Ti as the superposition in NR of
the normal fans F0, . . . ,Fn centered at different points vi ∈ NR which correspond
to each of the lifting functions ωi : ∆i −→ R.

Definition 3.14. Apolyhedral complexP is a union of cells (boundedorunbounded)
in NR such that:

- Every face of a cell in P is also in P .

- The (possibly empty) intersection of two cells in P is also in P .

Fans are a good example of polyhedral complexes. Thereofre, a tropical system
defines a polyhedral complex.

Proposition 3.6. Let A0, . . . ,An be a family of supports and ω :
∑n

i=0Ai −→ R be a
lifting function. The polyhedral complex defined by tropical system T taking the
values of ω as coefficients is dual to the mixed subdivision S(ω).

This duality happens in the following sense: the j-dimensional cells of the poly-
hedral complex correspond to the (n − j)-dimensional cells of the mixed subdivi-
sion.
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Proof. Let p be a 0-dimensional cell of the polyhedral complex defined by T . As it is
the intersection of cones of each of the fans Fi, there is a cell of S(ρ) corresponding
to the sum of the faces associated to each of the fans. On the other hand, an n-cell
D on the mixed subdivision corresponds to a point p, which is the intersection of
the normal cones of each of the summands Di. Each of the faces of D corresponds
to a cell of the polyhedral complex in which p is contained.

Denote byHi, the hyperplane arrangement in Rn associated to the tropical sys-
tem Ti. Before stating the main theorem, we will put an example of the refining
construction.

Example 3.8. Let A0 = {(0, 0), (1, 0), (0, 1), (1, 1)}, A1 = A2 = {(0, 0), (1, 0), (0, 1)}with
corresponding convex hulls ∆0,∆1,∆2. Start with the trivial mixed subdivision:

0
0

0 0

0
0

0
0

0

0
0
0
0
0

0
0

0

0

0

0

0

0

0
0

In this case, the corresponding tropical system is given by the inner normal fan to
the Minkowski sum, which corresponds to the superposition of the normal fans of
each summand.

The dashed drawing represents the central hyperplane arrangementwhichwe
will denote as H0. Any lifting of ∆0 will refine the subdivision. However, we can
see that refinement corresponds to moving the point (0, 0) of the blue fan to an
adjacent chamber H0. Take (2, 2) as a normal vector. This means lifting ∆0 after an
affine function of type c− 2x− 2y. We can choose any constant c as it will give the
same lifting. I choose c = 4 in order to get positive values in the lifting. Now, the
subdivision looks like:

4
2

2 0

0
0

0
0

0

0
4
2
2
2

2
0

0

2

0

2

0

0

0
0
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and the corresponding tropical system T1 and the corresponding (not central) hy-
perplane arrangement H1 look like:

Now, we claim that moving the orange fan close enough, we will be refining the
mixed subdivision. In particular, moving the orange fan to each of the adjacent
cells on the hyperplane arrangement corresponds to all the possible ways to refine
the previous mixed subdivision. For instance, if we take the traslation given by the
vector (1,−1), which would be the normal vector to the affine lifting c− x+ y with
c = 1. The mixed subdivision looks like:

4
2

2 0

1 0

2
0

0

0
5
3
3
4

3
1

1

2

0

2

0

2

0
0

and the tropical system after the traslation vector (1,−1), corresponds to:

We now recapitulate the notation used so far. Let ωi : Ai −→ R be the lifting
function. As in Theorem 3.2, S(θi) be the mixed subdivisions of the candidate in-
cremental chain given by the lifting functions (ω0, . . . , ωi−1, 0, . . . , 0). Let Ti be the
tropical systems dual to each of the mixed subdivisions S(θi) for i = 0, . . . , n. Let Hi

be the hyperplane arrangement associated to each of the tropical systems.

We now construct the tools needed for proving the refinement result.

Definition 3.15. We say that a ray r of the normal fan Fi preserves adjacencies if it
is adjacent to the same cells in Ti and Ti−1.
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Lemma3.4. LetS(θi)be amixed subdivision of∆0, . . . ,∆i−1,
∑n

j=i∆j for i = 0, . . . , n.
The lifting of∆i will give S(θi) � S(θi+1), if and only if, each ray of Fi preserves the
adjacencies after the translation.

Proof. Suppose there is a ray r that doesn’t preserve an adjacencies. Then, take the
0-dimensional cell of the corresponding polyhedral complex where this adjacency
fails and it must correspond to an n-cell of S(θi+1) that is not contained in the cell
of S(θi) corresponding to such adjacency.

On the other hand, take a cell C of S(θi+1) that is not contained in any of the
cells of S(θi) and, as we only lifted the polytope ∆i, the corresponding dual cell on
the polyhedral complex has to fail to be adjacent to the same rays.

At this point, we have all the ingredients to state and prove the tropical refine-
ment result.

Theorem 3.6. (Tropical refinement) Let i = 1, . . . , n. The mixed subdivision S(θi)
refines S(θi−1), if and only if, the normal vector to the lifting function ωi−1 : A −→ R
lives in a chamber of Hi adjacent to 0 ∈ Rn.

Proof. Consider p as a point (0-dimensional cell) in the polyhedral complex that is
dual to an n-cell D of S(θi−1). Let v be the normal vector to the lifting function
ωi : Ai −→ R. We have to prove that v lies in an adjacent cell to 0 in Hi, if and only if,
D is contained in a cell D′ of S(θk).

Firstly, suppose there was not such cell D′. This would mean that the adjacen-
cies would not be preserved and we can find a ray r in Fi where this property is
failing. Consider the ray of a fan Fk for k = 0, . . . , i − 1 where this adjacency has
changed and this means that we have crossed a hyperplane containing such ray in
the previous fan.

On the other hand, if there is such cell D′, then the lifting of ∆i preserves ad-
jacencies. However, if we had moved v to a non-adjacent cell to 0, we would have
crossed a hyperplane therefore, we would be able to find rays in such hyperplane
where the adjacencies are not preserved.

This result extends the proposition 2.11 on [DJS22, Proposition 2.11] and gives
a full picture of refinement of mixed subdivisions. Therefore, we naturally un-
derstand all the ways to refine a given mixed subdivision S(θi) with affine lifting
functions on ∆i.

Corollary 3.5. The chambers of the hyperplane arrangement Hi are in one to one
correspondence to all the possible ways to refine S(θi). In particular, if S(θi) is tight,
the chambers of Hi correspond to tight mixed subdivisions.
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In the context of Theorem 3.2, in the direction of v /∈ H∆, the function 〈λiv, x〉
will reach the hyperplane arrangement Hi when λi = λi−1. Therefore, for any 0 <
λi < λi−1, the subdivision S(θi+1) will refine S(θi) for i = 0, . . . , n.

Theorem 3.7. The mixed subdivision S(ρ) in Definition 3.5 is admissible.

Proof. All the lattice points with row content 0 are 0-mixed. Therefore, S(θ0) satis-
fies ii) in Definition 3.5. Let D be an n-cell of S(θi). If dimDi = 0, then the funda-
mental subfamily of AD is at most {i} as shown in Remark 3.3. We show that, for
our choice of the lifting function, the rest of cells D satisfy ii) in Definition 3.5.

Let D ∈ S(θi) such that dimDi > 0. Suppose that this cell contains a lattice
point b ∈ B that has row content i but is not i-mixed. Therefore, this lattice point b
will be in a cell of S(ρ) with a 0-dimensional j-th component for some j < i. Take
C ⊃ D in S(θj) containing the previous lattice point b. If dimCj > 0, then the lifting
function ωj = λj〈v, x〉 takes the same value in all the points of Cj . Therefore, the
vector v is normal to Cj and has to be contained in the hyperplane arrangement
associated to ∆. As this is not the case, dimCj = 0 and consequently dimDj = 0,
contradicting the initial hypothesis.

This proves that the family of lifting functions that we have defined, always
provides an admissible mixed subdivision.
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Chapter 4

Toric Sylvester forms

The constructions in the previous chapter are based on the idea of using Sylvester-
type formulas for computing the resultant. These formulas provide a very natural
multivariate generalization to the classical construction of the resultant of two uni-
variate polynomials, due to Sylvester [Syl18] and are characterized by the fact that
each entry of the matrix corresponds to a single coefficient of the system. How-
ever, there are other formulas for the resultant in which the entries of the matrix
can be other polynomials in the coefficients. Examples of such formulas appear
in the very classical works of Bezout [Bez79] and Dixon [Dix09], Morley and Coble
[MC27] and others.

In [Jou97], Jouanolou compiled these formulas and added some more of his
own. We can extract the following idea from his work: if one wants to find more
compact formulas than those of Sylvester-type, a key ingredient will be to add in-
ertia forms [Hur13] i.e. polynomials in the saturation of the given ideal. The litera-
ture for computing these forms in different degrees includes the works of Hurwitz,
Mertens, Van der Waerden and Zariski [Zar37].

To be more specific, consider the ideal I = (F0, . . . , Fn) where Fi is the generic
homogeneous polynomial of degree di in the gradedpolynomial ringC = A[x0, . . . , xn],
where deg(xi) = 1 for all i = 0, . . . , n and where A stands for the universal ring of
coefficients of the Fi’s. The saturation of the ideal I with respect to the irrelevant
idealm = (x0, . . . , xn), whichwe denote by Isat = I : m∞, is the ideal of inertia forms.

As the elements in I are trivially inertia forms, Isat/I is the natural quotient
to study. It turns out that the Jacobian determinant of the Fi’s is a generator, as an
A-module, of the graded component of Isat/I in degree δ = d0 + · · · + dn − (n + 1)
and their resultant is a generator of Isat/I in degree 0. In order to unravel the
structure of Isat/I in degrees smaller than δ, Jouanolou introduced and studied the
formalism of Sylvester forms [Jou97]. His ideas were based on the fact that for each
µ = (µ0, . . . , µn) ∈ Nn+1 such that |µ| :=

∑
i µi < mini di, each polynomial Fi can be
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decomposed as

Fi =
n∑

j=0

x
µj+1
j Fi,j (4.1)

andone can consider the determinant det(Fi,j)0≤i,j≤n. This latter is called a Sylvester
form of the Fi’s and denoted by Sylvµ. Independently of the choice of decomposi-
tions (4.1), the class of Sylvµ modulo I , which is denoted by sylvµ, gives a nonzero
element in (Isat/I)δ−|µ|. Moreover, (Isat/I)δ−|µ| is a freeA-module which can be gen-
erated by the Sylvester forms of degree δ−|µ|. This result is a consequence of a du-
ality property between Sylvester forms and monomials; namely, for all ν <mini di
we have an isomorphism of A-modules

(Isat/I)δ−ν ' HomA(Cν , A).

More explicitly, this isomorphism corresponds to the equalities

xµ
′ sylvµ =

{
sylv0 if µ = µ′

0 if µ 6= µ′

where sylv0 is a generator of (Isat/I)δ. We note that up to a nonzero multiplica-
tive constant, sylv0 is equal to the class of the Jacobian determinant of the Fi’s; see
[Jou97, §3.10].

The definition and main properties of Sylvester forms have been recently ex-
tended to the case of n+ 1 generic multi-homogeneous polynomials, i.e. of polyno-
mials defining hypersurfaces over a product of projective spaces of total dimen-
sion n; see [BCN22]. In this chapter, we reproduce the results of [BC22], in which
we develop the theory of Sylvester forms in the general setting of homogeneous
polynomials in the coordinate ring of a projective toric variety XΣ. In addition,
to illustrate the importance of these forms in elimination theory, we also provide
applications to the construction of elimination matrices for overdetermined poly-
nomial systems and to the computation of sparse resultants and toric residues.

1. The σ-positive property

As part of the assumptions of our construction, we define a property of toric vari-
eties which we introduced ”ad-hoc” for proving the results in [BC22]. At the end,
we will try to motivate that this property can be interesting in other contexts.

Notation 4.1. In what follows, we use the notation introduced in Assumptions 2.2.
Namely, given lattice polytopes ∆0, . . . ,∆n, we consider the normal fan Σ of the
Minkowski sum ∆ =

∑n
i=0∆i and consider the projective toric variety XΣ, which

(up to resolving singularities) is smooth and the polytopes ∆0, . . . ,∆n correspond
to nef Cartier divisors in XΣ. Let R = k[xρ ρ ∈ Σ(1)] be the Cox ring of XΣ. We
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choose a maximal smooth cone σ ∈ Σ and denote by x1, . . . , xn the variables associ-
ated to the rays ρ ∈ σ(1) and by z1, . . . , zr the remaining variables of R. Denote by
u1, . . . , un, un+1, . . . , un+r the generators of the rays associated to x1, . . . , xn, z1, . . . , zr,
respectively. According to this choice of σ, we write a matrix of the map π in the
form

π =
(
P Idr

)
, (4.2)

where P is a block matrix (Pj,k)1≤j≤r,1≤k≤n whose rows correspond to the relations
between un+j and the basis given by u1, . . . , un for j = 1, . . . , r.

In order to introduce Sylvester forms later on, we need the following property
which is not standard.

Definition 4.1. For σ ∈ Σ(n), the projective toric variety XΣ is called σ-positive if σ
is a maximal smooth cone such that a matrix of the map π defined in (2.9) can be
written as in (4.2) with the additional condition that Pj,k ≥ 0 for j = 1, . . . , r and
k = 1, . . . , n.

The above property amounts to require that the vectors −un+j belong to σ for
all j = 1, . . . , r; see Figure 4.1.

Figure 4.1: An example of the σ-positive property.

A first observation is that not all smooth toric varieties are σ-positive for some
σ ∈ Σ(n), as shown in the following example.

Example 4.1. LetΣ be the complete smooth fan inNR = R2 with the following rays:

ρ1 = (1, 0) ρ2 = (0, 1) ρ3 = (−1, 1) ρ4 = (−1, 0) ρ5 = (−1,−1) ρ6 = (0,−1).

It is straightforward to check that for every σ ∈ Σ(2), there is ρ /∈ σ(1) such that
−uρ /∈ σ.

On the other hand, most of the projective toric varieties that are of interest
in applications are σ-positive for some smooth maximal cone σ. For instance, this
property is preserved under the product of toric varieties. To be more precise, re-
call that the product of two toric varieties is defined by the product fan; see [CLS12,
Theorem 2.4.7]. Any cone of this fan is of the form σ1 × σ2, where its elements
are considered as pairs (u, v) for u ∈ σ1 and v ∈ σ2. Moreover, dimσ1 × σ2 =
dimσ1 + dimσ2.

Lemma 4.1. IfX1 (resp.X2) is a toric variety which is σ1-positive (resp. σ2-positive)
for somemaximal cone σ1 in a fanΣ1, (resp. σ2 in a fanΣ2), then the productX1×X2

is (σ1 × σ2)-positive.
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Proof. Any ray ρ of the product fan is generated by an element of the form (uρ1 , 0)
or (0, uρ2), where ρ1 is a ray of σ1 and ρ2 is a ray of σ2. By assumption, −uρ1 and−uρ2
can be written as a positive combination of elements in either σ1 or σ2; therefore,
they belong to σ1 × σ2.

Example 4.2. The projective space Pn is σ-positive as the map π can be written
as π = (1 · · · 1) for any choice of the maximal cone σ. Therefore, any product of
projective spaces is σ-positive by Lemma 4.1. Another classical family of smooth
toric varieties are Hirzebruch surfaces Hb ⊂ R2: for each r ∈ Z>0, these varieties
correspond to the fans Σb with rays

ρ1 = (1, 0) ρ2 = (0, 1) ρ3 = (−1,−b) ρ4 = (0,−1).

Hirzebruch surfaces are smooth and σ-positivewith respect to the smoothmaximal
cone σ = 〈ρ1, ρ2〉 as π can be written as

π =

(
1 r 1 0
0 1 0 1

)
.

Following Kleinschmidt’s classification of smooth toric varieties of Picard rank
2 [Kle88], we can give a larger family of toric varieties having the σ-positive. He
proved that all these varieties can be constructed as a projectivization of toric vec-
tor bundles over the projective space; see [CLS12, Theorem 7.3.7].

Theorem 4.1. Let XΣ be a smooth projective toric variety such that Pic(XΣ) = Z2.
Then, there are s, r ≥ 1 and 0 ≤ a1 ≤ · · · ≤ ar such that:

XΣ
∼= P(OPs ⊕OPs(a1)⊕ · · · ⊕ OPs(ar))

Using the notation above, the rays u0, u1, . . . , us are the generators of the fan
providing the projective space Ps where u1, . . . , us is a canonical basis of Zs and
u0 = −

∑s
i=1 ui. Similarly, we can define e1, . . . , er as a basis of Rr and e0 = −

∑r
i=1 ei.

Then, the generators of the rays of XΣ are:

v0, . . . , vs, e0, . . . , er

where v0 = u0 + a1e1 + · · ·+ arer and vj = uj for all j = 1, . . . , s; see [CLS12, Example
7.3.5]. The relations between the generators of the rays are:

e0 + · · ·+ er = 0 v0 + · · ·+ vs = a1e1 + · · ·+ arer (4.3)

Corollary 4.1. Let XΣ be a smooth projective toric variety such that Pic(XΣ) = Z2.
Then, XΣ has the σ-positive property with respect to the cone

σ = Cone(v1, . . . , vs, e0, . . . , er−1).

Proof. The rays that are not in σ are generated by er and v0. Using (4.3), we get:

−er =
r−1∑
j=0

ej
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and

−v0 = v1+· · ·+vs−a1e1−· · ·−ar−1er−1+ar

r−1∑
j=0

ej = v1+· · ·+vs+(ar−a1)e1+. . . (ar−ar−1)er−1

deriving the σ-positive property.

More generally, Batyrev classified all smooth projective toric varieties whose
fan splits [Bat91]. Namely, these varieties can be constructed from a series of pro-
jectivizations of vector bundles, similarly as above. This leads us to making the
following conjecture.

Conjecture 4.1. All smooth toric varieties XΣ whose fan splits have the σ-positive
property for some maximal smooth cone σ ∈ Σ(1).

In what follows, we prove the existence of certain decompositions of homoge-
neous polynomials that we will use in Section 3. for defining toric Sylvester forms.
For the sake of clarity, we denote with a lowercase letter f any polynomial in the
Cox ring R of a toric variety XΣ, whose coefficient ring is a field, in contrast with
generic polynomials that we denoted above with a capital letter (see also Notation
4.3).

Theorem 4.2. Let XΣ be a projective toric variety of dimension n such that XΣ is
σ-positive with respect to a smooth cone σ ∈ Σ(n). Let J be an ideal of the Cox ring
R of XΣ, generated by homogeneous polynomials f0, . . . , fn of degrees α0, . . . , αn,
respectively, whose polytopes ∆0, . . . ,∆n are written as in (2.34) and only depend
on (ai,n+j)j=1,...,r ∈ Zr. Let ν ∈ Cl(XΣ) be a nef Cartier class and let ∆ν be the corre-
sponding polytope, written as in (2.13), for some (νn+j)j=1,...,r ∈ Zr which satisfies

0 ≤ νn+j < min
i=0,...,n

ai,n+j for all j = 1, . . . , r (4.4)

Then, the two following properties hold:

(i) Rν = (R/J)ν .

(ii) For every xµ ∈ Rν and fi ∈ Rαi and i = 0, . . . , n, there exists a decomposition
of the form

fi = z
µn+1+1
1 · · · zµn+r+1

r fµi,0 + xµ1+1
1 fµi,1 + · · ·+ xµn+1

n fµi,n (4.5)

where the fµi,j , i, j = 0, . . . , n, are homogeneous polynomials in R.

Proof. The graded quotient map Rν −→ (R/J)ν is surjective. If there is a nonzero
polynomial of degree ν in J , there must be a monomial xµ ∈ Rν that is divided by
some monomial xµi ∈ Rαi of degree αi for some i ∈ {0, . . . , n}, i.e. the degrees of
the generators of J . If that is the case, then xµ = xµ̃xµi for some monomial xµ̃ of
degree ν − αi ∈ Cl(XΣ). However, using (4.4), we see that νn+j − ai,n+j < 0 and by
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Remark 2.3, there cannot be any monomials of this degree in R. Thus, the kernel
of the previous map is zero, proving (i).

We turn to the proof of (ii). Recall from (2.21) that every monomial of degree
αi (and thus every monomial in fi) can be written as xFm+ai for some lattice point
m ∈ Ai. Thus we fix a monomial xFm0+ai in the support of fi for somem0 ∈ Ai.

Given xµ = xµ1
1 . . . xµn

n z
µn+1

1 . . . z
µn+r
r ∈ Rν , we are going to show that if xFm0+ai ∈

Rαi is not divisible by the monomial zµn+1+1
1 · · · zµn+r+1

r , then it must be divisible by
one of the monomials xµ1+1

1 , . . . , xµn+1
n . Indeed, if this property holds, every mono-

mial in fi for i = 0, . . . , nmust bedividedby either xµ1+1
1 , . . . , xµn+1

n or zµn+1+1
1 · · · zµn+r+1

r

and the decompositions (4.5) follow.

