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Abstract

Aligning maritime design schemes with Industry-4.0 and -5.0 trends, this PhD thesis aims

to propel initiatives for developing novel data-driven technologies that cover the full spec-

trum of simulation-driven design optimisation activities by i) improving the efficiency of

design space exploration, ii) reducing the overall computational cost, iii) developing versa-

tile design parameterisation, and iv) integrating human intelligence in the design process.

These objectives are achieved by proposing new novel tools and techniques within paramet-

ric sensitivity analysis (PSA) and feature extraction paradigms to eliminate less significant

towards the designs’ physics and construct geometry-driven, physics-informed and user-

integrated subspaces.

First, a novel intra-sensitivity concept is proposed to study the local behaviour of para-

metric sensitivities and eliminate instabilities - a parameter can be sensitive in certain

local areas of the design space but become insensitive in others. Therefore, the outcome

of intra-sensitivity allows designers to construct viable design spaces for the reliable exe-

cution of PSA. Afterwards, implementation of PSA or intra-sensitivity is expedited with a

new geometric-moment dependent PSA that harnesses the geometric variation in a design

space using geometric moments to measure parametric sensitivities. A shape-supervised

dimension reduction approach is also developed. It extracts a high-level geometry descrip-

tion as a shape signature vector and uses it as a substitute for physics to construct a

physics-informed design subspace. A feature-to-feature learning strategy is also proposed

to create a functionally-active subspace for expediting the construction of surrogate models
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Chapter 0. Abstract

at an off-line stage. For the versatile parameterisation of ship hulls, we developed ShipGAN

using deep convolutional generative adversarial networks, so the resulting parametric mod-

eller is generic with the ability to perform feasible and plausible design modifications for

a large variety of hulls. Finally, we propose a generative and interactive design tool which

aids users during optimisation by guiding the design exploration towards user-centred and

physically optimised designs.
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Chapter 1

Introduction

“The digital revolution is far

more significant than the

invention of writing or even of

printing.”

Douglas Engelbart

With the rapid technological advancements and worsening environmental conditions,

there has been an evergrowing demand for sustainable and innovative design solutions opti-

mised against safety, performance, reduced cost and enhanced visual aesthetics. A typical

product design process involves a series of nontrivial design phases, among which the con-

ceptual phase is recognised as of foundational and fundamental importance. Designers

need to explore various creative and ingenious alternatives, which are initially executed via

two-dimensional (2D) sketches followed by three-dimensional (3D) computer-aided design

(CAD) models and physical prototypes for validation within designs’ functional require-

ments and target customers’ preferences. However, this phase can be time-consuming,

especially if the products’ functionality, practical validity and visual appearance are all

critical drivers of the design process. This is mainly because the design may be function-

ally optimised but impractical from a useability and manufacturing point of view or does

not meet customers’ psychological preference for the product’s appearance.
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Therefore, it is essential to have a robust computational design tool to facilitate de-

signers and engineers throughout product development to synthesise a diverse set of design

ideas driven by engineers’ performance requirements and designers’ perceptions regarding

designs’ feasibility and form appearance. More importantly, such a tool will also ensure

economic product development, allowing designers and engineers sufficient time to focus

on its sustainability and environmental, social, and ethical impact. As for many products,

their early stages of development have been identified as the stages most adversely affecting

the environment.

The evolution of computational power has enabled designers and engineers to expe-

dite traditional product design with computer-aided design (CAD) tools and physics-

based simulations, which have become indispensable for handling various design problems.

Their involvement throughout this process engendered simulation-driven design (SDD),

which involves rapid exploration of parametric design spaces for global optima leading to

shorter product development cycles. Typically, SDD commences with an intuitive design

parametrisation for formulating diverse and rich design/search spaces. These spaces are

explored in conjunction with optimisers and shape modification methods to improve a

baseline design based on certain performance criteria. See Fig.1.1 for the overall workflow

of a typical SDD pipeline.