Using that ai,k = 0 for k = 1, . . . , n, the n+ r components of Fm0 + ai are:{
〈uk,m0〉 k ∈ {1, . . . , n}
〈un+j ,m0〉+ ai,n+j j ∈ {1, . . . , r}.

(4.6)

Thus, the fact that xFm0+ai is not divisible by zµn+1+1
1 · · · zµn+r+1

r implies that

〈un+j0 ,m0〉+ ai,n+j0 ≤ µn+j0 for some j0 ∈ {1, . . . , r}.

From here, using (4.4), we get that 〈un+j0 ,m0〉 + νn+j0 < µn+j0 . On the other hand,
the monomial xµ = xµ1

1 . . . xµn
n z

µn+1

1 . . . z
µn+r
r is of degree ν and hence by (2.19), we

have νn+j0 = µn+j0 +
∑n

k=1 Pj0,kµk, which implies that

〈un+j0 ,m0〉+
n∑

k=1

Pj0,kµk < 0.

Finally, we use the relation (2.18) between un+j0 and the generators of σ to derive
the inequality

n∑
k=1

Pj0,k(µk − 〈uk,m0〉) < 0.

As XΣ is σ-positive and all the Pj0,k’s are non-negative integers for all k = 1, . . . , n
(and they are not all equal to 0 as un+j 6= 0), there exists k0 ∈ {1, . . . , n} such that
µk0 −〈uk0 ,m〉 < 0. As the exponent of xk0 in xFm0+ai is precisely 〈uk0 ,m0〉, we deduce
that xµk0

+1

k0
divides xFm0+ai .

Corollary 4.2. Assume that the projective toric variety XΣ is σ-positive for some
σ ∈ Σ(n). If the polytopes ∆i in (2.34) are n-dimensional for all i = 0, . . . , n, then
Theorem 4.2 holds for (νn+j)j=1,...,r = 0 ∈ Zr.

Proof. If there are i0 ∈ {0, . . . , n} and j0 ∈ {1, . . . , r} such that ai0,n+j0 = 0, then for
every m ∈ Ai0 = ∆i0 ∩ Zn, we have the inequality 〈un+j0 ,m〉 ≥ 0. Using the relation
(2.18), we get

n∑
k=1

Pj0,k〈uk,m〉 ≤ 0 ∀m ∈ Ai0 .
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As XΣ is σ-positive and the Pj0,k are non-negative integers for k = 1, . . . , n (not all
equal to zero as un+j0 6= 0), there must be some k0 ∈ {1, . . . , n} such that 〈uk0 ,m〉 ≤ 0
for all m ∈ Ai0 . On the other hand, we also have the inequality 〈uk0 ,m〉 ≥ 0 for all
m ∈ Ai0 due to the presentation in (2.34) and using that ai0,k = 0 for all k = 1, . . . , n.
Thus, the lattice points in ∆i0 must satisfy 〈uk0 ,m〉 = 0 and thus ∆i0 cannot be n-
dimensional.

Therefore, if the ∆i are n-dimensional for all i = 0, . . . , n, we have

0 < min
i=0,...,n

ai,n+j j = 1, . . . , r,

which proves that (νn+j)j=1,...,r = 0 ∈ Zr satisfies the hypotheses of Theorem 4.2.

Finally, we note that that if XΣ is assumed to be σ-positive, then Theorem 4.2
can be easily extended to the setting of generic homogeneous sparse polynomials
in (2.21) and yield a decomposition of the Fi for i = 0, . . . , n, over XΣ ×k Spec(A).

Remark 4.1. If XΣ does not have the σ-positive property, but one can find another
way to decompose the polynomials Fi for i = 0, . . . , n as in (4.5), then the results
presented in the next sections hold similarly. One such example is the construction
of the form ∆σ with a nonzero residue, as detailed in [CCD97, Theorem 0.2], which
relies on the polynomials Fi corresponding to Q-ample divisors.

2. A duality theorem

LetXΣ be a projective toric variety of dimension nwhich admits amaximal smooth
cone σ ∈ Σ(n). In this section, we consider the ideal generated by n + 1 generic
homogeneous sparse polynomials (2.21) and analyze some graded components of
its saturation via a duality property. For that purpose, we take again the notation
of the resultant setting (2.33): F0, . . . , Fn are the generic homogeneous polynomials
of degree α0, . . . , αn, respectively; they are of the form

Fi =
∑

xµ∈Rαi

ci,µx
µ ∈ C = A[x1, . . . , xn, z1, . . . , zr]. (4.7)

As a preliminary result, we first show that F0, . . . , Fn form a regular sequence
outside V (b) ⊂ Spec(C).

Lemma 4.2. For every maximal cone τ ∈ Σ(n) and for every i = 0, . . . , n, there is
a lattice point mi,τ ∈ Ai and L ∈ Z>0 such that xFmi,τ+ai divides (x̃τ )L where x̃τ is
defined in (2.10).

Proof. The exponents of of xFm+ai are:{
〈uk,m〉 k ∈ {1, . . . , n}
〈un+j ,m〉+ ai,n+j j ∈ {1, . . . , r}.

(4.8)
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Thus, using (2.14), we can findmi,τ ∈ Ai such that for ρj ∈ τ(1), we have 〈uj ,mi,τ 〉+
ai,j = 0. Moreover, we can choose L that bounds above 〈uj ,mi,τ 〉+ ai,j for ρj /∈ τ(1).
Therefore, xFmi,τ+ai divides (x̃τ )L.

Lemma 4.3. The homogeneous generic polynomials F0, . . . , Fn define a regular se-
quence in the localization ring Cx̃τ for any τ ∈ Σ(n).

Proof. We claim that F0 is a nonzero divisor in C. This follows from Dedekind-
Mertens Lemma [BJ14, Corollary 2.8], which says that a polynomial F is a nonzero
divisor inA[x1, . . . , xn] if its content ideal is a nonzero divisor inA. The content ideal
is generated by the coefficients c0,µ for xµ ∈ Rα0 and they are all nonzero divisors.
Therefore, F0 is a nonzero divisor also in Cx̃τ for all τ ∈ Σ(n).

By Lemma 4.2, we can always find mi,τ ∈ Ai such that xFmi,τ+ai is invertible in
the localization ring Cx̃τ and let ci,τ be the coefficient in A associated to this mono-
mial. Then, similarly to [BCN22, Lemma 3.2], for any t ∈ {0, . . . , n − 1} there is an
isomorphism of (At

τ [x1, . . . , xn, z1, . . . , zr])-algebras(
A[x1, . . . , xn, z1, . . . , zr]/〈F0, . . . , Ft〉

)
x̃τ

∼−→ (At
τ [x1, . . . , xn, z1, . . . , zr])x̃τ

where At
τ = k[ci,µ ci,µ 6= ci,τ 0 ≤ i ≤ t] i.e., A = At

τ [ci,τ 0 ≤ i ≤ t]. This map
sends ci,τ to −Fi+ci,τx

Fmi,τ+ai

xFmi,τ+ai
for i = 0, . . . , t, and leaves the rest of coefficients and

variables invariant. Applying again the Dedekind-Mertens Lemma as above, we
deduce that the polynomial Ft+1 is a nonzero divisor in (At

τ [x1, . . . , xn, z1, . . . , zr])x̃τ ,
and therefore in the ring

(
A[x1, . . . , xn, z1, . . . , zr]/〈F0, . . . , Ft〉

)
x̃τ .

Next, we consider the two canonical spectral sequences associated with the
Čech-Koszul double complex C•b (K•(F )), where K•(F ) denotes the Koszul complex
of the sequence of homogeneous polynomials F0, . . . , Fn in C. The terms of the
Koszul complex are graded freeC-modules andwe denote their homologymodules
by Hp for simplicity in the notation. If we start taking homologies horizontally, the
second page is:

H0
b (Hn+1) H0

b (Hn) H0
b (Hn−1) · · · H0

b (H0) = Isat/I

0 0 0 · · · H1
b (H0)

...
...

...
...

0 0 0 · · · Hn
b (H0)

0 0 0 · · · Hn+1
b (H0)

.
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The vanishing of the local cohomology modules H i
b(Hj) for i > 0 and j > 0 follows

from Lemma 4.3 which shows that the Fi’s form a regular sequence outside V (b).
In addition, we deduce thatHp are geometrically supported on V (b) for all p > 0 by
a classical property of Koszul complexes, and hence that H0

b (Hp) = Hp for all p > 0.

On the other hand, if we start taking homologies vertically, we obtain the fol-
lowing first page:

0 0 · · · 0

0 0 · · · 0

...
...

...

Hn
b (C(−

∑
j αj)) → Hn

b (⊕k,k′C(−
∑

j ̸=k,k′ αj)) · · · Hn
b (C)

Hn+1
b (C(−

∑
j αj)) → Hn+1

b (⊕k,k′C(−
∑

j ̸=k,k′ αj)) · · · Hn+1
b (C)

using that Kj(F ) =
⊕J⊂{0,...,r}

|J |=j C(−
∑

k∈J αk). We note that the vanishing of the two
first rows follows from (2.24) and the vanishing of Hp

b (C) for all p > n + 1 is a con-
sequence of Grothendieck’s vanishing theorem [Gro57, Theorem 3.6.5].

Notation 4.2. The support SuppS of a graded module S is the subset of ν ∈ Cl(XΣ)
such that Sν 6= 0. We denote by Γ1 the support of themodules on themain diagonal,
except on the last row, and by Γ0 the support of the modules in the diagonal under
Γ1, except on the last row again, i.e.

Γi = Supp(⊕n
p=0H

p
b (Kp+i−1(F ))) i = 0, 1. (4.9)

In addition, we define ΓRes to be the support of all the cohomology modules that
are appearing above the diagonal in the first page of the second spectral sequence,
i.e. ΓRes = Supp(⊕i<jH

i
b(Kj(F )). Moreover, from now on, we denote by δ the divisor

class α0 + · · ·+ αn −KX where KX denotes the anticanonical divisor of XΣ.

Remark 4.2. In the above analysis of the two spectral sequences associated to F ,
we proved that K•(F )α is an acyclic complex of A-modules for all α /∈ ΓRes.

The comparison of the two above spectral sequences leads to the following
duality theorem.

Theorem 4.3. LetXΣ be a projective toric variety which admits a maximal smooth
cone σ ∈ Σ(n) and let ν ∈ Cl(XΣ) be a nef Cartier divisor. If δ − ν /∈ Γ0 ∪ Γ1, then

(Isat/I)δ−ν ' HomA((C/I)ν , A).
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Proof. From the comparison of the two spectral sequences associated to the double
complex C•b (K•(F )), for all ν ∈ Cl(XΣ) such that δ−ν /∈ Γ0∪Γ1, we get an isomorphism

(Isat/I)δ−ν ' Ker

Hn+1
b (C(−

∑
j

αj)) −→ Hn+1
b (⊕kC(−

∑
j ̸=k

αj))


δ−ν

.

Moreover, using toric Serre duality (2.25) and the relation between sheaf and local
cohomology modules (2.23), we obtain

Hn+1
b (C(−

∑
j

αj))δ−ν ' Hn(XΣ,−ν −KX) ' H0(XΣ, ν)
∨ ' HomA(Cν , A).

By the same argument, we also have Hn+1
b (⊕kC(−

∑
j ̸=k αi))δ−ν ' HomA(Iν , A). Us-

ing the first isomorphism, we get the duality property.

Corollary 4.3. LetXΣ be a projective toric variety which admits amaximal smooth
cone σ ∈ Σ(n). Let ∆0, . . . ,∆n be lattice polytopes as in (2.34) corresponding to
the polynomials F0, . . . , Fn. Let ν ∈ Cl(XΣ) be a nef Cartier class and ∆ν be the
corresponding polytope, written as in (2.13), satisfying 0 ≤ νn+j < mini=0,...,n ai,n+j

for j = 1, . . . , r. Assume also that δ − ν /∈ Γ0 ∪ Γ1. Then,

(Isat/I)δ−ν ' HomA(Cν , A).

In particular, (Isat/I)δ−ν is a free A-module whose rank is equal to the rank of Cν ,
equivalently HF(R, ν).

Proof. Using Theorem 4.2 i) (which does not require the σ-positive property), we
can derive that (C/I)ν = Cν .

Remark 4.3. We notice that the case ν = 0, which corresponds to the isomorphism
(Isat/I)δ ' A, appears in [CDS97] in the case the polytopes ∆0, . . . ,∆n are scaled
copies of the same ample polytope.

To close this section, we prove that if we consider a proper subset of the poly-
nomials that generate I , then the corresponding ideal must be saturated at δ. We
will need this property in the next section.

Lemma 4.4. Assume that the polytopes ∆0, . . . ,∆n are n-dimensional. Let T be a
proper subset of {0, . . . , n} and consider the ideal IT = (Fi, i ∈ T ). Then, (IsatT )δ =
(IT )δ.

Proof. Consider the cohomology groupsH i
b(Kj(FT ))whereKj(FT )denotes theKoszul

complex associated to IT . Then, by (2.23),

H i
b(Kj(FT ))δ =

J⊂T⊕
|J |=j

H i
b

(
C(−

∑
k∈J

αk)
)
δ
=

J⊂T⊕
|J |=j

H i−1
(
XΣ,

∑
k/∈J

αk −KX

)
.
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Using Serre duality (2.25), each of the summands is of the form:

H i−1(XΣ,
∑
k/∈J

αk −KX) ' Hn−i+1(XΣ,−
∑
k/∈J

αk).

As J ⊂ T is a proper subset,
∑

k/∈J αk is nef and its associatedpolytope isn-dimensional.
Therefore, we can apply Theorem 2.10, implying that H i

b(Kj(FT ))δ = 0 for all i ≥ 2.
If i = 0, 1, we can use (2.24). Therefore, comparing the two spectral sequences of
the Čech-Koszul double complex, we get

(
IsatT /IT

)
δ
= 0.

3. Toric Sylvester forms

We take again the notation of Section 2.. As a consequence of Corollary 4.3, some
graded components of Isat/I are free A-modules and hence a natural question is to
provide explicit A-bases for them. This is precisely the goal of this section. We first
describe the graded component (Isat/I)δ, which essentially follows from [CCD97].
Then, we introduce Sylvester forms to dealwith the other cases. Inwhat follows, we
assume that the projective toric variety XΣ is σ-positive with respect to a maximal
smooth cone σ ∈ Σ(n).

Along the same lines as [CCD97], a nonzero element in (Isat/I)δ ' A can be con-
structed as follows. Using Corollary 4.2, if the polytopes∆0, . . . ,∆n aren-dimensional,
one can decompose each polynomial as

Fi = z1 · · · zrFi,0 + x1Fi,1 + · · ·+ xnFi,n, (4.10)

and consider the determinant

Sylv0 = det
(
Fi,j

)
0≤i,j≤n

.

This homogeneous polynomial is called the toric jacobian; we will denote its class
modulo I by sylv0. Observe that, by construction, Sylv0 is a linear formwith respect
to the coefficients of each Fi, i = 0, . . . , n.

Lemma 4.5. Assume that ∆0, . . . ,∆n are n-dimensional polytopes. Let P ∈ Isatδ be
any homogeneous polynomial whose class in (Isat/I)δ is nonzero. Then, for all i =
0, . . . , n, P must have degree ≥ 1 with respect to the coefficients of Fi.

Proof. For simplicity, suppose that P does not depend on the coefficients of F0. For
any maximal cone τ ∈ Σ(n), consider the monomial xFm0,τ+a0 for some m0,τ ∈ Ai,
which is invertible in Cx̃τ by Lemma 4.2. Let c0,τ be the coefficient of xFm0,τ+a0 in F0

and consider P as an element of Cx̃τ . As P ∈ Isat, there must be L ∈ Z>0 such that:

(x̃τ )LP = G0F0 + · · ·+GnFn ∈ I.
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However, as P does not involve c0,τ , we can change this coefficient in Cx̃τ by

c0,τx
Fm+a0 − F0

xFm+a0

without changing P . Therefore, (x̃τ )LP belongs to the ideal generated by F1, . . . , Fn

in Cx̃τ . Up to multiplying by some power L′ ≥ L, we must have that (x̃τ )L′
P belongs

to the ideal generated byF1, . . . , Fn inC. As the above conslusion holds for every τ ∈
Σ(n), we deduce that P ∈ (F1, . . . , Fn)

sat
δ . Now, using that the polytopes ∆0, . . . ,∆n

are n-dimensional, Lemma 4.4 implies that P ∈ (F1, . . . , Fn)δ, contradicting that the
class of P modulo I is nonzero.

Proposition 4.1. If the polytopes ∆0, . . . ,∆n are n-dimensional, the element Sylv0
belongs to (Isat)δ. Moreover, sylv0 is independent of the choices of decompositions
(4.10). In addition, if δ /∈ Γ0 ∪Γ1, then sylv0 is a generator of (Isat/I)δ which is a free
A-module of rank 1.

Proof. Note that if τ ∈ Σ(n), then either τ 6= σ, in which case there is k ∈ {1, . . . , n}
such that xk divides x̃τ or τ = σ, in which case x̃τ = z1 · · · zr. Using the invariance of
the determinant under column operations and using the decomposition in (4.10),
we get

xk Sylv0 = det

 · · · xkF0,k · · ·

· · ·
... · · ·

· · · xkFn,k · · ·
= det

 · · · F0 · · ·

· · ·
... · · ·

· · · Fn · · ·
∈ I, k = 1, . . . , n. (4.11)

The same holds for the monomial z1 · · · zr. Therefore, we deduce that Sylv0 ∈ Isat =
(I : b∞). In order to prove that sylv0 has degree δ, we find the degree of each
entry (i, j) of the matrix defined by the Fi,j ’s. In (4.10), we divided the monomials
of degree αi by a monomial of degree{

π(ej) if the monomial is xk for k = 1, . . . , n,

π(
∑r

j=1 en+j) if the monomial is z1 · · · zr,

where {ej}n+r
j=1 is the canonical basis of ZΣ(1). On the other hand, the anticanonical

class KX coincides with the degree of the monomial x1 · · ·xnz1 · · · zr (see [CLS12,
Theorem 8.2.3]), which is equal to π(

∑n+r
j=1 ej). Therefore, the degree of each of the

summands constituting the determinant is equal to:
n∑

i=0

(
αi − π(eτ(i))

)
=

(
n∑

i=0

αi

)
−KX = δ, (4.12)

where e0 =
∑n+r

k=n+1 ek and τ is any permutation of {0, . . . , n}.

The fact that sylv0 is nonzero and the independence from the choice of the
decompositions in (4.10) are consequences of the global transformation law; see
[CCD97, Remark 2.12 iii), iv)].
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If δ /∈ Γ0 ∪ Γ1, (Isat/I)δ is a free A-module of rank one. By Lemma 4.5, any
generator g of (Isat/I)δ must have degree greater or equal than 1 with respect to
the coefficients of Fi for i = 0, . . . , n. On the other hand, the construction of sylv0
indicates that for all i = 0, . . . , n, the degree of sylv0 with respect to the coefficients
of Fi is smaller or equal to 1. Thus, if we write sylv0 = cg for some c ∈ A, the degree
of c with respect to A must be zero, implying that c ∈ k. This implies that sylv0 is
also a generator of (Isat/I)δ as an A-module.

In order to use [CCD97, Remark 4.12 iv)], we need to be able to specialize to
values in the field of complex numbers C. Therefore, from now on, we assume that
the field k is a subfield of the complex numbers. Assuming δ /∈ Γ0 ∪Γ1, Theorem 2.10
implies that the Sylvester form sylv0 corresponds to the unique lattice point in the
interior of the polytope ∆Σ associated to the anticanonical divisor KX , i.e.

(Isat/I)δ ' Hn+1
b (C(−

∑
αi))δ ' Hn(XΣ,−KX) ' ⊕m∈Relint(∆Σ)Aχ

−m.

So far, we proved that the toric Jacobian sylv0 yields anA-basis of (Isat/I)δ ' A.
The next step is to construct an A-basis of (Isat/I)δ−ν when it is a free A-module.

Definition 4.2. Let XΣ be a projective toric variety which is σ-positive for some
σ ∈ Σ(n). Assume that the polytopes ∆0, . . . ,∆n are n-dimensional. Let ν ∈ Cl(XΣ)
be a nef Cartier class and∆ν be the corresponding polytope written as in (2.13) and
satisfying 0 ≤ νn+j <mini=0,...,n ai,n+j for j = 1, . . . , r. According to Theorem 4.2, for
any xµ ∈ Rν and for any i ∈ {0, . . . , n} the polynomial Fi can be decomposed as

Fi = z
µn+1+1
1 · · · zµn+r+1

r Fµ
i,0 + xµ1+1

1 Fµ
i,1 + · · ·+ xµn+1

n Fµ
i,n. (4.13)

We define the toric Sylvester form Sylvµ as the determinant

Sylvµ = det(Fµ
i,j)0≤i,j≤n.

The class of Sylvµ modulo I is denoted by sylvµ. Observe that, as with Sylv0, the
Sylvester forms are linear in the coefficients of Fi for i = 0, . . . , n.

If we are given two different monomials xµ, xµ′ ∈ Cν , there must be some k ∈
{1, . . . , n} such that µk 6= µ′k. Otherwise, using (2.19), we can derive that xµ = xµ

′ .
With this, we can introduce the following lexicographical monomial order.

Definition 4.3. Given two monomials xµ and xµ′ of degree ν, we say µ < µ′ if k0 =
min{k ∈ {1, . . . , n} µk 6= µk} satisfies µk0 < µ′k0 .

Theorem 4.4. Let XΣ be a projective toric variety which is σ-positive for some σ ∈
Σ(n) and that the polytopes ∆0, . . . ,∆n are n-dimensional. Let ν ∈ Cl(XΣ) be a class
satisfying the hypotheses of Theorem 4.2. Then, for every xµ ∈ Rν , Sylvµ belongs
to (Isat)δ−ν and its class sylvµ is a nonzero element in (Isat/I)δ−ν . Moreover, for
xµ, xµ

′ ∈ Rν , we have

xµ
′ sylvµ =

{
sylv0 µ = µ′

0 µ < µ′
(4.14)
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As a consequence, the Sylvester forms {sylvµ}xµ∈Rν are linearly independent in
(Isat/I)δ−ν .

Proof. The fact that Sylvµ is of degree δ− ν follows by analyzing the degree of each
summand in det(Fµ

i,j) as in (4.12). Moreover, we can use the same argument as in
(4.11), to see that xµk+1

k Sylvµ ∈ I for all k = 1, . . . , n and zµn+1+1
1 · · · zµn+r+1

r Sylvµ ∈ I .
This proves that Sylvµ ∈ Isatδ−ν . Consider two distinct monomials xµ, xµ′ ∈ Rν such
that µ < µ′, then there is k0 ∈ {1, . . . , n} such that:

xµ
′ Sylvµ =

xµ
′

x
µk0

+1

k0

x
µk0

+1

k0
Sylvµ ∈ I

and hence xµ′ sylvµ = 0 ∈ (Isat/I)δ−ν . On the other hand, we have:

xµ Sylvµ = xµ1
1 · · ·x

µn
n z

µn+1

1 · · · zµn+r
r det(Fµ

i,j) = det(xµj

j F
µ
i,j)

but at the same time, the decomposition

Fi = z1 · · · zrzµn+1

1 · · · zµn+r
r Fµ

i,0 + x1x
µ1
1 F

µ
i,1 + · · ·+ xnx

µ2
n F

µ
i,n

gives the Sylvester form sylv0, implying that xµ sylvµ = sylv0 and that Sylvµ /∈
I . From these two facts, we can derive that the Sylvester forms are nonzero in
(Isat/I)δ−ν and linearly independent. Namely, ifwehave a relation

∑
xµ∈Rν

λµ sylvµ =
0 for some λµ ∈ A, then multiplying by the monomials xµ ∈ Rν in decreasing order
with respect to <, we derive that λµ = 0 for all xµ ∈ Rν .

We notice that the relation between Sylvester forms and monomials stated in
Theorem 4.4 can also be deduced from the global transformation law in [CCD97].
As the decomposition we provided in Theorem 4.2 differs from the one provided in
[BCN22, Section 4] for the multihomogeneous case, we can see that, in general, the
Sylvester forms and themonomials of degree ν do not form a pairing. In particular,
we can see that there is a matrixD = (Dµ,µ′)xµ,xµ′∈Rν

whose entries are polynomials
in A ordered with respect to < and satisfy that:

xµ
′ sylvµ = Dµ,µ′ sylv0 . (4.15)

Note that Dµ,µ′ can be computed using the global transformation law and noting
that:

Dµ,µ′ = Residue(F0,...,Fn)(x
µ′ sylvµ) = Residue

(x
µ1+1
1 ,...,xµn+1

n ,z
µn+1+1

1 ···zµn+r+1
r )

(xµ
′
)

(4.16)
This last residue is zero, if and only if, xµ′ belongs to the ideal

(xµ1+1
1 , . . . , xµn+1

n , z
µn+1+1
1 · · · zµn+r+1

r ).

Otherwise, as the residue does not depend on A, it must be a nonzero element in k,
which is also independent of the decomposition (4.5) giving rise to sylvµ. Theorem
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4.4 implies that the matrix D is lower triangular with ones in the diagonal. There-
fore, D is invertible and its inverse has entries in k. If XΣ = Pn, the decomposition
in (4.13) coincideswith the one given in [Jou97] andwe can see thatD is the identity
matrix.

In the next theorem, we prove that the Sylvester forms yield an A-basis of
(Isat/I)δ, when it is a free A-module. This result is the key to the applications we
discuss in the following sections.

Theorem 4.5. Under the assumptions of Theorem 4.4 and if δ − ν /∈ Γ0 ∪ Γ1 (see
Notation 4.2), {sylvµ}xµ∈Cν is an A-basis of (Isat/I)δ−ν . Moreover, the classes sylvµ
do not depend on the choice of the decompositions in (4.13).

Proof. In Theorem 4.4, we proved that the set of forms {sylvµ}xµ∈Rν is linearly in-
dependent. Moreover, as in [BCN22, Theorem 4.9], consider the canonical basis of
Hom(Cν , A) which is dual to the monomial basis of Cν . Namely, to each monomial
xµ ∈ Cν , we associate the map:

Xµ : Cν −→ A

which sends xµ to one and every other monomial to 0. Moreover, consider the A-
linear isomorphisms

ϕ : A −→ (Isat/I)δ c −→ c sylv0
and

Dν : Cν −→ Cν xµ −→
∑

xµ′∈Rν

Dµ′,µx
µ′

where ϕ is an isomorphism by Proposition 4.1 and Dν is an isomorphism because
the matrix D is invertible. Therefore, by (4.15), the composition ϕ ◦Xµ ◦ Dν corre-
sponds to multiplying the monomials in Cν by sylvµ and realizes the isomorphism
(Isat/I)δ−ν ' Hom(Cν , A). This proves that the Sylvester forms {sylvµ}xµ∈Rν yield
an A-basis of (Isat/I)δ−ν . Moreover, this also implies that the classes sylvµ are in-
dependent of the decompositions (4.13) since the maps ϕ ◦Xµ ◦ Dν are themselves
independent of these decompositions.

4. Application to toric elimination matrices

An important motivation for studying the structure of the saturation of an ideal
generated by generic sparse polynomials is for applications in elimination theory,
in particular for solving sparse polynomial systems. In this section, we introduce a
family of matrices whose construction involves toric Sylvester forms. It yields new
compact elimination matrices that can be used for solving 0-dimensional sparse
polynomial systems via linear algebra methods. We refer the reader to [EM99;
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BT22; Tel20] for a thorough exposition of such methods that we will not discuss
in this paper.

In what follows, XΣ will denote a projective toric variety which is assumed
to be smooth and σ-positive for some maximal cone σ ∈ Σ(n), and we will con-
sider a generic sparse polynomial system defined by homogeneous polynomials
F0, . . . , Fn as defined in (2.21). We requireXΣ to be smooth because we will use the
Grothendieck-Serre formula (2.27). This setting coversmany cases that are of inter-
est for applications. We notice that the smoothness assumption is not very restric-
tive asXΣ can be replaced by one of its desingularization varieties (see e.g. [CLS12,
Chapters 10, 11]), but the preservation of the σ-positive property under desingular-
ization is not obvious.

Notation 4.3. The eliminationmatriceswewill consider are universal with respect
to the coefficients of the Fi’s, so we introduce the following notation to study rig-
orously their properties under specialization of these coefficients. Recall that I
denotes the ideal in C generated by F0, . . . , Fn.

Any specialization (i.e. ring morphism) θ : A −→ k induces a surjective map
C −→ R where R = k[xρ : ρ ∈ Σ(1)] (this map leaves invariant the variables xρ).
For all i = 0, . . . , n, we define fi = θ(Fi) ∈ R, we denote by I(f) the homogeneous
ideal (f0, . . . , fn) of R and set B(f) = R/I(f). Moreover, we also set Bsat = C/Isat,
B(f)sat = R/I(f)sat and Bsat(f) = C/Isat(f) (observe that I(f)sat and Isat(f) are in
general not the same ideals). Finally, for any matrix M with coefficients in A, we
denote by M(f) its specialization by θ : A −→ k. We will refer as V (I(f)) to the
zero set of the polynomial system defined by I(f) over (XΣ)k where k denotes an
algebraic closure of k. Recall that in Section 3., we assumed that k is a subfield of
C. Thus, we can consider that V (I(f)) are the zeros of I(f) over C.

In what follows, we will consider Pic(XΣ) instead of Cl(XΣ) as all Weil divisors
are Cartier in a smooth variety (see [CLS12, Proposition 4.2.6]).

Hybrid elimination matrices We begin by describing precisely what we mean
by an elimination matrix M associated to the polynomials F0, . . . , Fn. It is a matrix
whose columns are filled with coefficients of some homogeneous forms that are
of the same degree and that all belong to the saturated ideal Isat ⊂ C. Thus, its
entries are polynomials in A. Moreover, it is required that for any specialization
map θ : A −→ k the following two properties hold:

i) The corank of M(f) is equal to zero, if and only if, f0 = · · · = fn = 0 has no
solution in XΣ.

ii) If the number of solutions of f0 = · · · = fn = 0 (over k) is finite in XΣ and
equals κ, then the corank ofM(f) is κ.

Wenote that the first property yields a certificate of existence of a common root
of the fi’s, which is related to sparse resultants, a topic we will address in the next
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section. The second property is mainly required for solving 0-dimensional polyno-
mial systems by means of linear algebra techniques based on eigen-computations.
In this approach, the common roots of the fi’s are extracted from the cokernel of
M(f) (see e.g. [BT21]).

A very classical family of elimination matrices is obtained by filling columns
with all the multiples of the Fi’s of a certain degree. These matrices are usually
calledMacaulay-typematrices and are widely used for solving 0-dimensional poly-
nomial systems (see for instance [BT22]). To be more precise, these matrices, that
we will denote byMα, are presentation matrices of the A-module Bα, i.e. are matri-
ces of the maps (

⊕n
i=0 C(−αi)

)
α
−→ Cα (4.17)

(G0, . . . , Gn) 7→
n∑

i=0

GiFi.

Of course, some conditions on α ∈ Pic(XΣ) are required in order to guarantee that
Mα is an elimination matrix; we refer to [EM99] and to [Tel20, Chapter 5] for more
details. Applying results we proved in the previous sections, we are going to extend
the family of Macaulay-type matrices by using toric Sylvester forms. We recall that
Sylvester forms belong to Isat by Theorem 4.4.

Definition 4.4. Letαbe such that
(
Isat/I

)
α
is a freeA-module generatedby Sylvester

forms, so that
(
Isat/I

)
α
' ⊕xµ∈Cδ−α

A (see Corollary 4.3 and Theorem 4.5), and con-
sider the map

(
⊕n

i=0 C(−αi)
)
α
⊕

 ⊕
xµ∈Cδ−α

A

 → Cα (4.18)

(G0, . . . , Gn)⊕ (. . . , lµ, . . .) 7→
n∑

i=0

GiFi +
∑

xµ∈Cδ−α

lµ Sylvµ .

Its matrix (in canonical bases) is called a hybrid elimination matrix and denoted by
Hα.

The matrices Hα are called hybrid because they are composed of two blocks,
one from the classical Macaulay-type matrices and another one built from toric
Sylvester forms; see Example 4.3. In particular, Mα = Hα if (Isat/I)α = 0, so that
the family of matrices Hα extends the family of Macaulay-type matrices Mα. Thus,
from now on we will use the notation Hα instead of Mα. Our next step is to prove
that these matrices are elimination matrices.

Main properties In this section, we first prove that the matrices Hα introduced
in Definition 4.4 are elimination matrices. Then, we give an illustrative example
and also provide another criterion to construct the matrices Hα without relying on
the computation of the supports Γ0 and Γ1 (see Notation 4.2).
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First, suppose given a specialization map (see Notation 4.3) and a degree α.
From the results of Section 2. and Section 3., and also Definition 4.4, we deduce
that the image of the matrix Hα(f) is Isat(f)α, so that its corank is HF(Bsat(f), α).
Therefore, a natural question is to compare this Hilbert function ofBsat(f)with the
one of B(f)sat in degrees for which hybrid matrices Hα are defined (see Definition
4.4). We recall that we use the notation of Section 2. and we assume that the toric
variety XΣ is smooth and σ-positive for a maximal cone σ ∈ Σ(n).

Lemma 4.6. Let α /∈ Γ0 ∪ Γ1 ⊂ Pic(XΣ) and suppose given specialized polynomials
f0, . . . , fn defining a 0-dimensional subscheme in XΣ, possibly empty, of κ points,
counted with multiplicity. Then,

HF(B(f)sat, α) = HF(Bsat(f), α) = κ.

Proof. This proof goes along the same lines as [BCN22, Lemma 2.7]. First, one ob-
serves that I(f) ⊂ Isat(f) ⊂ I(f)sat so that B(f)sat, Bsat(f) and B(f) have the same
Hilbert polynomial, which is the constant κ by our assumption.

Now, H i
b(B(f)sat) = 0 for i = 0 and for all i > 1 since V (I(f)) is finite. Applying

Grothendieck-Serre formula, it follows that HF(B(f)sat, α) = κ for all α such that
H1

b (B(f)sat)α = 0. Analyzing the two spectral sequences associated to the Čech-
Koszul complex of f0, . . . , fn, we get that the above vanishing holds for allα /∈ Γ0∪Γ1.

Similarly, Grothendieck-Serre formula and the finiteness of V (I(f)) imply that
HF(Bsat(f), α) = κ for all α such that H0

b (B(f)sat)α = H1
b (B(f)sat)α = 0. By [Cha13,

Proposition 6.3], the vanishing of these modules can be derived from the similar
vanishing conditions H0

b (B
sat)α = H1

b (B
sat)α = 0. These latter conditions hold for

all α /∈ Γ0 ∪ Γ1, which concludes the proof.

Remark 4.4. As a consequence of the above lemma, the canonical map from Isatα to
I(f)satα , which is induced by a specialization θ, is surjective, i.e. generators of I(f)satα

can be computed by means of universal formulas.

Theorem 4.6. Assume that the toric varietyXΣ is smooth and σ-positive for a max-
imal cone σ ∈ Σ(n). Then, for any α /∈ Γ0 ∪ Γ1 ⊂ Pic(XΣ) satisfying that

(
Isat/I

)
α
'

⊕xµ∈Cδ−α
A, the matrix Hα is an elimination matrix, i.e. it satisfies:

i) corank(Hα(f)) = 0 if and only if V (I(f)) is empty in XΣ,

ii) If V (I(f)) is a finite subscheme of degree κ in XΣ, then corank(Hα(f)) = κ.

Proof. We first prove i). If V (I(f)) is empty, equivalently B(f)sat = 0 (which fol-
lows by the Grothendieck-Serre formula requiring the smoothness of XΣ), then
HF(Bsat(f), α) = 0 by Lemma 4.6. If V (I(f)) 6= ∅, then the fi’s have a common solu-
tion, say the point p ∈ XΣ (over k) with defining ideal Ip (radical and maximal in
R). Therefore, since Isat(f) ⊂ I(f)sat ⊂ Ip and HF(R/Ip, β) = 1 for all β ∈ Pic(XΣ) by
the maximality of Ip, we deduce that HF(R/Isat(f), α) 6= 0 for any α. The proof of ii)
follows from Lemma 4.6.
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(0,0) (1,0) (2,0)

(0,1) (1,1)

Figure 4.2: The polytopes ∆i corresponding to the generic sparse homogeneous polynomials in Ex-
ample 4.3 with the lattice points marked in red.

Example 4.3. Let Z2 be the lattice and XΣ be the Hirzebruch surface H1 described
in Example 4.2. Consider the following polytope presentations:

∆i = {m ∈ R2 : 〈m, (1, 0)〉 ≥ 0, 〈m, (0, 1)〉 ≥ 0, 〈m, (−1,−1)〉 ≥ −2, 〈m, (0,−1)〉 ≥ −1},

for i = 0, 1, 2. H1 has the σ-positive property for σ = 〈(1, 0), (0, 1)〉. The class in
Pic(H1) = Z2 corresponding to these polytopes is αi = (2, 1), i = 0, 1, 2, and we write
the corresponding generic homogeneous sparse polynomials as:

F0 = a0z
2
1z2 + a1x1z1z2 + a2x

2
1z2 + a3x2z1 + a4x1x2

resp. F1, F2 with coefficients bj , cj , j = 0, . . . , 4. (4.19)

(3,1)

(3,2)
(4,2)

(2,1)

Figure 4.3: This is the picture of the regions Γ0,Γ1,ΓRes,Γ ⊂
Pic(XΣ) = Z2 (the latter being defined in Section 3., (4.32)). The
blue region corresponds to Γ0, the red region corresponds to Γ1,
the green region corresponds to ΓRes and the brown region corre-
sponds to Γ. We marked in orange those α with (Isat/I)α ̸= 0. We
derived the local cohomology ofH1 from [Alt+20]; see also [EMS00;
Bot11].

Figure 4.3 describes the supports Γ0,Γ1,ΓRes. We deduce that elimination matrices
Hα are obtained for α ∈ {(4, 2), (3, 2), (3, 1), (2, 1)}. In the cases α = (4, 2) and α =
(3, 2), we get two Macaulay-type matrices. The two other cases give the following
matrices:

▶ Case α = (3, 1). This matrix corresponds to α = δ and in this case, we are intro-
ducing a Sylvester form. This form is Sylv0 and can be computed, as before,
by a determinant that we write as:

det

( )a1z1z2 + a2x1z2 + a4x2 a3z1 a0z1
b1z1z2 + b2x1z2 + b4x2 b3z1 b0z1
c1z1z2 + c2x1z2 + c4x2 c3z1 c0z1

= [130]z31z2 + [230]x1z
2
1z2 + [430]x2z

2
1 ,

where [ijk] = det

( )ai aj ak
bi bj bk
ci cj ck

. Therefore, the elimination matrix H(3,1) is of the
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form:

H(3,1) =



a0 a1 a2 0 a3 a4 0
0 a0 a1 a2 0 a3 a4
b0 b1 b2 0 b3 b4 0
0 b0 b1 b2 0 b3 b4
c0 c1 c2 0 c3 c4 0
0 c0 c1 c2 0 c3 c4

[130] [230] 0 0 [430] 0 0


.

This type of matrices for α = δ were already known from [CDS97] as the ∆i’s
are all equal and ample in H1.

▶ Case α = (2, 1). We obtain the following matrix H(2,1) which is built from two
different Sylvester forms:

H(2,1) =


a0 a1 a2 a3 a4
b0 b1 b2 b3 b4
c0 c1 c2 c3 c4

[013] [023] + [014] [024] 0 0
[023] [024] + [123] [124] 0 0


that correspond to the monomial basis {z1, x1} of Cν for ν = (1, 0). As far as
we know, these matrices did not appear in the existing literature.

Example 4.4. Consider again Example 4.3 with the same F0, F1 as in (4.19) but sup-
pose now that α2 = (1, 1) and thus the corresponding generic homogeneous sparse
polynomial F2 is:

F2 = c0z1z2 + c1x1z2 + c3x2. (4.20)

In this case, the Newton polytopes ∆i’s are not scaled copies of a fixed ample class
and α2 is not even ample in H1. However, the polytopes ∆i are n-dimensional.
Therefore, Corollary 4.2 and Theorem 4.6 imply that Hδ is an elimination matrix
for δ = (2, 1). The corresponding Sylvester form is

det

( )a1z1z2 + a2x1z2 + a4x2 a3z1 a0z1
b1z1z2 + b2x1z2 + b4x2 b3z1 b0z1

c1z2 c3 c0
= [130]z21z2 + [230]x1z1z2 + [430]x2z1,

where [ijk] := det

( )ai aj ak
bi bj bk
ci cj ck

, with the convention that ci = 0 if this coefficient does

not appear in F2. Then, the corresponding elimination matrix is

H(2,1) =


a0 a1 a2 a3 a4
b0 b1 b2 b3 b4
c0 c1 0 c3 0
0 c0 c1 0 c3

[013] [023] + [014] 0 [024] 0

 .
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This example illustrates that we obtain the same type of matrices as in [CDS97] but
under different assumptions: we are assuming that the polytopes∆0, . . . ,∆n are n-
dimensional and XΣ has the σ-positive property, and in [CDS97] it is assumed that
the αi’s are scaled copies of the same ample class.