For design problems involving free-form shapes, SDD often suffers from high computa-

tional costs, which are associated mainly with the

1. parametrisation of a baseline design,

2. its physics evaluation [5] and

3. design space exploration.
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Figure 1.1: Workflow of typical simulation-driven shape optimisation.
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1.1 Effective design parameterisation

In parametrisation, such a cost is initially steered by the type of parametrisation con-

ducted and the number of design parameters used. The number of these parameters has

an exponential impact on the overall computational cost, thereby giving rise to the curse

of dimensionality [6]. Compared to low-dimensional design spaces, a high-dimensional

one may increase the drive towards a globally optimal design, but it will be at the ex-

pense of exhaustive exploration resulting in an evaluation of numerous designs involving

computationally demanding simulations. Therefore, a practical parametrisation should be

sufficiently versatile to cover a large spectrum of design possibilities and concise enough

to parametrise all critical features with only a few parameters [7, 8] (see Fig. 1.2 for an

example of a parametric design).

Figure 1.2: An example of parametric design modification of ship hulls.

Therefore, the design parameterisation tasks can be extensively tricky. The quality of

design spaces used in SDD substantially impacts their outcome. These spaces are usually
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narrow, with minimal design variations and may contain invalid designs. More importantly,

these spaces are solely constructed based on the design geometry with no information on

physics.

In SDD, performance evaluation of designs is conducted with physics-based simulation

tools, such as Computational Fluid Dynamics (CFD), Computational Structural Dynamics

(CSD), Computation Aeroacoustics (CAA), etc., which are the key drivers of design space

exploration [9], and are continuously evolving to achieve a high level of fidelity. However,

simultaneously they are becoming computationally intensive, requiring unaffordable com-

putational resources even for a single simulation run [10]. As an example, a CFD-based

statistically significant evaluation of ship performance in waves may require up to 1M CPU

hours on HPC systems [11]. Consequently, the extensive use of these tools can be imprac-

tical for rich and vast design spaces, which are often incurred by design constraints to

confine exploration to feasible designs [12]. A more critical bottleneck can be encountered

for high-dimensional design spaces, which, as described earlier, are favoured for maximal

performance improvement [13]. This further ignites the curse of dimensionality, thus ham-

pering optimisation’s success.

1.2 Tackling computational complexity

The existing techniques used to reduce the exorbitant computational costs mainly fall into

two categories. One line of work focuses on developing computationally less demanding

solvers [14, 15] while the other leverages computational resources with data-driven ap-

proaches [16, 17]. Recently, the most astounding results in reducing computational cost

while maintaining the high approximation accuracy of designs’ physics are achieved via

data-driven approaches. These approaches can be broadly classified as dimensional re-

duction and surrogate modelling, employed to reduce the design space dimensionality and

bypass designs’ performance estimation with simulation tools, respectively [18].
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Figure 1.3: The dimensionality of the original high-dimensional design space (represented
here as a hypercube) can be reduced significantly by eliminating the parameters less sen-
sitive to the physical quantity of interest or by extracting the latent features along which
materialise maximum variation in the geometry. The resulting lower-dimensional space
can be used for efficient design exploration, thereby expediting the optimisation and po-
tentially cutting down the overall computational cost.

1.2.1 Design space dimensionality reduction (DSDR)

The common cure is dimensionality reduction, for which there are well-studied unsuper-

vised [12, 19] and supervised [20] approaches (see Fig. 1.3 for an illustrative example

of DSDR). Implementing supervised techniques require consideration of design physics,

but using unsupervised ones does not. Unsupervised approaches are also referred to as

feature extraction (FE) or manifold learning. These approaches aim to extract latent fea-

tures/variables from the design space, which can be classified as geometrically active or

inactive depending on their importance in affecting a shape’s geometric variability [21].

Inactive features are redundant, and their usage has no or minimal impact on shape varia-

tion and performance improvement during optimisation; thus, they can be safely ignored to

reduce the space’s dimensionality. The geometrically active latent features form a new set

of parameters for shape modification and construct a basis spanning a lower-dimensional

subspace for faster optimisation convergence with fewer computationally intensive design

evaluations.