(0,0) (1,0)

(0,1)

Figure 4.4: The polytope corresponding to the generic sparse homogeneous polynomialF2 in Example
4.4.

As illustrated in Example 4.3, the construction of elimination matrices Hα re-
quires the computation of the support of the local cohomologymodulesH i

b(R). This
task can be delicate, although several results are known; for instance, see [Alt+20]
for the cases where the fan Σ splits or the rank of Pic(XΣ) is 2 or 3, or see also
[EMS00; Bot11]. In order to avoid such computations, the next result yields some
sufficient conditions to get hybrid elimination matrices.

We recall that we are using the notation in Section 2.. In particular, for i =
0, . . . , n, we write αi ∈ Pic(XΣ) for the classes associated to the homogeneous poly-
nomial system, KX for the anticanonical divisor and we set δ = α0 + · · ·+ αn −KX .

Theorem 4.7. Assume that the toric variety XΣ is smooth and σ-positive for some
maximal cone σ ∈ Σ(n). Moreover, assume that the polytopes ∆0, . . . ,∆n are n-
dimensional. If α ∈ Pic(XΣ) satisfies either of the two following properties:

i) α = δ + ν with ν a nef class or,

ii) α = δ − ν, where ν is a nef class satisfying the hypotheses of Theorem 4.2 and
for all i = 0, . . . , n, αi − ν is a nef class that corresponds to an n-dimensional
polytope,

then Hα is an elimination matrix. In addition, it is purely of Macaulay-type if and
only if α satisfies i) but not ii).

Proof. First, recall that the notation Kj(F ) stands for the terms of the Koszul com-
plex associated to F0, . . . , Fn. We will also denote by J subsets of {0, . . . , n}. For both
cases, our strategy is to show that α /∈ Γ0 ∪ Γ1 and (Isat/I)α = ⊕µA in order to apply
Theorem 4.6.

We begin with the case i) and pick α = δ + ν with ν a nef class. We have

H i
b(Kj(F ))δ+ν ' H i

b(⊕|J |=jC(−
∑
l∈J

αl))δ+ν ' ⊕|J |=jH
i
b(C)δ+ν−

∑
l∈J αl

i ≥ 0, j = 0, . . . , n+1.

98



Recall that the local cohomology functors commute with direct sums. Using (2.23)
and (2.25) for i ≥ 2, we get:

H i
b(C)δ+ν−

∑
l∈J αl

' H i−1(XΣ,
∑
l/∈J

αl −KX + ν) ' Hn−i+1(XΣ,−
∑
l/∈J

αl − ν).

If J 6= {0, . . . , n} then the class of
∑

l/∈J αl + ν is nef and its associated polytope is
n-dimensional. In this case, we can apply Theorem 2.10 to deduce that

Hn−i+1(XΣ,−
∑
l/∈J

αl − ν) = 0 for i ≥ 2.

As H i
b(C) = 0 for i = 0, 1 (see (2.24)), it follows that

H i
b(Kj(F ))δ+ν = 0 for all j 6= n+ 1

andhence, by definition ofΓ0 andΓ1 (see (4.9)), that δ+ν /∈ Γ0∪Γ1. As a consequence,
Theorem 4.3 shows that:

(Isat/I)δ+ν = HomA((C/I)−ν , A).

As ν is nef (and also effective), Remark 2.3 implies that (C/I)−ν = 0 for all ν 6= 0. On
the other hand, Corollary 4.2 implies that and (C/I)0 = A. Therefore, (Isat/I)δ+ν = 0
for all ν, except ν = 0where we have (Isat/I)δ ' A. From here, Theorem 4.6 implies
i).

We proceed similarly to prove ii) and pick α = δ − ν. We have:

H i
b(Kj(F ))δ−ν ' H i

b(⊕|J |=jC(−
∑
l∈J

αl))δ−ν ' ⊕|J |=jH
i
b(C)δ−ν−

∑
l∈J αl

i ≥ 0, j = 0, . . . , n+1

and using (2.23) and (2.25), for all i ≥ 2 we get:

H i
b(C)δ−ν−

∑
l∈J αl

' H i−1(XΣ,
∑
l/∈J

αl −KX − ν) ' Hn−i+1(XΣ, ν −
∑
l/∈J

αl).

Our assumptions imply that the αi − ν are nef and their associated polytopes are
n-dimensional for i = 0, . . . , n. Hence, if J 6= {0, . . . , n}, the classes

∑
l/∈J αl − ν are

also nef and their associated polytopes are n-dimensional. Applying Theorem 2.10,
we deduce that

H i
b(Kj(F ))δ−ν = 0 for all j 6= n+ 1,

hence δ − ν /∈ Γ0 ∪ Γ1. Applying Theorem 4.3, we deduce that

(Isat/I)δ−ν = HomA((C/I)ν , A).

Finally, since ν satisfies the hypotheses of Theorem 4.2, we deduce from this the-
orem that (C/I)ν = Cν and (Isat/I)δ−ν is a free A-module, which concludes the
proof.
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Corollary 4.4. Assume that the toric variety XΣ is smooth and σ-positive for some
maximal cone σ ∈ Σ(n). If the polytopes ∆0, . . . ,∆n are all n-dimensional, then Hδ

is an elimination matrix.

Proof. Apply Theorem 4.7, i) with ν = 0.

Example 4.5. Taking again Example 4.3, we observe that several elimination ma-
trices are obtained from Theorem 4.7. Indeed, the matrix H(4,2) is of Macaulay-
type and corresponds to case i) in this theorem. The matrix H(2,1) corresponds to
case ii) while the matrix H(3,1) corresponds to both cases i) and ii) (ν = 0). How-
ever, the matrix H(3,2) does not belong to either of the two cases. Using the ex-
plicit computation of Γ0 and Γ1 that we showed in Figure 4.3, we can derive that
(Isat/I)(3,2) = Hom((C/I)−(0,1), A) where (C/I)−(0,1) = 0 and thus, H(3,2) is also an
elimination matrix.

Overdetermined sparse polynomial systems In this section we extend the con-
struction of hybrid elimination matrices to the case of homogeneous polynomial
systems that are defined by r + 1 equations with r ≥ n. Such systems often ap-
pear in practical applications and are referred to as overdetermined polynomial
systems.

Notation 4.4. We assume that the projective toric variety XΣ is smooth and σ-
positive for some maximal cone σ. In what follows, F0, . . . , Fr are generic homo-
geneous sparse polynomials corresponding to nef classes α0, . . . , αr, I denotes the
ideal they generate and B = C/I the corresponding quotient ring. For each sub-
set T ⊂ {0, . . . , r} of cardinality n + 1, we set IT = (Fi : i ∈ T ), BT = C/IT
and δT =

∑
i∈T αi − KX . We denote by SylvT,µ the Sylvester forms that can be

formed from {Fi}i∈T ; see Section 3.. We also denote by K•(F ) the Koszul complex
of F0, . . . , Fr and by KT,•(F ) the Koszul complex of {Fi}i∈T .

The following result is a generalization of [BCP23, Chapter 3, Proposition 3.23]
which deals with the particular case XΣ = Pn.

Theorem 4.8. Using the previous notation, suppose that there exists a subset S ⊂
{0, . . . , r} of cardinality n + 1 and a nef class ν ∈ Pic(XΣ) satisfying the hypotheses
of Theorem 4.2 such that

∀i ∈ S j /∈ S αi − αj is nef and
∀i ∈ S αi − ν is nef and corresponds to an n-dimensional polytope. (4.21)

Then, the set of Sylvester forms

{sylvT,µ : T ⊂ {0, . . . , r} such that |T | = n+ 1 and xµ ∈ CδT−δS+ν}

yields a generating set of the A-module (Isat/I)δS−ν .
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Proof. First, we use Serre duality and Theorem 2.10 in order to compute the local
cohomology modules H i

b(Kj(F ))δS−ν , for i = 0, . . . , n + 1 and j = 0, . . . , n, similarly
to what we did in Theorem 4.7. Namely, for i ≥ 2 we get

H i
b(Kj(F ))δS−ν ' ⊕|T |=jH

i
b(C(−

∑
k∈T

αk))δS−ν ' ⊕|T |=jH
n+1−i(XΣ,

∑
k∈T

αk−
∑
k′∈S

αk′ +ν).

Aswe assumed that j < n+1, we can show that the previous cohomologymodule is
of the form Hn+1−i(XΣ,−α) for α a sum of nef divisors whose corresponding poly-
tope is n-dimensional. Namely, the elements in S ∩ T cancel each other, and the
rest of elements k′ ∈ S can be either (i) paired up with αk for k ∈ T satisfying that
αk−αk′ is nef, (ii) paired up with ν satisfying that αk′ − ν is nef and the correspond-
ing polytope is n-dimensional, or (iii) they are nef themselves. Therefore, applying
Theorem 2.10 for i ≥ 2 and Remark 2.24 for i = 0, 1, we deduce:

H i
b(Kj(F ))δS−ν ' 0 i = 0, . . . , n+ 1, j < n+ 1. (4.22)

As a consequence, from the comparison of the two spectral sequences that are con-
sidered in Theorem 4.3, we obtain the following transgression map, which is an
isomorphism of graded modules:

τ : Hn+1(K•(F ),H
n+1
b (C))δS−ν

∼−→ H0
b (B)δS−ν .

For any T ⊂ {0, . . . , r} of cardinalty n+1, let τT be the corresponding transgression
map for KT,•(F ) and BT . For each of these Koszul complexes, we have a canonical
morphism of complexes KT,•(F ) −→ K•(F ) that induces:

L•(F ) =
⊕

|T |=n+1

KT,•(F ) −→ K•(F ).

It follows that there is a commutative diagram:

⊕|T |=n+1Hn+1(KT,•(F ),H
n+1
b (C))δS−ν Hn+1(K•(F ),H

n+1
b (C))δS−ν

⊕|T |=n+1H
0
b (BT )δS−ν H0

b (B)δS−ν

⊕
T τT τ . (4.23)

As the two vertical arrows are isomorphisms, in order to show that the bottom
arrow is surjective, it is enough to show that the top arrow is surjective. For that
purpose, we observe that Ln+1(F ) = Kn+1(F ) by construction and also

⊕|T |=n+1Hn+1(KT,•(F ),H
n+1
b (C))δS−ν = ker(Hn+1

b (Ln+1(F )) −→ Hn+1
b (Ln(F )))δS−ν .

However, by the same argument as in (4.22), Hn+1
b (Ln(F ))δS−ν = 0, so

⊕|T |=n+1Hn+1(KT,•(F ),H
n+1
b (C))δS−ν ' Hn+1

b (Kn+1(F ))δS−ν . (4.24)

On the other hand,

Hn+1(K•(F ),H
n+1
b (C))δS−ν '

ker(Hn+1
b (Kn+1)δS−ν −→ Hn+1

b (Kn)δS−ν)/ im(Hn+1
b (Kn+2)δS−ν −→ Hn+1

b (Kn+1)δS−ν).
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As above, Hn+1
b (Kn)δS−ν = 0 and so

Hn+1(K•(F ),H
n+1
b (C))δS−ν ' Hn+1

b (Kn+1)δS−ν/ im(Hn+1
b (Kn+2)δS−ν −→ Hn+1

b (Kn+1)δS−ν).
(4.25)

By comparing (4.24) and (4.25), we see that the top map in the diagram (4.23) is
surjective, as we wanted to prove. It follows that the basis of Sylvester forms of
⊕|T |=n+1H

0
b (BT )δS−ν is a set of generators of H0

b (B)δS−ν = (Isat/I)δS−ν .

We are now ready to extend the construction of hybrid elimination matrices
to overdetermined homogeneous polynomial systems.

Theorem 4.9. We denote by Hα the matrix of the following map:

(⊕n
i=0C(−αi))α

⊕
T⊂{0,...,r}, |T |=n+1,

xµ∈CδT−α

A → Cα (4.26)

(G0, . . . , Gn)⊕ (. . . , lT,µ, . . .) 7→
n∑

i=0

GiFi +
∑

T⊂{0,...,r}
|T |=n+1

∑
xµ∈CδT−α

lT,µ SylvT,µ

where α = δS − ν and where lµ,T ∈ A for all µ and T . Under the assumptions of
Theorem 4.8, Hα is an elimination matrix, where α = δS − ν.

Proof. The proof goes along the same lines as the proof of Theorem 4.6 for the case
r = n.

Example 4.6. Taking again the notation and the polynomials F0, F1, F2 of Example
4.3, we add another polynomial of degree α3 = (2, 1) in H1 and write it in homoge-
neous coordinates as

F3 = d0z
2
1z2 + d1x1z1z2 + d2x

2
1z2 + d3x2z1 + d4x1x2.

Following Theorem 4.9, the matrix HδS for δS = (3, 1) is

a0 a1 a2 0 a3 a4 0
0 a0 a1 a2 0 a3 a4
b0 b1 b2 0 b3 b4 0
0 b0 b1 b2 0 b3 b4
c0 c1 c2 0 c3 c4 0
0 c0 c1 c2 0 c3 c4
d0 d1 d2 0 d3 d4 0
0 d0 d1 d2 0 d3 d4

[130]abc [230]abc 0 0 [430]abc 0 0
[130]abd [230]abd 0 0 [430]abd 0 0
[130]acd [230]acd 0 0 [430]acd 0 0
[130]bcd [230]bcd 0 0 [430]bcd 0 0


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where [ijk]abc =

( )ai aj ak
bi bj bk
ci cj ck

, and [ijk]abd, [ijk]acd, [ijk]bcd defined accordingly. It is

an elimination matrix for the overdetermined polynomial system defined by the
polynomials F0, F1, F2 and F3.

We conclude this section with a comment on the computational impact of the
hybrid elimination matrices obtained in Theorem 4.9. Indeed, these matrices are
intended for solving overdetermined 0-dimensional polynomial systems via eigen-
value and eigenvector computations, applicable over projective spaces,multi-projective
spaces, or more broadly, smooth projective toric varieties that are σ-positive for a
given maximal cone σ. In comparison with the more classical Macaulay-type ma-
trices, hybrid eliminationmatrices aremore compact. In particular, thesematrices
have a smaller number of rows, which is a key ingredient with respect to compu-
tational complexity.

Indeed, this number of rows is controlled by the vanishing of the local coho-
mology modules at certain degrees, including the control of the saturation index
of the homogeneous ideal I(f) generated by general polynomials f0, . . . , fr of de-
grees α0, . . . , αr. In the case of hybrid elimination matrices, the situation is similar
with the difference that now one considers the homogeneous ideal generated by
f0, . . . , fr and their toric Sylvester forms, whose saturation index is smaller than
the one of I(f).

To bemore concrete, we considered some specific polynomial systems forwhich
we report, in Table 4.1, the number of rows of hybrid elimination matrices (4.18)
and ofMacaulaymatrices (4.17). We considered systems of 4 generic homogeneous
polynomials in four different settings of Newton polytopes and degrees, all corre-
sponding to 3-dimensional varieties. As expected, we observe that hybrid elimina-
tion matrices have a significantly smaller number of rows compared to Macaulay
elimination matrices.

Type of system degree α number of rows
Classical Hybrid Classical Hybrid

Polynomials of deg. 2 in P3 5 3 56 20
Polynomials of deg. 10 in P3 37 27 9880 4060

Polynomials of deg. (2, 1) in P2 × P1 (6,3) (4,2) 112 45
Polynomials of deg. ∆× [0, 1] inH1 × P1 3(∆× [0, 1]) 2(∆× [0, 1]) 88 36

Table 4.1: The first column describes the type of system of 4 homogeneous polynomials which is
considered. The second column provides the degree α for which the classical Macaulay-type matri-
ces and the hybrid elimination matrices are constructed. The third column gives the corresponding
number of rows of these two matrices. The Newton polytope ∆ in the last row corresponds to the
degrees of the polynomials considered in Example 4.3 .

We remark that the number of columns of hybrid elimination matrices may
increase fast when the number of equations is large compared to the dimension of
the ground projective toric variety.
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5. Sylvester forms and sparse resultants

For the results of this section, we assume the setting of the homogeneous resultant
in Section 3. and the fact that, for some α ∈ Pic(XΣ), ResA can be computed as the
determinant det(K•(F )α). In order to incorporate Sylvester forms in this setting
construction we proceed as follows.

As in Definition 4.4, let α be such that
(
Isat/I

)
α
is a free A-module generated

by Sylvester forms, i.e.
(
Isat/I

)
α
' ⊕xµ∈Cδ−α

A. We define the complex Ksat
• (F )α

as the graded strand K•(F )α of the Koszul complex, where the map on the right,
namely (K1)α → Cα (see (2.36)), is replaced by the defining map (4.18) of the hybrid
elimination matrices. More precisely, Ksat

• (F )α the following graded complex of
free A-modules

C(−
∑

αi)α
(∂n+1)α−−−−−→ . . .

(∂3)α−−−→ ⊕k,k′C(−αk − αk′)α

(∂2)α⊕0−−−−−→ ⊕kC(−αk)α ⊕xµ∈Cδ−α
A

(∂1)α⊕τα−−−−−−→ Cα, (4.27)

where themap (∂1)α⊕τα is themap (4.18), τα denoting themap from⊕xµ∈Cδ−α
A toCα

corresponding to the Sylvester forms. By definition, we notice that Hi(K
sat
• (F )α) =

Hi(K•(F )α) for all i ≥ 2. Moreover, we also see that H1(K
sat
• (F )α) ' H1(K•(F )α),

because τα is injective by property of the Sylvester forms, and that H0(K
sat
• (F )α) =

(Bsat)α.

Theorem 4.10. Assume that XΣ is a smooth projective toric variety which is σ-
positive for a maximal cone σ and that the classes α0, . . . , αn are ample. For every
α /∈ ΓRes,Ksat

• (F )α is an acyclic complex of free A-modules. Moreover, if α = δ−ν as
in Theorem4.7 ii), then det(Ksat

• (F )α) is equal to ResA up to a nonzeromultiplicative
scalar in k.

Proof. By construction, the acyclicity of Ksat
• (F )α follows from the acyclicity of the

usual Koszul complex (see above). Moreover, since H0(K
sat
• (F )α) = (Bsat)α, we de-

duce that det(Ksat
• (F )α) and ResA are two polynomials in A that vanish under the

same specializations in k. In order to show that they are the same polynomial, we
will proceed by comparing their degrees with respect to the coefficients of Fi for
i = 0, . . . , n. For the sake of simplicity, we proceed by computing the degree of these
polynomials with respect to the coefficients of F0, and denote this degree as degF0

.
As proved in [GKZ94, Appendix A], the determinant of a complex of vector spaces
V• : Vn+1 −→ . . . −→ V1 −→ V0 is given by the formula

det(V•) =
⊗
i

dim(Vi)∧
V

(−1)i

i . (4.28)

Regarding the degree computation for K•(F ), the terms of the Koszul complex are
k-vector spaces tensored with A, thus we can apply (4.28) to this complex of A-

104



modules. The degree of
∧dim(Kj(F ))Kj(F )α with respect to the coefficients of F0 is:

0∈J∑
J⊂{0,...,n}, |J |=j

HF(R,α−
∑
j∈J

αj). (4.29)

For α� 0, we have (Isat/I)α = 0 and HF(R,α) = HP(R,α). Therefore, the degree of
the determinant of the complexKsat

• (F )α coincides with the degree of the resultant
and we can compute:

degF0
(ResA) = degF0

det(Ksat
• (F )α) =

0∈J∑
J⊂{0,...,n}

(−1)|J |HF(R,α−
∑
j∈J

αj) =
0∈J∑

J⊂{0,...,n}

(−1)|J |HP(R,α−
∑
j∈J

αj). (4.30)

As the degree of the resultant with respect to the coefficients of F0 is constant (and
equal to the mixed volume of the polytopes ∆1, . . . ,∆n), the last term in (4.30) is a
constant polynomial in α, so when we evaluate it at any α, it will always be equal
to degF0

(ResA). Therefore, for α = δ − ν as in the statement, we have (Isat/I)δ−ν =
HomA(Cν , A) 6= 0 and we can check that the difference of degrees between the pre-
vious alternate sum and the degree of the classical Koszul complex is compensated
by adding (Isat/I)δ−ν at the termK1 ofK•(F ) (and thus counted with sign −1 in the
determinant of the complex):

degF0
det(K•(F )δ−ν)− degF0

(ResA) =
0∈J∑

J⊂{0,...,n}

(−1)|J |
(
HF(R, δ − ν −

∑
j∈J

αj)−HP(R, δ − ν −
∑
j∈J

αj)
)
. (4.31)

Using Grothendieck-Serre formula (2.27), we deduce that this coincides with the
quantity

0∈J∑
J⊂{0,...,n}

(−1)|J |
n+1∑
i=0

(−1)i dimkH
i
b(R)δ−ν−

∑
j∈J αj

.

Under the hypotheses of Theorem 4.7 ii), and using Theorem 2.10, we get that all
the summands in the above sum vanish except if i = n + 1 and J = {0, . . . , n}. In
this latter case, we haveHn+1

b (R)−KX−ν , which is counted with the sign (−1)2(n+1) =
1 and has the same dimension as the rank of the free A-module Hn+1

b (C)−KX−ν .
Recalling the duality theorem, which holds under the hypotheses of Theorem 4.7
ii), we have:

Hn+1
b (C)−KX−ν ' (Isat/I)δ−ν ' HomA(Cν , A),

which concludes the proof as the degree of each of the Sylvester forms Sylvµ for
xµ ∈ Rν with respect to the coefficients of F0 is 1.
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From the above result, we can also identify cases where the matrices Hα are
square matrices, and therefore their determinant (in the usual sense of the deter-
minant of a matrix) is equal to the sparse resultant, up to a nonzero multiplicative
constant. For this purpose, we consider

Γ = Supp
(
⊕k,k′ C(−αk − αk′)

)
(4.32)

to be the support of the term K2(F ) in the Koszul complex; see Figure 4.3 for an
example.

Corollary 4.5. Let XΣ be a smooth projective toric variety which is σ-positive for
a maximal cone σ. Assume that∆0, . . . ,∆n correspond to ample divisors. Then, for
any α /∈ Γ ∪ ΓRes ∪ Γ0 ∪ Γ1 we have det(Hα) = ResA, up multiplication by a nonzero
scalar.

Proof. If α /∈ ΓRes ∪ Γ0 ∪ Γ1, then (Isat/I)α is free and ResA = det(Ksat
• (F )α) as in

Theorem2.36. Ifα /∈ Γ, then the complexKsat
• (F )α has only two terms and therefore

det(Ksat
• (F )α) = det(Hα).

Remark 4.5. Computing the determinant of a complex can be done using some
techniques such as Cayley determinants (see [GKZ94, AppendixA]), but it is not very
practical. However, Theorem 4.10 yields new expressions of the sparse resultant as
a ratio of two determinants if α /∈ Supp⊕k,l,mC(−αk−αl−αm); see [CDS97, Corollary
2.4] for a combinatorial characterization of such case.

We close this section with a comment and an example related to the well-
known Canny-Emiris formula. For Macaulay-type matrices of the form Mα, the
Canny-Emiris formula gives a way to choose a nonzero minor of maximal size;
see [CE93] for the formula and [DJS22] for a proof that this minor is nonzero. It
remains an open problem to see whether the conditions in the proof of the Canny-
Emiris formula [DJS22] coincide with the Cayley determinant for such a choice of
a minor. In the case of hybrid elimination matrices Hα, a similar formula has been
explored in [DE01] for n = 2 and α = δ.

Example 4.7. Let’s consider the four matrices provided in Example 4.3, which cor-
respond to the cases α ∈ {(4, 2), (3, 2), (3, 1), (2, 1)}. The last three are square matri-
ces while the first one is not. We have drawn the region Γ in brown in Figure 4.3, in
order to indicate the elements that provide a squarematrix, aswell asΓRes, in green,
for the acyclicity of the complex. For the Macaulay-type matrices, we can combi-
natorially describe a maximal minor ofM(4,2) using the Canny-Emiris formula; see
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[CE93; DJS22]. The matrixM(3,2) is square,

M(3,2) =



a0 a1 a2 0 0 a3 a4 0 0
0 a0 a1 a2 0 0 a3 a4 0
0 0 a0 a1 a2 0 0 a3 a4
b0 b1 b2 0 0 b3 b4 0 0
0 b0 b1 b2 0 0 b3 b4 0
0 0 b0 b1 b2 0 0 b3 b4
c0 c1 c2 0 0 c3 c4 0 0
0 c0 c1 c2 0 0 c3 c4 0
0 0 c0 c1 c2 0 0 c3 c4


,

and it might be obtained using a greedy approach to the same formula (see the re-
sults of Chapter 3 or [CP93]), but as far as we know, there was no known certificate
of its existence as a resultant formula. The hybrid matrices for α = (3, 1), (2, 1) are
square. More generally, for non-square hybrid matrices, a procedure for choosing
a minor is known when n = 2 and α = δ; see [DE01].

6. Toric residue of the product of two forms

Another topic for which Sylvester forms are of interest is the computation of toric
residues. These objects were initially introduced by Cox as a way to relate the
residue of a family of n + 1 forms to the integral of a certain differential form in a
toric varietyXΣ (see [Cox96]). Being given F0, . . . , Fn generic homogeneous polyno-
mials as in (2.21), and denoting by K(A) the quotient field of the universal ring of
coefficients A, Cox proved the existence of a residue map

ResidueF : Bδ −→ K(A)

(recall that I = (F0, . . . , Fn) and B = C/I) which has the following property: for
any specialization θ : A −→ k (see Notation 4.3) such that the specialized system
f0 = · · · = fn = 0 has no solution in XΣ, the residue map Residuef : (R/I(f))δ −→ k
is an isomorphism. Cox defined residue maps through trace maps of Čech coho-
mology, but they can be characterized through the fact that, if there is no solution
in XΣ, ρ(sylv0) is sent to ±1 ∈ K, so we can assume ResidueF (sylv0) = ±1. Many
authors contributed formulas based on eliminationmatrices and resultants to com-
pute residues [KS05; DK05; CCD97; CDS97] and also used them in other applications
such as polynomial interpolation [Sop07] or mirror symmetry [BM02]. In particu-
lar, in [DK05] an explicit formula for computing the toric residue of a formof degree
δ as a quotient of two determinants “à la Macaulay” is proved.

If a form G of degree δ can be written as a product G = PQ, a natural question
is to askwhether one can take advantage of this factorization in the computation of
the residue of G = PQwith respect to the polynomial system defined by F0, . . . , Fn.
In the caseXΣ = Pn, Jouanolou proved that this is possible by exploiting the duality
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between the degrees δ − ν and ν of P and Q, respectively; see [Jou97, Proposition
3.10.27]. Notice that in [Jou97] the residue is defined as a map to A, and not to
K(A), by multiplying with ResA in the image. In the case of ample divisors, the
product of the residue and the resultant lies in A; see [CDS97, Theorem 1.4]. In
what follows, we explore the generalization of Jouanolou’s formula to a general
smooth projective toric variety XΣ which is σ-positive for a maximal cone σ, using
toric Sylvester forms.

Let Hδ−ν be an elimination matrix that satisfies the assumptions of Theorem
4.7 ii), and letHδ−ν be a nonzero maximal minor of Hδ−ν which contains the entire
block built with Sylvester forms. Now, being given two generic forms P ∈ Cν and
Q ∈ Cδ−ν , we consider the matrix

Θδ−ν =

(
Hδ−ν q

0 (p)TD 0

)
(4.33)

where p, respectively q, stands for the vector of coefficients of P , respectively Q,
and D is the matrix defined in (4.15). Recall that by the construction of the ma-
trix Hδ−ν , the matrix Hδ−ν is built as the join of a Macaulay-type block-matrix and
another column-block matrix built from Sylvester forms. Thus, the row (p)TD is
aligned with the column-block built from Sylvester forms; see Example 4.6 for an
illustration.

We first prove that the residue of the product of two monomials can be com-
puted as a quotient. In what follows, we denote byHµ,ξ the submatrix of Hδ−ν that
is obtained by deleting the column corresponding to the monomial xµ ∈ Rν and the
row corresponding to the monomial xξ ∈ Cδ−ν .

Lemma 4.7. Assume thatXΣ is a smooth projective toric varietywhich is σ-positive
for a maximal cone σ. Let F0, . . . , Fn be a system of homogeneous polynomials in C
as in (2.21), then for two monomials xµ ∈ Rν and xξ ∈ Rδ−ν ,

ResidueF (xµ+ξ) =

∑
xµ′∈Cµ

(−1)µ′
(−1)ξDµ,µ′ det(Hµ′,ξ)

det(Hδ−ν)
,

where (−1)µ′ (resp. (−1)ξ) is set to 1 if the relative position of themonomial xµ (resp.
xξ) in the columns (resp. rows) of Hδ−ν is even, otherwise it is set to −1.

Proof. LetHξ be thematrix obtained bymultiplying the row ofHδ−ν corresponding
to xξ by themonomial xξ itself. Then, by expanding the determinant along this row,
one gets:

xµxξ det(Hδ−ν) = xµ det(Hξ) = xµ(
∑

GiFi +
∑

µ′∈Cν

(−1)µ(−1)ξcµ′,ξ Sylvµ′).

Then, using the matrix D, we get that

xµxξ det(Hδ−ν) =
∑

xµGiFi +
∑

xµ∈Cµ

(−1)µ′
(−1)ξDµ,µ′cµ′,ξ Sylv0 modulo I.
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Taking residues, we deduce that

ResidueF (xµ+ξ)det(Hδ−ν) =
∑

xµ∈Cµ

(−1)µ′
(−1)ξDµ,µ′cµ,ξ.

Finally, from the expansion of the determinant det(Hξ), we get that cµ′,ξ = det(Hµ′,ξ).

We are now ready to prove the claimed formula for the residue of the product
of two forms.
Theorem 4.11. Assume that XΣ is a smooth projective toric variety which is σ-
positive for a maximal cone σ. Let F0, . . . , Fn be a system of homogeneous polyno-
mials in C as in (2.21), and suppose given two forms P ∈ Cν and Q ∈ Cδ−ν , then

ResidueF (PQ) =
det(Θδ−ν)

det(Hδ−ν)
.

Proof. WriteP =
∑

xµ∈Cν
pµx

µ andQ =
∑

xξ∈Cδ−ν
qξx

ξ. Then, by linearity of residues,
we have:

ResidueF (PQ) =
∑

xµ∈Cν , xξ∈Cδ−ν

pµqξ ResidueF (xµ+ξ) =

∑
µ,ξ

∑
µ′(−1)µ

′
(−1)ξ

p µ

qξDµ,µ′ det(Hµ′,ξ)det(Hδ−ν). (4.34)

The numerator is precisely the expansion of the determinant det(Θδ−ν) of the ma-
trix defined in (4.33), firstly with respect to the last row and secondly with respect
to the last column.

Example 4.8. In Example 4.3, the elimination matrix H(2,1) is square, therefore we
take

H(2,1) = H(2,1) =


a0 a1 a2 a3 a4
b0 b1 b2 b3 b4
c0 c1 c2 c3 c4

[013] [023] + [014] [024] 0 0
[023] [024] + [123] [124] 0 0

 .

LetP = p0z1+p1x1 andQ = q0z
2
1z2+q1z1z2x1+q2z2x

2
1+q3z1x2+q4x1x2 behomogeneous

forms inC(1,0) andC(2,1), respectively and letD be thematrix inRemark (4.15)which

is of the form D =

( )
1 0
D01 1 , then

Θ(2,1) =



a0 a1 a2 a3 a4 0
b0 b1 b2 b3 b4 0
c0 c1 c2 c3 c4 0

[013] [023] + [014] [024] 0 0 p0 +D01p1
[023] [024] + [123] [124] 0 0 p1
q0 q1 q2 q3 q4 0

 .
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D01 can be computed as in (4.16) and it is nonzero as z1 /∈ (x21, x2, z1z2). Applying
Theorem 4.11, we deduce that ResidueF (PQ) =

det(Θ(2,1))

det(H(2,1))
. For the sake of compari-

son, let us examine the formula we obtain by developing the product of P andQ. In
this case, we apply Theorem 4.11 with δ = (3, 1) and ν = 0, so we have to consider
the matrix Θ(3,1) which is of the form:

Θ(3,1) =



a0 a1 a2 0 a3 a4 0 0
0 a0 a1 a2 0 a3 a4 0
b0 b1 b2 0 b3 b4 0 0
0 b0 b1 b2 0 b3 b4 0
c0 c1 c2 0 c3 c4 0 0
0 c0 c1 c2 0 c3 c4 0

[130] [230] 0 0 [430] 0 0 1
p0q0 p0q1 + p1q0 p0q2 + p1q1 p1q2 p0q3 p0q4 + p1q3 p1q4 0


since the product PQ is equal to

p0q0z
3
1z2 + (p0q1 + p1q0)z

2
1z2x1 + (p0q2 + p1q1)z1z2x

2
1+

p0q3z
2
1x2 + (p0q4 + p1q3)z1x1x2 + p1q2z2x

3
1 + p1q4x

2
1x2. (4.35)

The expansion of det(Θ(3,1)) with respect to the last row leads to the same formula
as in [DK05, Corollary 3.4].
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Chapter 5

Multigraded
Castelnuovo-Mumford regularity
and Gröbner bases

ThemultigradedCastelnuovo-Mumford regularity has attracted the interest ofmany
researchers in the last decades either for finding an extension of its definition and
main properties [BHS21; HW06; MS04], studying properties of local cohomology in
the multigraded case [BC17; CH22], understanding its relation with the Betti num-
bers and virtual resolutions [AHS21; BES20], considering special properties in the
cases of points and curves [Cob24; HV04] or for providing bounds that generalize
those existing in classical case [BHS22; MS03; RSM22]. However, finding a multi-
graded generalization of the Bayer and Stillman criterion (see Theorem 2.13) that
can be used to describe the multi-degrees that generate the Gröbner basis has re-
mained an open problem. For the sake of simplicity, we will describe our results
in the bigraded case i.e., when the degrees are prescribed in two groups of vari-
ables, that we will denote with x’s and y’s. All the discussion and results that follow
extend to the multigraded setting.

Notation 5.1. Let k be a field of characteristic 0. Let S = k[x0, . . . , xn, y0, . . . , ym] be
a ring with a (standard) Z2-grading, such that deg(xi) = (1, 0) and deg(yj) = (0, 1).
Wewill write themonomials in S as xαyβ = xα0

0 · · ·xαn
n yβ0

0 · · · y
βm
m for a vector (α, β) ∈

Zn+m+2. A monomial xαyβ has degree (a, b) if
∑n

i=0 αi = a and
∑m

j=0 βj = b. Let mx

(resp. my) be the ideal generated by the x (resp. y) variables. Let mx (resp. my) be
the ideal generated by the x (resp. y) variables. The ambient biprojective space is
Pn × Pm and the irrelevant ideal is b = mxmy.

Notation 5.2. A polynomial f =
∑

α,β cα,βx
αyβ ∈ S is bihomogeneous of bi-degree

(a, b) ∈ Z2 if all of its terms are monomials of bi-degree (a, b). An ideal I ⊂ S is
bihomogeneous if every polynomial f ∈ I is bihomogeneous. The graded part of
bi-degree (a, b) of I is the k-vector space generated by all the polynomials of bi-
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degree (a, b) in I , and denoted as I(a,b). Recall that a a generic linear x-form as a
general element in S(1,0).

A generalization of the Castelnuovo-Mumford regularity to the bigraded set-
ting, which we also denote as reg(I), was given by Maclagan and Smith in [MS04],
by using local cohomology modules with respect to the irrelevant ideal b, i.e. the
intersection of the ideals generated by each group of variables.

Definition 5.1. [MS04, Definition 1.1] Consider a bihomogeneous ideal I ⊂ S. The
bigraded Castelnuovo-Mumford regularity reg(I) is the subset of Z2 containing bi-
degrees (a, b) such that, for all i ≥ 1 and for all (a′, b′) ≥ (a− λx, b− λy), it holds

H i
b(I)(a′,b′) = 0,

where λx + λy = i− 1, with λx, λy ∈ Z≥0.

The goal of this part of the thesis is to establish a connection between the
bigraded Castelnuovo-Mumford regularity and the degrees of the minimal gen-
erators of the DRL Gröbner basis after a generic change of coordinates that pre-
serves the bigraded structure, providing the bigeneric initial ideal; see Chapter 2
and [ACDN00, Section 1]. Unlike the single graded case, the need of preserving the
bihomogeneous structure of the ideal makes this bigeneric initial ideal dependent
on the choice of the order of the variables of the different blocks.

Example 5.1. The following example is an adaptation of [BHS21, Example 4.3] (sim-
ilarly [BES20, Example 1.4]) and corresponds to a smooth hyperelliptic curve of
genus 8 embedded in P2 × P1. It will be our running example throughout the chap-
ter. Consider the standard Z2-graded ring C[x0, x1, x2, y0, y1] and the ideal:

J = (y20x
2
0 + y21x

2
1 + y0y1x

2
2, y

3
0x2 + y31(x0 + x1))

and consider I = Jsat = (J : b∞) to be its saturation with respect to the irrele-
vant ideal b = (x0y0, x0y1, x1y0, x1y1, x2y0, x2y1). We notice that if we use amonomial
order such that:

x0 < x1 < x2 < y0 < y1, (5.1)

the degrees involved in the computation of the bigeneric initial ideal are those ap-
pearing in the left image in Figure 5.1. On the other hand, if the monomial order
satisfies:

y0 < y1 < x0 < x1 < x2, (5.2)

the degrees involved in the computation of the bigeneric initial ideal are different;
see right of Figure 5.1.

The problem of the relation between reg(I) and the generators of bigin(I) had
already been raised in the work of Aramova, Crona and De Negri [ACDN00] and
Römer [Röm01], where the following partial notion of regularity was defined using
the Betti numbers.
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Figure 5.1: In each drawing, the green dots represent the degrees of the generators of I and the black
dots represent the degrees of the generators of the bigeneric initial ideal. In the left hand side, we
can see the degrees of the generators of bigin(I) using the monomial order in (5.1), while in the right
hand side, we can see the degrees of the generators of bigin(I) using the monomial order in (5.2).

Definition 5.2. Let I be a bihomogeneous ideal in S, then Rx(I) is the minimal
degree a ∈ Z such that:

βi,(a′+i+1,b′)(I) = 0

for all i, b′ ∈ Z≥0 and for all a′ ≥ a. Similarly, one can define Ry(I).

With the above definition, Aramova, Crona and De Negri proved that the max-
imal degree of a minimal generator bigin(I)with respect to the x (resp. y) block of
variables is given by Rx(bigin(I)) (resp Ry(bigin(I))); see [ACDN00, Theorem 2.2]
using the same assumptions on the monomial order, Römer showed that:

Rx(I) = Rx(bigin(I))

and thus the description for the x block of variables depends solely on the algebra
of I . If J is a monomial ideal satisfying the properties of Lemma 2.2, for instance
bigin(I), then Rx(J) (resp. Ry(J)) is the maximal degree of any minimal generator
of J with respect to the degrees of x variables (resp. y).

Theorem 5.1 ([ACDN00, Theorem 2.2]). Let I be a bihomogeneous ideal. Then,
there is b ∈ N and a generator of degree (Rx(bigin(I)), b) in bigin(I). Moreover,
no generator of bigin(I) has degree with respect to the x variables bigger than
Rx(bigin(I)). The same property holds for Ry(bigin(I)) and the degrees with re-
spect to the y variables.

Furthermore, Römer proved that, using the relative order of the variables in
Eq. (5.4), Rx(I) behaves well with respect to the bigeneric initial, i.e.,

Rx(I) = Rx(bigin(I)). (5.3)

Adirect consequence of this is that themaximumdegree of the generators of bigin(I)
with respect to the x variables is Rx(I); this is a partial generalization of the Bayer
and Stillman criterion to the bihomogeneous setting.
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Theorem 5.2 ([Röm01, Proposition 4.2]). Let I ⊂ S be a bihomogeneous ideal.
Then, there is b ∈ N and a generator of degree (Rx(I), b) in bigin(I). Moreover, no
generator of bigin(I) has degree with respect to the x variables bigger than Rx(I).

Römer also noted [Röm01, Remark 4.3] that, as we are using the monomial or-
der in (5.4),Ry(I) andRy(bigin(I))might be different and so the previous theorem
does not hold for the variables in y.

Example 5.2. We continue Example 5.1. From the minimal free resolution of I
(see [BHS21, Example 7.1]) we can derive that Rx(I) = 8 and Ry(I) = 3. Using the
results in [ACDN00] and [Röm01], we can derive the maximal degrees of biginx(I)
and biginy(I) with respect to each block of variables; see Figure 5.2.

Figure 5.2: The bi-degrees of the generators of bigin(I), where the bound for the degrees of the x’s is
given byRx(I). However, using the monomial order in (5.4), Ry(I) is lower than the bound on the y’s
given by Ry(bigin(I)).