The widely used FE-based design space dimensionality reduction (DSDR) approaches
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include Active Subspace Method (ASM) [20], Karhunen-Loève Decomposition (KLD) [22]

(closely related to Principal Component Analysis (PCA), the so-called proper orthog-

onal decomposition [12, 16]) and their non-linear extensions, such as kernel PCA [23],

ISOMAP [24], LLE [25] to handle design space non-linearities if present. Recently, Machine

Learning-based approaches, autoencoders [23,26] and their variations [27,28], emerged from

applications in image analysis, object recognition, speech analysis, clustering, and data vi-

sualisation etc., have gained attention in DSDR literature.

In contrast to the above-described FE-based approaches, DSDR is also performed with

a parametric sensitivity analysis (PSA) [18], which are supervised approach and measures

the sensitivity of each parameter towards the variability of a design’s physical perfor-

mance. The degree of sensitivity is measured with a metric called the sensitivity index,

which facilitates parameters’ ranking. As less sensitive parameters affect a shape’s physical

performance less, they can be excluded to reduce a problem’s overall dimensionality.

1.2.2 Unsupervised (FE) versus supervised (PSA) DSDR

The efficiency of both supervised and unsupervised DSDR approaches is manifested in

various applications to mitigate the curse of dimensionality [19,21,29]. However, since FE-

based unsupervised techniques do not require performance labels, their implementation can

be less expensive than supervised methods. In contrast, The implementation of supervised

DSDR such as PSA is more informed because, along with dimension reduction, its assess-

ment is a meaningful prerequisite to reducing uncertainty [30] and identifying the driving

features of designs that account for the maximum or minimum variability in performance.

Through these effects, PSA advances enhanced resource allocation from the preliminary

design stage, thus expediting the entire product development for maximal performance

improvement [31].

Drawback of unsupervised DSDR (FE): Implementing FE-based DSDR approaches

can be ineffectual, primarily when no direct correlation exists with associated shape modi-

fication [12,16]. The resulting subspace will have a basis forming merely a new orientation
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of the design space without capturing any associated geometric features [12, 29]. More-

over, another deficiency of unsupervised approaches is their inability to preserve a shape’s

complexity and its intrinsic underlying geometric structure. Thus, the resulting subspace

lacks the representation capacity and compactness, which, as defined in [28, 32], is sub-

space’s ability to produce diverse and valid shapes, respectively, with least number of

latent variables when being explored for shape optimisation. These deficiencies can ham-

per the success of the optimiser as it may spend the majority of the available computational

budget on exploring infeasible, practically invalid and similar shapes. Therefore, subspace

may not be an optimisation-efficient subspace because, even if a high geometric variation

is preserved, maximum design improvements are not guaranteed; see [21, 26, 27, 33]. How-

ever, it should be noted that these techniques’ inability to extract appropriate geometric

or physics-associated features is not necessarily an intrinsic characteristic; it mainly stems

from the geometry representations used in subspace learning, which are commonly low-level

shape discretisations. Thus, extracting intrinsic latent information from such representa-

tions becomes implausible; richer representations with high-level information related to the

underlying shape’s structure and physics are imperative.

Drawback of supervised DSDR (PSA): The implementation of PSA can be prone

to

1. intrinsic instabilities, and

2. high computational cost.

The instabilities in PSA are induced due to the fact that a parameter can be sensitive within

a particular local region of the design space but become insensitive in some other areas.

Therefore, setting a viable design space becomes challenging for robust and desired results.

Sensitivity analysis within a non-viable design space can result in an inconsistent and false

estimation of parameter sensitivity, wasting time and computational resources. Whereas

the computational cost of PSA is mainly induced due to the requirement of performance

labels.
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Instabilities due to parametrisation and design space: From the design parame-

terisation point of view, these instabilities mainly stem from complexities of geometric rep-

resentation. This problem is proficient in the parametrisation of free-form shapes compared

with the parametrisation of solid models, whose parameters directly affect design features;

free-form parametrisation is only partially driven by features [34]. This nature makes it

challenging to quantify key features, which can essentially materialise the most significant

improvement in design performance. Different techniques can be used to parametrise a

free-form shape depending on the underlying geometric representation, but such usage

may draw different PSA results. Thus, the selection of suitable parametric techniques can

also be challenging, dissuading designers from adopting PSA.

At the preliminary stage, the distribution of design parameters is unknown; therefore,

PSA is performed within a design space established by defining these parameters’ upper

and lower bounds (i.e., limits). These bounds create parametric ranges, over which PSA

quantifies parametric sensitivity. Along with the dimensionality issue, the decision on the

choice of these limits of a design space should be made tentatively. It should not be narrow

so that it restricts new ideas, which is particularly important at a preliminary. At the same

time, space should not be so wide as to result in the wastage of computational energy in

exploring non-viable regions [35].

More importantly, variability in parametric ranges causes fluctuations in the sensitivity

of design parameters obtained from PSA [36]. A parameter can be sensitive within a certain

region of a design space and becomes insensitive in another. A slight perturbation in the

range of any parameter may cause not only a deviation in its own sensitivity index but also

in the sensitivity of the remaining ones. In this context, securing robust sensitivity results

can be difficult. If inappropriate ranges are chosen, then PSA results can mislead the de-

signer about the inherent sensitivity of parameters. Therefore, it is essential to investigate

the influence of different parametric ranges on PSA results, which will be referred to as

intra-sensitivity, defined as the process of identification of parameters whose perturbation

in the range is most influential on the sensitivity of others. Once identified, intra-sensitive
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parameters can be tuned further to avoid uncertainty in the sensitivity results.

Computational complexity of PSA: The analytical implementation of PSA can be

complex, especially if PSA necessitates the evaluation of high-dimensional integrals or if

Quantity of Interest (QoI), representing designs’ certain performance criterion, cannot be

evaluated analytically. Therefore, PSA is approximated with sampling techniques, which

can induce computational complexities in case of high-dimensional problems with costly

QoIs [37]. Though Monte Carlo (MC) sampling, which is widely used, is not much influ-

enced by the dimensionality; however, it is susceptible to slow convergence, as it requires

a sufficiently large number of samples for stable results. A slightly better convergence rate

can be obtained with quasi-Monte Carlo (Q-MC) or Latin-Hypercube (LH) methods based

on uniformly distributed design sequences. Nevertheless, their advantages also disappear

in high-dimensional design spaces [38]. Therefore, it is essential to have a robust approach

that progressively creates an optimal sample set, uniformly covering the high-dimensional

spaces with few numbers of diverse samples hence approximating a solution closer to the

analytical one.

If PSA is to be implemented at the preliminary design stage, then at this stage, a

designer is not always interested in accurately estimating the performance, so using a

meta-model or computationally less demanding solvers in PSA can result in reducing the

computational cost. Therefore, to lessen the computational burden, surrogate models

are often used to accelerate the PSA as, at the preliminary stage, designers may not be

interested in accurately estimating the performance [37]. Surrogate modelling is also a su-

pervised learning approach. Despite the undoubted efficiency, their usage is often hindered

by the availability of data, which is profound in engineering applications where data is

the outcome of expensive physical simulations [10] and may exacerbate the entire design

pipeline. Recently, to combat this insufficiency, these approaches have been revitalised via

scientific machine/deep learning, such as Physics-Informed Neural Networks (PINN) [17].

PINNs are trained to integrate differential equations modelling the physics along with a

moderate amount of data from simulations or experiments to approximate the underlying
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Partial Differential Equations (PDE) solution. In fact, if the PDE problem is well-defined

along with appropriate initial and boundary conditions, then PINN can identify the unique

solution without any simulation data [10]. Their potential has been exploited in fluid me-

chanics [17], solid mechanics [39], and dynamical systems [40].