Assumption 5.1. Consider a degree reverse lexicographical monomial order < (or
DRL) such that:

x0 < · · · < xn < y0 · · · < ym. (5.4)

The above example also shows that the description in terms of Rx(I) only de-
scribes the maximal degree of a generator of bigin(I) with respect to one block of
varialbes. Thus, a natural question is whether we can find an algebraic invariant
that describes more tightly the bi-degrees involved in the computations based on
Gröbner bases, in terms of the algebraic properties of I .

1. First examples and the case of ideals defining empty vari-
eties

The works of Aramova et al. (Theorem 5.1) and Römer (Theorem 5.2) allow us to
construct a bound for the bidegrees of the minimal generators of bigin(I). One of
our objectives in thiswork is to construct coarser regions bounding these bidegrees.
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Following the work of Bayer and Stillman, a natural candidate to construct such
regions is the bigraded Castelnuovo-Mumford regularity either from I or bigin(I).
However, as we illustrate in this section, it is not possible to construct straightfor-
wardly such a generalization: on the one hand, there can be unbounded regions
outside of reg(I) and reg(bigin(I))where there is no minimal generator of bigin(I)
(see Example 5.3); on the other hand, there can be minimal generators with bide-
greeswhich are strictly bigger than reg(I); see Example 5.4. The same example also
illustrates that reg(I) and reg(bigin(I))may differ.

We start our discussion by considering the case of ideals defining empty vari-
eties for whichwe can characterize the regularity in terms of the associated Hilbert
function. Let I be a bihomogeneous ideal defining an empty variety of Pn×Pm and
consider the associated Hilbert function

HFS/I : Z2 → Z≥0

(a, b) 7→ dimk(S/I)(a,b)
. (5.5)

The regularity reg(I) is determined by the bidegrees at which this function attains
the value zero, i.e.,

reg(I) = {(a, b) ∈ Z2 : HFS/I(a, b) = 0}. (5.6)

This last equality follows, mutatismutandis, from [BS87a, Lemma 1.7] where a sim-
ilar result is presented for the homogeneous case.

It is a general property that the Hilbert functions of an ideal I and its bigeneric
initial ideal bigin(I) coincide; this also follows similarly from the single-graded case
[Eis95, Theorem 15.26]. Therefore, if I defines an empty subvariety of Pn × Pm, it
holds that

reg(I) = reg(bigin(I)).

In addition, it is possible to determine the existence ofminimal generators of bigin(I)
at bidegrees where the Hilbert function of I vanishes.

Theorem 5.3. Let (a, b) ∈ Z2
≥0 be a bidegree such that HFS/I(a, b) = 0. Then, bigin(I)

has a minimal generator of bidegree (a, b) if and only if HFS/I(a′, b′) 6= 0 for every
(a′, b′) ⪇ (a, b).

Proof. With respect toDRL, themonomial xa0yb0 is the smallestmonomial of bidegree
(a, b). As HFS/I(a, b) = 0, we have that xa0yb0 ∈ bigin(I)(a,b). If xa0yb0 is not a minimal
generator of bigin(I), then there must be (a′, b′) ⪇ (a, b) such that xa′0 yb

′
0 ∈ bigin(I).

By Lemma 2.2, this last condition is equivalent to the fact that every monomial of
bidegree (a′, b′) belongs to bigin(I), that is, equivalent to HFS/I(a′, b′) = 0 for some
(a′, b′) ⪇ (a, b).
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As a consequence of this theorem, we deduce that the region reg(I) does not
contain bidegrees of minimal generators of bigin(I), except maybe in its minimal
bi-degrees with respect to inclusion.

Corollary 5.1. Assume that I defines an empty variety of Pn × Pm. If (a, b) ∈ reg(I)
then bigin(I) has no minimal generator of bidegree (a′, b′) ⪈ (a, b).

Proof. Follows from Eq. (5.6) and Theorem 5.5.

Remark 5.1. Using that, in the case of I defining an empty subvariety, reg(I) and
reg(bigin(I)) coincide, wemay also deduce the above corollary from Theorem 2.15.

As mentioned before, unlike in the single graded case, the region reg(I) does
not yield a sharp description of the bidegrees of a minimal set of generators of
bigin(I). We illustrate it with the following example where we observe that the
converse of Corollary 5.1 does not hold and also that reg(I) does not yield any in-
formation for infinitely many bidegrees.

reg(I)

1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 5.3: The green dots • represent the bidegrees (a, b) of the generators of the ideal I in Example
5.3. The black dots • represent the bidegrees (a, b) of minimal generators of bigin(I)and the white
dots those bidegrees for which HFS/I(a, b) = 0. The region reg(I) is marked in red. In blue (resp.
brown), an infinite column (resp. a row) which does not intersect reg(I).

Example 5.3. Consider the standardZ2-graded ringS = C[x0, x1, y0, y1] and the ideal
I ⊂ S generated by four bihomogeneous polynomials:

p3(x0, x1)q1(y0, y1), p
′
3(x0, x1)q

′
1(y0, y1), p1(x0, x1)q3(y0, y1), p

′
1(x0, x1)q

′
3(y0, y1),

where pi’s and p′i’s and general forms of degree i in x0, x1 and qi’s and q′i’s and general
forms of degree i in y0, y1. The ideal I defines an empty variety. In Figure 5.3 we
show the bidegrees of a minimal set of generators for bigin(I), as well the region
reg(I).

At the bidegrees (3, 5) and (5, 3), Theorem 5.3 applies so that there are minimal
generators of bigin(I). The bidegree (4, 4), where HFS/I(4, 4) 6= 0, so that (4, 4) /∈
reg(I), shows that the converse of Corollary 5.1 does not hold. Also, in Figure 5.3
we highlighted an infinite column and an infinite row that does not intersect reg(I).
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It turns out that if we do not restrict to ideals defining an empty variety, then
even Corollary 5.1 is no longer true, i.e. theremight be bidegrees (a, b) ∈ reg(I) such
that there are minimal generators of bigin(I) in degree ⪈ (a, b).

1 2 3 4 5 6 7 8
0
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3

4

5

6
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8

Figure 5.4: The multigraded Castelnuovo-Mumford regularity reg(I), in green and the multigraded
Castelnuovo-Mumford regularity of the bigeneric initial ideal bigin(I), in purple.

Example 5.4. We continue with Example 5.1. We note that (2, 4) ∈ reg(I), never-
theless there are generators of bidegrees ⪈ (2, 4); se Figure 5.4. This example also
illustrates that, in general, we cannot expect that reg(I) and reg(bigin(I)) to coin-
cide, even though we have an inclusion, as in Eq. (2.43). For this reason, there is no
straightforwardway of using reg(I) in order to bound the bidegrees of theminimal
generators of bigin(I).

Remark 5.2. To compute the regions in these examples, we used the Macaulay2
packages VirtualResolutions [Alm+20] and LinearTruncations [CHN22]. In
both packages, the input is assumed to be saturated, which is the case of the ideal
I in Example 5.1.

2. The partial regularity region and its main properties

The results and examples presented in Section 1. illustrate the difficulty to establish
a direct bihomogeneous analogue of Eq. (??) bymeans of the bigraded Castelnuovo-
Mumford regularity region. To unravel this situation, we introduce a new region,
denotedbyxreg(I) and explore its properties. Compared to the Castelnuovo-Mumford
regularity region, which relies on the vanishing of local cohomology modules with
respect to the irrelevant ideal b of the product of two projective spaces, this new re-
gion relies on the vanishing of local cohomology modules with respect to the ideal
mx. This construction is inspired by thework of Botbol, Chardin andHolanda [BC17;
CH22].

Definition 5.3. Let I ⊂ S be a bihomogeneous ideal. We denote by xreg(I), and call
it the partial regularity region, the region of bidegrees (a, b) ∈ Z2 such that for all
i ≥ 1 and (a′, b′) ≥ (a− i+ 1, b),

H i
mx(I)(a′,b′) = 0.
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One of the main results of our work is that, in generic coordinates, xreg(I)
provides a bounding region to bidegrees of the elements in aminimalGröbner basis
which is (partially) tight. This result will be proved in Section 3.. In order to do so,
in this section we need to establish two key properties of xreg(I). First, in Theorem
5.6, we present a criterion to compute xreg(I) similar to the one proposed by Bayer
and Stillman in the classical setting [BS87a, Theorem 1.10]. Second, in Theorem
5.5, we show that, in generic coordinates, the partial regularity region of an ideal
and its bigeneric initial ideal agree, that is, xreg(I) = xreg(bigin(I)). The results on
this section generalize the ones in [BS87a, §1] andmost of the proofs follow similar
strategies.
Notation 5.3. Let I ⊂ S be a bihomogeneous ideal.

- We denote by Isat,x the saturation of I with respect to mx, i.e. (I : m∞
x ).

- Given any polynomial f ∈ S, (I, f)will denote the sum of the ideals I and (f).
Lemma 5.1. A generic linear x-form h is not a zero divisor in S/Isat,x. Namely,
(Isat,x : h) = Isat,x.

Proof. The proof follows using the same argument as [Van02, Lemma 3.3].

The following lemma shows that local cohomology modules with respect to mx
vanish when the degree with respect to the x variables is big enough.
Lemma 5.2. Let I ⊂ S be a bihomogeneous ideal. Then there is a0 ∈ Z such that
for all b ∈ Z, it holds

H i
mx(I)(a,b) = 0 ∀a ≥ a0.

Proof. It is classical property that the local cohomology modules H i
mx(I) can be de-

fined and computed using the Čech complex C•mx(I). We refer the reader to [BS08]
formore details on the construction of this complex and itsmain properties. In this
proof, we will use this complex, together with a minimal free resolution F• of I , to
construct a double complex that we denote by C•mx(F•). We note that this double
complex has often been used in the bibliography; see, for example, [BH19, §2].

There are two natural spectral sequences associated with the double complex
C•mx(F•), depending on whether we consider the filtrations with respect to the hori-
zontal or the vertical maps. Both sequences converge to the same limit. Consider-
ing the filtration given by the horizontal maps, since F• is aminimal free resolution
of I we deduce that the spectral sequence converges to H•

mx(I) in its second page.

Similarly, the second spectral sequence has the terms H i
mx(Fq) in its first page.

These terms are direct sums of H i
mx(S), up to the shifts appearing in the minimal

free resolution F•. Thus, using Eq. (2.42), we deduce that there exists a0 ∈ Z such
that for all b ∈ Z,

H i
mx(Fq)(a′,b′) = 0 for all i, q and (a′, b′) ≥ (a0, b).
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The proof follows straightforwardly by comparing the limits of the two above spec-
tral sequences.

Lemma 5.3. Let I ⊂ S be a bihomogeneous ideal. Let h be generic linear x-form
and (a, b) ∈ Z2

≥0. Then, the following are equivalent:

i) (I : h)(a′,b′) = I(a′,b′) for all (a′, b′) ≥ (a, b).

ii) H1
mx(I)(a′,b′) = 0 for all (a′, b′) ≥ (a, b).

Proof. Since n ≥ 1, we have that H1
mx(I)

∼= H0
mx(S/I) = Isat,x/I; see for example

[BS87a, Remark 1.3]. Hence, H1
mx(I)(a′,b′) = 0, if and only if, Isat,x(a′,b′) = I(a′,b′). By

Lemma 5.1, as h is a generic x-form, condition ii) implies condition i) as in this case
we have that, for every (a′, b′) ≥ (a, b)

(I : h)(a′,b′) = (Isat,x : h)(a′,b′) = Isat,x(a′,b′) = I(a′,b′).

To prove the opposite implication, we observe that by Lemma 5.2, for a given
bidegree (a, b) ∈ Z2, there is a λ0 ∈ Z≥0 such that, for every λ ≥ λ0, we have that

I(a′+λ,b′) = Isat,x(a′+λ,b′) for every (a′, b′) ≥ (a, b).

Either the previous condition holds for every λ0 and so H1
mx(I)(a′,b′) = 0 for all

(a′, b′) ≥ (a, b), or either there is a minimal λ0 satisfying the previous condition.
In the latter case, by minimality of λ0, we have that I(a′+λ0−1,b′) 6= Isat,x(a′+λ0−1,b′) for
some (a′, b′) ≥ (a, b). Therefore, there must be bihomogeneous f ∈ Isat,x of bidegree
(a′ + λ0 − 1, b′) such that f /∈ I . However, as Isat,x(a′+λ0,b′)

= I(a′+λ0,b′), for every x-form
h ∈ S(1,0), we have that h f ∈ I(a′+λ0,b′) and so f ∈ (I : h)(a′+λ0−1,b′). If λ0 ≥ 1, condi-
tion i) implies that (I : h)(a′+λ0−1,b′) = I(a′+λ0−1,b′), so we get a contradiction as f 6∈ I .
Hence λ0 ≤ 0 and so H1

mx(I)(a′,b′) = 0 for every (a′, b′) ≥ (a, b).

The following lemma shows that the partial regularity region can be computed
recursively using colon ideals with respect to generic linear x-forms.

Lemma 5.4. Let h be a generic linear x-form and (a, b) ∈ Z2
≥0, then the following

are equivalent.

i) (a, b) ∈ xreg(I).

ii) (I : h)(a′,b′) = I(a′,b′) for (a′, b′) ≥ (a, b) and (a, b) ∈ xreg(I, h).

Proof. First, we observe that, if (I : h)≥(a,b) = I≥(a,b), then for every i ≥ 1, H i
mx((I :

h)≥(a,b)) = H i
mx(I≥(a,b)). Under this assumption, Lemma 2.3 implies that

H1
mx(I : h)(a′,b′) = H1

mx(I)(a′,b′) for every (a′, b′) ≥ (a, b). (5.7)
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and
H i

mx(I : h) = H i
mx(I) for every i ≥ 2. (5.8)

To prove that i) implies ii), let (a, b) ∈ xreg(I). By Lemma 5.3, we get that (I :
h)≥(a,b) = I≥(a,b), so that Eq. (5.7) and Eq. (5.8) hold. Consider the short exact se-
quence which is induced by the multiplication by h,

0 −→ (I : h)(−(1, 0)) −→ I ⊕ (h) −→ (I, h) −→ 0. (5.9)

For every i ≥ 1, taking the graded components of the corresponding long exact
sequence of local cohomology at degrees (a′, b′) ≥ (a− (i− 1), b) yields

· · · −→ H i
mx(I)(a′,b′) −→ H i

mx(I, h)(a′,b′) −→ H i+1
mx (I : h)(a′−1,b′) −→ · · · (5.10)

We notice that the last term in (5.10) can be replaced by H i+1
mx (I)(a′−1,b′) as i ≥ 1,

using Eq. (5.8). Moreover, as we are assuming that (a, b) ∈ xreg(I), the two graded
components of the local cohomology of I in Eq. (5.10) vanish, and soH i

mx(I, h)(a′,b′) =
0 for all (a′, b′) ≥ (a− (i− 1), b).

In order to prove that condition ii) implies condition i), we consider (a, b) ∈
xreg(I, h) such that (I : h)(a′,b′) = I(a′,b′) for every (a′, b′) ≥ (a, b). By Lemma 5.1,
we have that H1

mx(I)(a′,b′) = 0 for (a′, b′) ≥ (a, b). As we did above, we consider the
long exact sequence associated to Eq. (5.9) at the graded pieces given by (a′, b′) ≥
(a− (i− 2), b),

· · · −→ H i−1
mx (I, h)(a′,b′) −→ H i

mx(I : h)(a′−1,b′)

δi−→ H i
mx(I)(a′,b′) −→ H i

mx(I, h)(a′,b′) −→ · · · .

As (a, b) ∈ xreg(I, h), the graded pieces of local cohomology modules associated to
(I, h) vanish, and so the map δi is an isomorphism. By Lemma 5.2, there exists λ
sufficiently big such that

H i
mx(I)(a′+λ,b′) = 0 (a′, b′) ≥ (a− (i− 1), b). (5.11)

As we are assuming that (I : h)≥(a,b) = I≥(a,b), Eq. (5.8) holds and, together with
Eq. (5.11) and the isomorphism δi, we have that for every i > 1 and every (a′, b′) ≥
(a− (i− 1), b),

H i
mx(I)(a′+λ−1,b′)

∼= H i
mx(I : h)(a′+λ−1,b′)

∼=
δi
H i

mx(I)(a′+λ,b′) = 0. (5.12)

where the first isomorphism follows from Eq. (5.8), the second isomorphism is δi,
and the last equality to zero follows from Eq. (5.11). If we apply the above repeat-
edly, starting from big enough λ, we conclude that for every i ≥ 1, H i

mx(I) vanishes
at every degree bigger or equal to (a− (i− 1), b), and therefore (a, b) ∈ xreg(I).

The following theorem, which aims to characterize xreg(I), can be seen as a
partial extension of the criterion of Bayer and Stillman to compute the Castelnuovo-
Mumford regularity in the single graded case [BS87a, Theorem 1.10] to the setting
of bigraded ideals.
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Theorem 5.4. Consider a bihomogeneous ideal I ⊂ S. Then, for (a, b) ∈ Z2
≿0, the

following are equivalent:

i) (a, b) ∈ xreg(I).

ii) There exists a non-negative integer k0 ≤ n such that for all k = 0, . . . , k0 and
(a′, b′) ≥ (a, b), we have:

(Jk−1 : hk)(a′,b′) = (Jk−1)(a′,b′)

where Jk−1 = (I, h0, . . . , hk−1) (with the convention J−1 = I), hk are generic
linear x-forms and Jk0 ⊃ mx.

Proof. We will proceed by induction in the minimal number k0 such that Jk0 ⊃ mx.
Consider I such that k0 = −1. As I ⊃ mx, we have Isat,x = S. Moreover, as in the
classical setting (see [BS08, Corollary 2.1.7]) the higher local cohomology modules
of I are the same as those of the saturation, and so

H i
mx(I) = H i

mx(I
sat,x) = H i

mx(S) for every i ≥ 2.

By Remark 2.8, the previous cohomology H i
mx(S)(a,b) vanish, unless i = n + 1, a ≤

−n− 1 and b ≥ 0. Therefore,

Hn+1
mx (I)(a′,b′) = 0 for (a′, b′) ≥ (a− n, b).

Moreover, as a > 0 and I ⊃ mx, we have Isat,x(a,b) = I(a,b)= S(a,b). This last condition is
equivalent to the fact thatH1

mx(I)(a,b) = 0 for a > 0, and so xreg(I) ⊃ Z2
≿0. This shows

that, for k0 = −1 condition i) is also always satisfied.

For the inductive step, assume that the theorem holds for every ideal such that
its associated k0 is at most t. Consider an ideal I such that its associated k0 is t + 1.
Then, for a generic x-form h, the k0 associated to (I, h) is t. Hence, we can apply our
inductive hypothesis to (I, h). The proof follows straightforwardly fromLemma5.4.

Our next goal is to prove that the region xreg(I) and the region xreg(bigin(I))
coincide. This will only happen if we consider the bigin(I)with respect to the DRL
monomial order in (5.4). In the next lemma, we analyze the behavior of ideals
under change of coordinates.

Lemma 5.5. Let I ⊂ S be a bihomogeneous ideal and u ∈ GL(n + 1) × GL(m + 1).
Then, the following hold:

i) u ◦ (Isat,x) = (u ◦ I)sat,x.

121



ii) Let h0, . . . , hn be linear forms satisfying that xk = u ◦ hk for k = 0, . . . , n and
(a, b) ∈ Z2. Then,

(I, h0, . . . , hk−1 : hk)(a,b) = (I, h0, . . . , hk−1)(a,b) ⇐⇒
[(u ◦ I), x0, . . . , xk−1 : xk](a,b) = [(u ◦ I), x0, . . . , xk−1](a,b).

for all k = 0, . . . , n.

Proof. In order to prove the part i), we note that mx is invariant under the action
of GL(n + 1) × GL(m + 1). Therefore, if f ∈ u ◦ Isat,x, then there is g ∈ Isat,x such
that f = u ◦ g and there exists t with gmt

x ⊂ I . This is equivalent to the fact that
fmt

x ⊂ u ◦ I . Similarly, the proof of part ii) follows from the fact that the colon ideal
commutes with the change of coordinates.

The following lemma shows that we can verify the equality between I and its
colon idealwith respect to a variable by looking at the initial ideal. This is a classical
property of the DRL monomial order defined in Eq. (5.4); see Remark 5.3 for more
details.

Lemma 5.6 ([BS87a, Lemma 2.2]). Let I ⊂ S be a bihomogeneous ideal and let
(a, b) ∈ Z2

≿0. For k = 0, . . . , n, we have the following:

i) in(I, x0, . . . , xk) = (in(I), x0, . . . , xk).

ii) Suppose that x0, . . . , xk−1 ∈ I and that we are using the DRL monomial order
in Eq. (5.4), then:

(I : xk)(a,b) = I(a,b) ⇐⇒ (in(I) : xk)(a,b) = in(I)(a,b).

The following lemma generalizes Lemma 5.1 to the bigeneric initial ideal.

Lemma 5.7. Let I ⊂ S be a bihomogeneous ideal. For every k = 0, . . . , n, let Jk−1 :=
(bigin(I), x0, . . . , xk−1) (with the convention J−1 = I). If (Jk−1)

sat,x 6= S, then xk is a
non-zero divisor in S/(Jk−1)

sat,x.

Proof. We first prove the case k = 0. Following the same argument as in [CDNG13,
Lemma 2.1], we note that the associated primes of a bi-Borel fixed ideal are of the
form:

Pt = (xtx , . . . , xn, yty , . . . , ym)

for some tx, ty ∈ Z2 such that 0 ≤ tx ≤ n and 0 ≤ ty ≤ m. If bigin(I)sat,x 6= S,
the associated primes of bigin(I)sat,x must satisfy tx > 0. Therefore, x0 cannot be
contained in the union of the associated primes of bigin(I)sat,x.

In the case where k > 0, we note that bigin(I) ∩ k[xk, . . . , xn, y0, . . . , ym] is also
bi-Borel fixed. Therefore, the associated primes of Jk−1 which contain xk are not
associated primes of (Jk−1)

sat,x. The proof follows by the same argument as above.
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Using the above lemmas, we obtain the following theorem.
Theorem 5.5. Let I ⊂ S be a bihomogeneous ideal and h0, . . . , hk are generic linear
x-forms. Then, for every (a, b) ∈ Z2

≿0 and k = 0, . . . , n

(I, h0, . . . , hk−1 : hk)(a,b) = (I, h0, . . . , hk−1)(a,b) ⇐⇒
[(bigin(I), x0, . . . , xk−1) : xk](a,b) = [(bigin(I), x0, . . . , xk−1)](a,b). (5.13)

In particular, xreg(I) ∩ Z2
≿0 = xreg(bigin(I)) ∩ Z2

≿0.

Proof. The first part of the proof follows straightforwardly from Lemma 5.3 and
Lemma 5.6. For the second part, we note that Lemma 5.7 implies that the proof of
Theorem 5.4 can be reproduced for bigin(I) using the variables x0, . . . , xn instead
of generic linear x-forms h0, . . . , hn. Namely, (a, b) ∈ xreg(bigin(I))∩Z2

≿0, if and only
if, there is k0 ∈ Z≥0 such that for all k = 0, . . . , k0 and (a′, b′) ≥ (a, b), we have:

(Jk−1 : xk)(a′,b′) = (Jk−1)(a′,b′)

where Jk−1 = (bigin(I), x0, . . . , xk−1) and Jk0 ⊃ mx. Therefore, the proof follows
straightforwardly from the first part, i.e. from Eq. (5.13).

Remark 5.3. In Lemma 5.6, the proof of the fact that for any k = 0, . . . , n and for
any I such that if x0, . . . , xk−1 ∈ I , we have

(in(I) : xk)(a,b) = in(I)(a,b) =⇒ (I : xk)(a,b) = I(a,b) (5.14)
does not require that themonomial order< is degree reverse lexicographical. There-
fore, Eq. (5.14) also holds for any other monomial order. On the other hand, in
[Loh16], Loh proved that for any monomial order different than DRL, it is possible
to find an ideal I such that the converse implication to Eq. (5.14) does not hold, re-
gardless of the bigraded context. This motivates our choice of using the DRLmono-
mial order in our study of the generalization of the Bayer-Stillman criterion to the
bigraded setting.

As we noticed in Example 5.1, the relative order of the variables of different
blockswill change the bidegrees of the generators of bigin(I). Theorem5.5 relies on
the specific choice of Eq. (5.4). While the criterion in Theorem 5.4 would also hold
symmetrically for yreg(I), this region does not remain invariant under bigin(I)
unless we change the relative order of the blocks of variables.
Example 5.5. We continue with Example 5.1 and draw the regions yreg(I) and
yreg(bigin(I)). We note that, using themonomial order Eq. (5.4), they are different.

3. The partial regularity region and the minimal generators
of bigin(I)

In the previous section, we provided the definition and main properties of the par-
tial regularity region xreg(I), including a criterion which generalizes the classical
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Figure 5.5: In olive, the region yreg(I). In blue, the region yreg(bigin(I)).

result of Bayer and Stillman to the setting of regions of bidegrees that we are study-
ing. In this section, we exploit xreg(I) to prove the absence of minimal generators
of bigin(I) at some bidegrees (see Theorem 5.6) and to certify that there are gener-
ators near the border of the region xreg(I) (see Theorem 5.7). Moreover, we also
provide relations between reg(I), xreg(I) and the Betti numbers of I by relying on
results by Chardin and Holanda [CH22].

The following lemma, which is the bigraded analogue of [BS87a, Lemma 2.2
iii)], provides sufficient conditions for the absence of minimal generators of bide-
gree (a, b).

Lemma 5.8. Consider a bihomogeneous ideal I ⊂ S and k ∈ {0, . . . , n} such that
x0, . . . , xk−1 ∈ I . Let (a, b) ∈ Z2

≿0 with a > 1. Assume that there is no minimal
generator of in(I, xk) of bidegree (a, b) ∈ Z2

≿0 and that

(in(I) : xk)(a−1,b) = (in(I) +my(in(I) : xk))(a−1,b). (5.15)

Then, there is no minimal generator of in(I) of bidegree (a, b).

Proof. Consider an element f ∈ I(a,b). If x0, . . . , xk−2, or xk−1 divides in(f), then
f cannot be a minimal generator of in(I). Thus, up to substracting multiples of
x0, . . . , xk−1, we may assume that f ∈ k[xk, . . . , xn, y0, . . . , ym]. If xk divides in(f),
then in(f) = xk in(f) for some

in(f) ∈ (in(I) : xk)(a−1,b) = (in(I) +my(in(I) : xk))(a−1,b).

Hence, there is a non-constant xαyβ ∈ (xk,my) and l ∈ I of bidegree strictly smaller
than (a, b) such that in(f) = xαyβ in(l). Therefore, in(f) cannot be a minimal gen-
erator.

Suppose now that xk does not divide in(f). As there is no generator of in(I, xk)
of bidegree (a, b) and in(f) ∈ in(I, xk), then we can write in(f) = xα

′
yβ

′ in(g) with
xα

′
yβ

′ 6= 1 and in(g) ∈ in(I, xk). Write g as g = g1 + xkg2 for g1 ∈ I . Since in(g) >
in(xkg2), we have that in(f) = xα

′
yβ

′ in(g1) with g1 ∈ I an element of [strictly lower
bidegree] than (a, b). Hence, in(f) is not a generator of in(I)
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Applying repeatedly Lemma 5.8, we get sufficient conditions for the absence
of minimal generators of in(I) of bidegree (a, b) ∈ Z2

≿0.

Corollary 5.2. Let I ⊂ S be a bihomogeneous ideal. Let (a, b) ∈ Z2
≿0 with a > 1, and

assume that:

(in(Jk−1) : xk)(a,b) =
(
in(Jk−1) +my(in(Jk−1) : xk)

)
(a,b)

, (5.16)

for all k = 0, . . . , n and Jk = (I, x0, . . . , xk) (with the convention J−1 = I). Then, there
is no generator of in(I) of bidegree (a, b).

Proof. Note that there are nominimal generators of in(I, x0, . . . , xn) of any bidegree
(a, b) ∈ Z2

≿0 as each of them must be divided by some xi. By Lemma 5.6 and the
hypothesis, this implies that there is no generator of in(I, x0, . . . , xn−1) of bidegree
(a, b). Applying Lemma 5.6 iii) recursively, we get that there is no generator of in(I)
of bidegree (a, b) ∈ Z2

≿0.

Applying Theorem 5.4, we derive the following result.

Theorem 5.6. Let I ⊂ S be a bihomogeneous ideal. Let (a, b) ∈ xreg(I) ∩ Z2
≿0. If

(a′, b′) ≥ (a+1, b), then there is no minimal generator of bigin(I) of bidegree (a′, b′).

Proof. Note that for every (a′, b′) ∈ Z2
≿0, the equality

(Jk−1 : xk)(a′,b′) = (Jk−1)(a′,b′)

implies that
(Jk−1 : xk)(a′,b′) = [Jk−1 +my(Jk−1 : xk)](a′,b′)

for every Jk−1 = (bigin(I), x0, . . . , xk−1)with k = 0, . . . , n. Therefore, applying Corol-
lary 5.2 to bigin(I) and Theorem 5.4, we deduce that if (a, b) ∈ xreg(I) ∩ Z2

≿0, then
(Jk−1 : xk)(a′,b′) = (Jk−1)(a′,b′) for all (a′, b′) ≥ (a, b) and k = 0, . . . , n

In addition, we can use Lemma 2.2 to attest the presence of generators of some
bidegrees, using the same criterion as in Theorem 5.4.

Theorem 5.7. Let (a, b) ∈ Z2
≿0 with a > 1 such that (a, b) ∈ xreg(I), but (a − 1, b) /∈

xreg(I). Then, there exists b′ ≤ b such that there is a minimal generator of bigin(I)
of bidegree (a, b′).

Proof. If (a−1, b) /∈ xreg(I), then by Theorem5.4 and Eq. (5.13) (not an equation), we
can derive that, there is 0 ≤ k ≤ n such that we have (Jk−1 : xk)(a−1,b) 6= (Jk−1)(a−1,b)

for Jk−1 = (bigin(I), x0, . . . , xk−1). This result implies that there is a monomial
xαyβ ∈ S(a,b) such that

xkx
αyβ ∈ (bigin(I), x0, . . . , xk−1)(a,b) but

xαyβ /∈ (bigin(I), x0, . . . , xk−1)(a−1,b). (5.17)
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Figure 5.6: In olive, the region xreg(I) + (1, 0). In blue, columns and squares where there are gener-
ators of bigin(I).

Therefore, none of the variables x0, . . . , xk−1 divides the monomial xαyβ . If xkxαyβ
is a minimal generator of bigin(I), we are done. Otherwise, write xkxαyβ = zzγ

where zγ is a minimal generator of bigin(I). We need to show that the bidegree of
zγ is (a, b′) for some b′ ≤ b. If this is not true, then there is some k′ ≥ k such that xk′
divides z. At this point, we have two cases:

- If k′ = k then xkxαyβ = xk
z
xk
zγ , which implies that xαyβ = z

xk
zγ ∈ bigin(I), in

contradiction with (5.17).

- If k′ > k, then xk divides zγ and xk′ divides z. In this case, we write zγ =
xkz

γ′ and z = xk′z
′. Using the property of bigin(I) in Lemma 2.2, we get

xk′z
γ′ ∈ bigin(I) and so xαyβ = xk′z

′zγ
′ ∈ bigin(I) getting a contradiction with

Eq. (5.17).

Therefore, zγ has bidegree (a, b′) for some b′ ≤ b.

Example 5.6. Consider the ideal I in Example 5.4. In Figure 5.6, one shows the
region xreg(I)+ (1, 0)where there cannot be any generators of bigin(I) (using The-
orem 5.6). Moreover, we mark the columns and squares in which Theorem 5.7
guarantees that there must be minimal generators of bigin(I) of such bidegrees.
Due to the vanishing ofH i

mx(I)(a,b) for a� 0, we note that the region xreg(I) always
provides a tight bound for the degrees of the generators of bigin(I)with respect to
the x’s. The bound of provided in Theorem 5.2 is thus recovered.

Inwhat follows, we study the relation between xreg(I), themultigraded Castel-
nuovo-Mumford regularity of I and the bidegrees of the generators of bigin(I).

Theorem 5.8. Let I ⊂ S be a bihomogeneous ideal. Then, there is 0 ≤ s ≤ cdmx(I)−
1, such that reg(I) + (s, 0) ⊂ xreg(I).

Proof. If (a, b) ∈ reg(I), then we have H i
b(I)(a′,b′) = 0 for all i ≥ 1 and (a′, b′) ≥

(a−λx, b−λy)with (λx, λy) ∈ Z2
≥0 such that λx+λy = i−1. In particular,H i

b(I)(a′,b′) = 0
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for all (a′, b′) ≥ (a, b). This implies that (a, b) /∈ SuppZ2(H•
b (I))

⋆. Hence, by Theorem
2.14, we get (a, b) /∈ SuppZ2(H•

mx(I))
⋆. It follows that

H i
mx(I)(a′,b′) = 0 for all (a′, b′) ≥ (a, b) and i ≥ 1.

Therefore, there is some 0 ≤ s ≤ cdmx(I)− 1 such that for i ≥ 1, we haveH i
mx(I)(a′,b′)

= 0 for all (a′, b′) ≥ (a + s − (i − 1), b). This implies that (a + s, b) ∈ xreg(I) and so
does every (a′, b′) ≥ (a+ s, b).

Remark 5.4. Remark ?? implies that for every ideal, the integer s appearing in the
above theorem is bounded by n. In many cases, we can also bound the cohomolog-
ical dimension using the dimension of I , as a module over k[x0, . . . , xn]; see [Gro57].

As a consequence of Theorem 5.8, we derive a relation between reg(I) and the
minimal generators of bigin(I).

Corollary 5.3. Let I ⊂ S be a bihomogeneous ideal and (a, b) ∈ reg(I) ∩ Z2
≿0. Then,

there is 1 ≤ s ≤ cdmx(I) such that for every (a′, b′) ≥ (a + s, b), there is no minimal
generator of bigin(I) of bidegree (a′, b′).

Proof. The proof follows from applying Theorem 5.6 and Theorem 5.8.

Using Theorem 2.16, we can also relate xreg(I) with the Betti numbers of I .

Theorem 5.9. Let I ⊂ S be any bihomogeneous ideal and let (a, b) ∈ xreg(I) ∩ Z2
≿0.

Then, (a+ n+ 1, b+m+ 1) /∈ βi(I) for all i ≥ 1 .

Proof. If (a, b) ∈ xreg(I), then (a− i+1, b) /∈ SuppZ2(H i
mx(I))

⋆ for all i ≥ 1. In particu-
lar, (a, b) /∈ SuppZ2(H•

mx(I))
⋆. Using Theorem2.16, we derive that (a+n+1, b+m+1) /∈

∪iβi(I)⋆, concluding the proof.

Corollary 5.4. Let I ⊂ S be a bihomogeneous ideal and let (a, b) ∈ xreg(I) ∩ Z2
≿0.

Then, there is 0 ≤ s ≤ cdmx(I) − 1, such that βi,(a′,b′) = 0 for all i ≥ 1 and (a′, b′) ≥
(a+ n+ s+ 1, b+m+ 1).

Proof. Apply Proposition 5.9 and Theorem 5.8.

We refer to [BC17, Corollary 3.8] for a finer version of Corollary 5.4.

Example 5.7. We continue with Example 5.2. In Figure 5.7, we illustrate the region
xreg(I)+(3, 2) and the Betti numbers, i.e., the bidegrees (a, b) such that there is i ≥ 1
with βi,(a,b)(I) 6= 0 in the minimal free resolution of I . Proposition 5.9 guarantees
that there is no Betti number in the region xreg(I) + (3, 2).

127



1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

Figure 5.7: We illustrate in olive the region xreg(I) + (3, 2) and in pink squares, the Betti numbers,
i.e. the bidegrees (a, b) such that there is i ≥ 1 with βi,(a,b)(I) ̸= 0.

4. Bounds on the cohomological dimension

In Theorem 5.8, we have seen that the multigraded Castelnuovo-Mumford regular-
ity reg(I) is contained in the partial regularity region xreg(I), up to a shift by (s, 0),
where s is bounded above by the cohomological dimension of I with respect to mx.
In general, the cohomological dimension is bounded above by theminimal number
of generators of mx, which is n+ 1.

However, we can clearly see in Example 5.6 that the bound by n + 1 can be
refined. In fact, we have already used in Lemma4.6 of Chapter 4, the classical result
of Grothendieck [Gro57, Theorem 3.6.5] that says that the cohomologymodules can
be bounded above in terms of the dimension of the module.

Remark 5.5. In the paper, we describe the generators of bigin(I) in terms the co-
homology of I . However, the dimension discussions we have next depend on the
local cohomology with respect to S/I , which can be more standard. However, we
can always consider the short exact sequence:

0 −→ I −→ S −→ S/I −→ 0

As H i
mx

(S)(a,b) = 0 for all i ∈ Z≥0 and (a, b) ∈ Z2
≿0. As a consequence, we have

H i+1
mx

(I)(a,b) = H i
mx

(S/I)(a,b) for (a, b) ∈ Z2
≿0. Indeed, as we are studying the degrees

in Z2
≿0, as study the cohomological dimension in this subset, denoted as cd

Z2
≿0

mx (I).

Remark 5.6. A different approach to the bound that we tried to can be given by the
Mayer-Vietoris spectral sequence which, as it is the case of the results of Chardin
and Holanda that we used in the previous sections; see [CHN23; MBZ18].

Ourway to give aboundon the cohomological dimension is consideringNoether
normalization; see Theorem 2.3, which implies that there are algebraically inde-
pendent elements y1, . . . , yr such that S/I is a finite module over k[y1, . . . , yr]. More-
over, if k is an infinite field, then y1, . . . , yr can be chosen to be linear forms in
x0, . . . , xn; see [BH98, Theorem 1.5.17]. We recall that the Čech complex with re-
spect to (y1, . . . , yr) is bounded above by r. Therefore, H i

(y1,...,yr)
(M) = 0 for i > r.
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Notation 5.4. For ν ∈ Z, we denote byM(∗,ν) the module ⊕µ∈ZM(µ,ν).

Lemma5.9. If y1, . . . , yr is aNoether normalization of thek[x0, . . . , xn]-module (S/I)(∗,0),
then √

(y1, . . . , yr) =
√
(x0, . . . , xn)

as ideals in (S/I)(∗,0). Therefore, H i
mx

(S/I(∗,0)) = H i
(y1,...,yr)

(S/I(∗,0)).

Proof. The inclusion
√
(y1, . . . , yr) ⊂

√
(x0, . . . , xn) is trivial as y1, . . . , yr are linear

forms in x0, . . . , xn. On the other hand, if f ∈
√
(x0, . . . , xn), then there is r ∈ Z≥0

such that f r ∈ (x0, . . . , xn)
M for some M ∈ Z≥0. The finiteness of (S/I)(∗,0) over

k[y1, . . . , yr] implies that there is a set of generators xb1 , . . . , xbs ∈ (S/I)(∗,0) as a
k[y1, . . . , yr]-module. Let M ′ ∈ Z≥0 be an integer such that these generators are
of degree < M ′. Therefore, every monomial xa of degree M ′ in x0, . . . , xn can be
written as:

xa =

s∑
i=1

Pi,a(y1, . . . , yr)x
bi modulo I

for some polynomial Pi,a which must be of degree ≥ 1 in the variables y1, . . . , yr.
Therefore, if we consider r′ such that rr′ ≥M ′, we must have:

(f r)r
′ ∈ (y1, . . . , yr).

Thus, f ∈
√

(y1, . . . , yr). The second part follows from [Bus06, Proposition 3.5]

As local cohomology can be defined as the homology of the Cech complex using
Remark 5.5, we get:

cdmx(I(∗,0)) ≤ r + 1. (5.18)

Moreover, for any ν ∈ Z≥0, the (S/I)(∗,0)-module (S/I)(∗,ν) is finite. Thus, these
modules are also finite over k[y1, . . . , yr] for all ν ∈ Z, getting the same result for
(S/I)(∗,ν).

Lemma 5.10. [CH22, Lemma 3.7] If ν ∈ Z, we have H i
mx

(M(∗,ν)) = H i
mx

(M)(∗,ν).

Theorem 5.10. Let I ⊂ S be a bihomogeneous ideal. Then,

cd
Z2
≿0

mx (I) ≤ dimPn((S/I)(∗,0)) + 2, (5.19)

where dimPn((S/I)(∗,0)) is the dimension of Proj((S/I)(∗,0)). Geometrically, if I is sat-
uratedwith respect tomx, then dimPn((S/I)(∗,0)) corresponds to π(VPn×Pm(I))where
π is the natural projection:

π : Pn × Pm −→ Pn.

Proof. The theorem of Noether normalization indicates that r is the Krull dimen-
sion of (S/I)(∗,0). Using (2.1), we can see that this corresponds to the dimension of
Proj((S/I)(∗,0)) plus one, where Proj is considered with respect to Pn, i.e. all homo-
geneous ideals P in the ring (S/I)(∗,0) such that P 6⊃ mx.
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As a consequence, using Lemma 5.10 and (5.18), we get that for i > r + 1:

H i
mx

(S/I) = ⊕ν∈ZH
i
mx

(S/I)(∗,ν) = ⊕ν∈ZH
i
mx

(S/I(∗,ν)) = 0,

whichprovides the proof of (5.19). TheMainTheoremof elimination theory [BCP23,
Chapter 3, Theorem 3.14] implies that the ideal:

Isat,x ∩ k[x0, . . . , xn]

Therefore, if Isat,x = I , then the dimension of (S/I)(∗,0) corresponds to the dimen-
sion of π(VPn×Pm(I)), finalizing the proof of Theorem 5.10.
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Chapter 6

Applications and computations

In this final chapter, we provide examples of the use of resultants in concrete ap-
plications such as geometric modelling or computer vision.