1.3 Efficient and intuitive design exploration

Efficient exploration of design spaces is another challenge that SDD has to overcome. Even

if the design space is well-defined, exploring and finding a global solution satisfying all de-

sign requirements can still be challenging. The exploration is conducted with suitable

optimisation algorithms, which are well separated into three categories: exact, heuristic

and metaheuristic techniques. Exact techniques are built on a strong mathematical founda-

tion. Their usage is limited for complex problems in the maritime industry as they require

the evaluation of complex functional derivatives of the metrics involved, which would in-

crease the computational cost with regard to the dimension of the design space. Heuristics,

on the other hand, are problem-dependent optimisers, and though computationally afford-

able, they cannot guarantee to provide the global optimum. Finally, metaheuristics are

not-problem-dependent techniques; however, in order to avoid getting trapped near local

optima, metaheuristics have to perform a high number of iterations involving the evalua-

tion of performance metrics, which is not unlikely to be of inhibitive computational cost in

the case of high-fidelity simulations, e.g., when using a CFD tool for evaluating the total

resistance of a ship in full scale for a single Froude number.

Furthermore, the non-intuitive nature of these techniques cannot capture the design-

ers’ design intention as the optimisers solely drive the optimisation based on physics. The

resulting design may be optimal for specific performance criteria but infeasible for practi-

cal usage. Therefore, during the exploration of design space, optimisers should not only

find the optimal design in terms of physical performance but also a design which captures

the designers’ perception related to its physical form. As it is critical to generate a fi-
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nal shape that, along with the design specifications, meets the customers’ physiological

preference for the product’s appearance to make it successful within the market, e.g., the

physical form or the layout that would render a new yacht design successful in the market.

Therefore, an essential element of the design exploration process should be the inclusion

of psychological aspects that affect the design. This is especially crucial when it comes to

the optimisation of free-form shapes like ships. Although some academic scholars from the

maritime field have made a considerable contribution to the modernisation of preliminary

ship design techniques, their usage in the industry is still limited. Some of the recent

efforts to support ship design at the initial stage include the development of attribute-

based design techniques [41]; parametric design systems [42]; library-based [43], sketching

based [44], interactive optimisation [45] based and three-dimensional packing based [46,47]

approaches for exploration of hull form variations; simulation-driven [48] and holistic ap-

proach to ship design [49] and machine learning-based ship design method to assist the

optimisation towards the optimal solution [50].

Intuitive Design 
Parameterisation 

Simulation 
Driven Design

Reduction of 
computational Cost

Efficient Design 
Space Exploration Integration of Human 

Intelligence

Figure 1.4: Requirements for effective simulation-driven design optimisation.
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Novelty

As depicted in Fig. 1.4, a compelling implementation of simulation-driven design optimi-

sation necessitates a robust and intuitive design parameterisation for geometrically valid

and feasible design variation. However, the design space resulting from this parameteri-

sation should be versatile and low-dimensional while providing enhanced design diversity.

However, the existing approaches used to create such spaces suffer from their intrinsic de-

ficiencies, such as feature extraction-based techniques resulting in spaces that are prone to

creating many infeasible designs and lack any notion of physics. In contrast, supervised

approaches like PSA can overcome this, but their implementation has limitations, such as

they suffer local instabilities and are computationally demanding. Furthermore, the explo-

ration of design spaces should be more efficient and human-driven to facilitate designers

and engineers throughout the product development to synthesise a diverse set of design

ideas driven by engineers’ performance requirements and designers’ perceptions regarding

designs’ feasibility and form appearance.

To overcome the aforementioned challenges towards SDD, we make the following major

contributions in this thesis (see the contribution summary in Fig. 2.1):

1. An intra-sensitivity technique to tackle the problem of local instabilities in PSA by

identifying parameters whose perturbation has a significant impact on the sensitivity
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index of the remaining parameters (chapter 4 [18]).

2. A geometric moment-dependent sensitivity analysis approach that harnesses the ge-

ometric variation of designs in a design space using geometric moments [14, 51] as

a geometrical Quantity of Interest (QoI) to measure parametric sensitivities. This

bypasses the need for evaluating expensive physical QoIs, and the results of the pro-

posed approach can serve as a prior estimation of parametric sensitivities and use to

construct a design space of lower dimension with only a subset of highly/strongly sen-

sitive parameters for shape optimisation performed against physical QoI. (Chapter

5 [52]).