- Geometricmodelling: Aclassical problemwhere polynomials appear in computer-
aided design is the implicitization of curves or surfaces. Namely, given a poly-
nomial or rational map which models a curve or surface, one aims to find the
implicit equation of that surface by manipulating the entries of the map. For
instance, in the case of surfaces, consider the following polynomial map

ϕ : R2 −→ X ⊂ R3, (s, t) −→ (ϕ1(s, t), ϕ2(s, t), ϕ3(s, t)). (6.1)

Thepolynomialsϕ typically correspond to piecewise information coming from
the representation of an object, for instance B-splines; see [Sha+06]. Repre-
senting X in its implicit form has the advantage of being able to check more
easily whether a given point p ∈ R3 belongs to X or finding the intersection of
X with some other surface. Moreover, matrix representations of the implicit
equation also exhibit some advantages; see [BLY19; Bus14].

In particular, we would like to find a polynomial equation in three variables
P (X,Y, Z) that represents the surface, i.e.

X = {P (X,Y, Z) = 0}.

Therefore, we are obliged to eliminate the variables s, t from the polynomial
system:

X − ϕ1(s, t), Y − ϕ2(s, t), Z − ϕ3(s, t).

Aplausibleway to eliminate these variables is computing the resultant, which
can be done by exploiting themonomial structure of the polynomials with the
methods that we explained in the previous sections. Other methods include
Gröbner bases; see [Big16], or approximation complexes; see [Bot11; Cha06].
The setting of overdetermied polynomial systems which is explored in this
thesis is naturally attached to this problem.

131



All in all, we can use the examples provided in this thesis to give representa-
tions of the matrices in the computation of the resultant.

Example 6.1. Consider the problem of finding the implicit representation a
surface S given by the following polynomials:

ϕ1(s, t) = a0 + a1s+ a2s
2 + a3t+ a4st

ϕ1(s, t) = b0 + b1s+ b2s
2 + b3t+ b4st ϕ3 = c0 + c1s+ c2t (6.2)

Under generic assumptions in the coefficients, the system ϕ1 = ϕ2 = ϕ3 = 0 has
no solutions. Under these assumptions, resultants canbeused to eliminate the
variables s and t. In particular, the following matrix

M(2,1)(X,Y, Z) =


a0 −X a1 a2 a3 a4
b0 − Y b1 b2 b3 b4
c0 − Z c1 0 c3 0

0 c0 c1 0 c3
[013] [023] + [014] 0 [024] 0

 .

has a rank drop after evaluating (X,Y, Z) at a point p = (p1, p2, p3) ∈ R3, if and
only if, p ∈ S .

- Computer vision: A variety of polynomial systems arising in vision consists of
matching problems between snapshots captured by cameras. In this type of
problems, thousands of polynomial systems will have to be simultaneously
solved [Duf+18; Kuk13; BKH19] so small differences in the computations will
be helpful in the final result. As one thinks of the cameras as linear projec-
tions, interesting algebraic objects such as Chow forms [OT19] or distorion
varieties [Kil+16] also arise.

A typical problem consists in computing the displacement of a calibrated cam-
era between two positions in a static environment. Namely, we would like to
find the displacement of a rigid body between two snapshots taken by a sta-
tionary camera. The identifiable features of the body include only points.

Usually, a minimum number of 5 point matches is available. The algebraic
problem reduces to a well-constrained system of polynomial equations and
we are able to give a closed-form solution. Typically, computer vision appli-
cations use at least 8 points in order to reduce the number of possible solu-
tions to one, in generic coordinates. In addition, computing the displacement
reduces to a linear problem and the effects of noise in the input can be dimin-
ished [LH81].

Let ai ∈ (R3) for i = 1, . . . , 5 be the 5 points in the first snapshot and a′i ∈ (R3)
for i = 1, . . . , 5 be the points in the second snapshot. A quaternion formula-
tion of this problem was proposed in [Hor91]. This quaternion formulation
reduces the problem to solving the polynomial system given by the following
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equations in the variables q ∈ R3 (representing a rotation) and d ∈ R3 (repre-
senting a translation)

(aTi q)(d
Ta′i)+a

T
i a

′
i+(ai×q)Ta′i+(ai×q)T (d×a′i)+aTi (d×a′i) = 0, i = 1, . . . , 5,

1− dT q = 0, (6.3)

where × represents the usual exterior product. The first five equations rep-
resents each of the 5 displacements while the last one represents a normal-
ization between the vectors q, d. This system is bilinear in the two groups of
variables. We can solve it by building the u-resultant. Namely, we introduce
a new linear equation Pu = u0+u1d1+u2d2+u3d3+u4q1+u5q2+u6q3. Once we
consider the resultant of this system, we get a polynomial that factors into lin-
ear forms, whose coefficients are the values of the solutions (they are a finite
number in this case); see also [Emi94] for a similar approach.

1. Some JULIA code for resultants and elimination matrices

The Canny-Emiris formula In [CE22], we included an JULIA implementation
of the Canny-Emiris formula for the cases of n-zonotopes and multihomogeneous
systems. Instead of applying the formula to polynomials of any Newton polytope
(which has already been done in other implementations), our goal was to provide
the rows of the Canny-Emiris formula by simply providing the type functions of
each of the lattice points that are used after the greedy implementation, as we de-
scribed in Chapter 3. The package can be found in the URL

https://github.com/carleschecanualart/CannyEmiris.

As input, one can introduce the vectors generating the n-zonotope (the matrix H
below) and the ai,j appearing in (3.1) (the matrix A below).

The command CannyEmiris.Zonotopes considers the setting given by A and
H and produces the matrix H in the Canny-Emiris formula. In particular, the com-
mand specifies which are the exponent vectors in the greedy subset G and their
corresponding polynomials providing the rows ofH (the matrix CE below) and the
principal submatrix E (the matrix PM below).
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In the case ofmultihomogeneous systems, the commandCannyEmiris.Multihomogeneous
takes the list of the exponents of the projective space Pn1 × · · · × Pns , i.e. (n1, . . . , nr)
(the vectorN below). Moreover, it also considers the matrix of multi-degrees of the
polynomials (the matrixD below) and provides the matricesH and E as in the case
of zonotopes.

We also included the implementation of the resultant matrix for the equations
of the 5-point problem in (6.3) (the two sets of 5 randompoints inR3 are thematrices
A1 and A2 below).
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Sylvester forms Thepackage regarding Sylvester formswasnot included in [BC22].
However, we included it here as part of showing the potential computational inter-
est of Sylvester forms in the framework of eliminationmatrices. In this package, we
only develop the construction of the matrix. However, this construction can be in-
cluded in other packages for solving polynomial systems such asAlgebraicSolvers.jl
or EigenvalueSolver.jl. It is relevant to note that we give the construction for
affine polynomials and so the cokernel of the matrix will also contain the solutions
at infinity. The package can be found in the URL

https://github.com/carleschecanualart/Sylvester.

For the case of dense polynomial systems,we initialize the packages anduseDynamicPolynomials
to manage the variables.

Assuming that we manage with polynomials of a certain list of degrees (the
vector ds below) which we use to generate random polynomials of those degrees
(the list f below). One can also introduce any list of given polynomials.

The command Sylvester.getResDense outputs the elimination matrixMν

(written as res below) at the smallest possible degree ν, which is given by
n∑

i=0

di − n−min
i
di (6.4)

if d0, . . . , dn are the degrees of the system. The command also outputs the list of
monomials of degree ν (the list S below), which label the columns of the matrix.
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In the case of multihomogeneous polynomial systems, the groups of variables
can be assigned using the below vargroups vector and specifying the number of
variables of each group with the varsize vector. Moreover, one can specify the
multi-degrees of the polynomials (with the matrix ds below) and provide a polyno-
mial system with n+ 1 polynomials.

The command Sylvester.getMultiResDense outputs the elimination ma-
trixMν (written as res below) of the smallest bi-degree which as before is given by
the multigraded analogue of (6.4). In this case, one can also specify more than n+1
polynomials but, following the construction of Section 4.9 in Chapter 4, one has to
specify a set S of polynomials satisfying the hypotheses of Theorem 4.8.

In the most general sparse case, one has to specify the vectors generating the
fan of the toric variety (see the matrix U ) and, after this, the integer vector (ai,n+j)
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defining the inequalities of each Newton polytope (see the matrix a). Once these
are clarified, the Julia interface of the famous package Polymake [KLT20] is used
to generate the lattice points and the command Sylvester.randomSparsePoly
generates random polynomials with these Newton polytopes. Note that the matrix
U that we specify below is the negative of the matrix in (2.9).

Once these are specified, the command Sylvester.getResSparse outputs
the elimination matrixMν (written as res below) of the smallest bi-degree which
as before is given by the sparse analogue of (6.4).

137

https://oscar-system.github.io/Polymake.jl/stable/


Chapter 7

Open problems

All the contributions in the previous chapters leave many open discussions and
problems, which the author aims to dedicate in his future research. In the follow-
ing, we can list some of these problems and highlight their interest.

Resultants and sparse elimination

A conjecture on the greedy Canny-Emiris formula. A very natural question
for sparse polynomial systems is which are the matrices of smallest size that
one can build to represent the sparse resultant. In [CE23], we stated a conjec-
ture on the case of using the Canny-Emiris formula that can be described as
follows.

Assume that we areworkingwith coefficients in the field of complex numbers
C. Consider A0, . . . ,An be a family of supports corresponding to a multiho-
mogeneous system. Assume, also, that each of the Ai can be associated to a
multidegree in di ∈ Zd. The generic Hilbert function is defined as:

HF(d) = dim(S/I)d d ∈ Zd

where I is the ideal in C[M ] after specializing the ui,a to generic values in C.
This generic Hilbert function exists as we cannot have two different generic
behaviours for coefficients inC. Using the correspondence between polytopes
and multi-degrees that we described in the preeliminaries, we can associate
some of the subsets G ⊂ B to multi-degrees.
In the case of generic coefficients (still in the homogeneous case), this coin-
cideswith the degree atwhich one can build resultantmatrices: theMacaulay
bound (1). There is a multihomogeneous analogue of the Macaulay bound
[Ben19, Proposition 8.2.2] but, in general, it is not tight for the resultant con-
struction [ACG05]. We can relate these bounds to the mixed subdivisions that
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we considered in the previous sections. For instance, the whole set of lat-
tice points B can be naturally associated to the multi-homogeneous Macaulay
bound.

Conjecture 7.1. Assume that G ⊂ B is a set of lattice points in the translated
cells that corresponds to a multi-degree d ∈ Zd. If HF(d) = 0, then there is a
lifting function ω ∈

∏n
i=0RAi such that G is the greedy subset of such system.

Moreover, if HF(d′) 6= 0 for d′ ⪇ d, G contains no greedy subset.

This idea can easily be extended to the sparse case by considering generic
values of the Hilbert function associated to degrees in the Cox ring of a toric
variety. Following the use that wemade of the degree reverse lexicographical
monomial order in Chapter 5, it is natural to think that this lifting function
must be related to the degree reverse lexicograpical order. Namely, that for
two monomials xA, xB ∈ k[M ], we have:

xA <DRL x
B ⇐⇒ ω(A) ≤ ω(B).

Here ω(A) refers to evaluating the exponents of xA in the inf-convolution of ω
as in Definition 3.1.
In [CE22], we only considered affine lifting functions, for the sake of simplic-
ity on the combinatorics of the greedy algorithm. However, the results are
known to be not optimal, in the sense that there exist other lifting functions
that provide smaller resultant matrices. Therefore, a natural question is to
ask which subsets G ⊂ B can be obtained using the greedy algorithm for some
lifting function and which of them are minimal.

Example 7.1. Consider the same bilinear system as in Example 3.1. Another
possible non-affine mixed subdivision S(ρ) is the following:

.

The red dots indicate the greedy subset that one obtains by starting the algo-
rithm at the lattice points in mixed cells. A possible lifting function giving this
mixed subdivision is ω0 = (0, 1, 1, 3), ω1 = (0, 2, 2, 5), ω2 = (0, 3, 3, 7), which is not
affine. This lifting function satisfies this degree reverse lexicographical con-
dition. Moreover, the subset B obtained by considering all the lattice points
in translated cells can be related to the bi-degree (2, 2). However, the greedy
subset G that we have found corresponds to the bi-degree (2, 1). In particular,
this bi-degree corresponds to some existing exact resultant formulas [DE03].

Where should we perform elimination? Throughout the whole thesis, it is
assumed that if we are given a polynomial system, F0 = · · · = Fn = 0 with
Newton polytopes∆0, . . . ,∆n, then it is a good idea to exploit and understand
this structure for a better design of the algorithms of algebraic elimination
and thus, X∆ (for ∆ =

∑n
i=0∆i) is the toric variety in which we should work.
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However, it might not always be the case that the best representations for
resultants and elimination matrices come from exploiting this sparse setting.
For intstance, it might be the case that there are polytopes ∆i ⊃ ∆i such that
computing the resultant in this setting is sufficient for performing elimination
we have simpler representations for the resultant. Namely, we have that:

Res∆0,...,∆n
(F0, . . . , Fn) 6= 0.

In fact, D’Andrea, Jerónimo and Sombra provided necessary and sufficient
conditions for that to happen in terms of mixed integrals [DJS22, Theorem
3.19].

On the other hand, if we consider the greedy algorithm and the setting of
Conjecture 7.1, it is possible that the resulting polytope formed by the lattice
points in G does not correspond to a divisor in the same toric variety given
by the polytopes ∆0, . . . ,∆n. For instance, in Example 3.5, the resulting poly-
tope does not correspond to a nef divisor in Pn, even if the starting point were
polytopes corresponding to divisors in this variety. Thus, even in the dense
case, it is possible to consider elimination matrices and resultants which are
built from polytopes which do not correspond to divisors in the toric variety
defined by ∆0, . . . ,∆n.

As the rows of the Macaulay matrix for the resultant are related to the Castel-
nuovo-Mumford regularity, it is clear that in the resulting polytope, there will
be lattice points associated to the degree of regularity, but this does not mean
that all the lattice points of that degree belong to the Newton polytope of G.

All in all, it is possible to state the following big question: given a polynomial
system which is the best toric variety in which we can work for performing al-
gebraic elimination using resultants and elimination matrices?

Type functions. As we showed in the computational section, providing a de-
scription of the lattice points that are required after the greedy algorithm in
terms of type functions can simplify the implementation of the Canny-Emiris
formula. Can we give this type of description in a wider context that the cases
of n-zonotopes and multihomogeneous systems?

Generic dimension. The tecnique that D’Andrea, Jerónimo and Sombra used
in [DJS22] to derive that the Canny-Emiris matrix does not vanish is very in-
teresting. They used the fact that the lifting functions provide a tropical de-
generation of the polynomials and that the initial part of the determinant of
thematrix with respect to that degeneration is nonzero. This idea can be very
interesting to use this tecnique to derive the non-vanishing of Macaulay ma-
trices for computing the generic dimension depending on parameters. This
can be very interesting both in applications [FHPE23] or in the toric setting
[BS24].
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Sylvester forms

The σ-positive property. The use of the σ-positive property follows the intu-
ition coming from the dense and multihomogeneous case that if a polytope is
described in terms of a degree which has a negative entry, then there are no
lattice points in that polytope; see Remark 2.3. As noted in Conjecture 4.1, we
can expect that a broad range of toric varieties (specially smooth) satisfy this
property. On the other hand, we can notice that some relevant counterexam-
ples do not satisfy the σ-positive property. For instance, the counterexample
given by Maclagan and Smith in [MS04, Example 6.11] of a toric variety such
that its Cox ring is not 0-regular does not satisfy this property.

Computational aspects of Sylvester forms. Further work is needed to an-
alyze if some toric Sylvester forms can be avoided or combined to gain in
efficiency. A more practical approach for future improvements would be to
add Sylvester forms step by step (similarly to the “degree-by-degree” approach
developed in [BT21]) until the expected corank is achieved, or some other cri-
terion needed to solve the polynomial systems is satisfied (see e.g. [BT21, Def-
inition 2.1]). An interestic topic related to further study of Sylvester forms is
how they might be included in computer algebra systems. The fact that they
are defined only in the case of n+1 polynomials in n (affine) variables is a big
restriction for this use. However, in some cases, a part of the variables could
be considered as the parameters of the system and the Sylvester forms can
be computed with respect to the rest. With this, one can try to compute the
saturation with respect to some of the variables, which can be contained in
the saturation with respect to the irrelevant, which contains the interesting
geometric information of the polynomial system.

Hybrid resultant formulas. In Example 4.7, we mentioned that the case
n = 2 and α = δ is the only case for which a method for choosing a minor
of the hybrid elimination matrices, extending in the Canny-Emiris formula;
see [DE01]. Finding a more general method for choosing a minor of the hy-
brid elimination matrices could help generalizing the Canny-Emiris formula
to the matrices that use toric Sylvester forms could be interesting for finding
further compact representations of the sparse resultant.

Multigraded regularity and generic initial ideals

Complete the picture and relation with other objects. The definition of
xreg(I) is pivotal to the contribution of this paper, as it allowed us to general-
ize the criterion of Bayer and Stillman in [BS87a] to the case of the bi-generic
initial ideal bigin(I), using the DRL monomial order (5.4). This region is de-
scribed in terms of the local cohomology with respect to mx. The study of the
local cohomology modules by Chardin and Holanda in [CH22] allows us to re-
late xreg(I) with the Castelnuovo-Mumford regularity reg(I) [MS04]. On the
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other hand, this invariant preserves some of the properties of the degree of
regularityRx(I) in [ACDN00; Röm01], but allows us to describe the bi-degrees
of the generators of bigin(I) in terms of a region which, in general, is larger
than the one described by Rx(I). All these results follow identically in the
multigraded case.

As we see Figure ??, there can be unbounded regions that do not intersect
xreg(I). Therefore, we cannot use xreg(I) to give a complete characteriza-
tion of the bi-degrees of the generators of bigin(I). The idea of the proof of
Theorem 5.7 can be used in further generality to derive that

(Jk−1 : xk)(a−1,b) = (Jk−1 +my(Jk−1 : xk))(a−1,b) ∀k = 0, . . . , n

⇐⇒ There is no generator of bigin(I) of degree (a, b). (7.1)

for Jk−1 = (bigin(I), x0, . . . , xk−1). This last result is the closestwe can get to the
complete characterization of de bi-degrees of the generators of bigin(I), gen-
eralizing (1.7) to the bigraded setting. However, we were not able to charac-
terize the left hand side of (7.1) in terms of the algebra of I (local cohomology,
Betti numbers...), generalizing xreg(I).

A sparse generic initial ideal. Knowing for which toric varieties there is an
analogue of the generic initial ideal can also be very helpful for extending the
theory we described for multihomogeneous systems to other toric varieties.

How to structure Gröbner-based computations withmultigraded polyno-
mials? In our work on multigraded regularity, we motivated the use of the
DRL monomial order (see Remark ??) and we assumed a fixed relative order
of the variables of different multi-degree. However, we do not derive that this
monomial order is necessarly going to provide the best approach towards the
computation of a Gröbner. Proving that requires an extra study, considering
also the relative orders inwhich the variables of eachblock canbe intermixed.

xreg(I) and effective computations. In Theorem 5.4, we showed that the
regularity region xreg(I) extends the criterion of Bayer and Stillman to the
setting of multidegrees. This criterion has been applied in other contexts, for
instance in the use ofMacaulaymatrices for the construction of normal forms;
see [TMVB17]. More concretely, as xreg(I) only depends on the structure of
the multigraded ideal with respect to one group of variables, we believe that
our criterion can be applied in the case that we want to recover the geometry
of the projection of the solution set to the projective space corresponding to
that group of variables. For instance, in the case that the projected solution set
is formed by a finite number of points, we could try to recover those points by
posing an eigenvalue problem, as we explained in the introduction. This idea
could be very interesting in the context of systems that depend on parameters.

Other applications. During the thesis, we focused on sparsity as a general and
widely used structure to exploit. However, the systems that usually appear in ap-
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plications have further structure which cannot always be seen from this paradigm.
For instance, the polynomial systems modeling the steady states of chemical reac-
tion networks. They sometimes exhibit toric structure [Cra+09], but their structure
is much more particular than the general type of polynomial systems we studied
in this thesis.
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