3. An FE-based shape-supervised DSDR approach which uses geometric moments to

harness the compact geometric representation of the baseline shape and complement

its physics during DSDR. Therefore, the resulting subspace has an enhanced capacity

to produce a valid and diverse set of design alternatives, respectively, and is also

physically informed to improve the convergence rate of the shape optimiser towards

an optimal solution (Chapter 6 [53]).

4. A feature-to-feature learning approach to construct a physics-embedded lower-dimensional

space for accelerating the training of surrogate models constructed with Gaussian

process regression, which are later used to expedite the shape optimisation (Chapter

7 [21]).

5. A deep convolutional generative adversarial network, ShipGAN, to create a generic

parametric modeller who can create geometrically valid and practically feasible al-

ternatives of various ship hulls with the capability to transform one type of hull into

a completely different one (Chapter 8).

6. A new interactive design system, GenYacht, which brings the benefit of the interactive

and generative design to the preliminary design stage to generate user-driven hull

forms with better performance (Chapter 9 [54]).
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Figure 2.1: Contribution of thesis towards simulation-driven design optimisation.
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2.1 Overview of proposed approaches

Intra-Senstivity. The concept of intra-sensitivity is introduced to identify parameters

whose perturbation has a major impact on the sensitivity index of the remaining parame-

ters. For this purpose, we first appeal to Active Subspace Method (ASM) and develop an

ASM-based regional sensitivity analysis, which investigates parametric sensitivity in local

regions of the design space and aids in extracting parameters’ intra-sensitivity. This re-

gional analysis is applied in conjunction with a Dynamic Propagation Sampling approach

for tackling the computational complexity arising when high-dimensional problems are

concerned. Once sensitive and intra-sensitive parameters are identified, then free-form fea-

tures correlated to these parameters are evaluated using a feature saliency map built with

the aid of Hausdorff distance.

Geometric moment-dependent PSA. To expedite PSA in the context of shape

optimisation of free-form shapes. To leverage the computational burden that is likely to

occur in engineering problems, we construct a shape signature vector and propose to use

it as a substitute for physics. SSV is composed of shapes’ integral properties, in our case

geometric moments and their invariants of varying order (evaluated using the divergence

theorem), and is used as quantity-of-interest (QoI) for prior estimation of parametric sen-

sitivities. Opting for geometric moments is motivated by the fact that they are intrinsic

properties of shapes’ underlying geometry, and their evaluation is essential in many physical

computations as they act as a medium for interoperability between geometry and physics.

Shape supervised DSDR. In shape optimisation problems, subspaces generated with

conventional FE-based DSDR approaches often fail to extract the intrinsic geometric fea-

tures of the shape that would allow the exploration of diverse but valid candidate solutions.

More importantly, they also lack incorporation of any notion of physics against which shape

is optimised. To simultaneously tackle these deficiencies, the proposed Shape supervised

DSDR uses higher-level information about the shape in terms of its geometric integral

properties, such as geometric moments and their invariants. Their usage is based on the
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fact that moments of a shape are intrinsic features of its geometry, providing a unifying

medium between geometry and physics. To enrich the subspace with latent features associ-

ated with the shape’s geometrical features and physics, we also evaluate a set of composite

geometric moments, using the divergence theorem, for appropriate shape decomposition.

These moments are combined with the shape modification function to form a decomposed

SSV uniquely representing a shape. Afterwards, the generalised Karhunen–Loève expan-

sion is applied to SSV, embedded in a generalised (disjoint) Hilbert space, which results

in a basis of the shape-supervised subspace retaining the highest geometric and physical

variance.

Feature-to-feature learning. To release the computational burden of SDD, we

adopted a two-step feature-to-feature learning methodology to discover a lower-dimensional

latent space based on the combination of geometry- and physics-informed principal com-

ponent analysis and the active subspace method. In the first step, statistical dependencies

implicit in the design parameters encode important geometric features of the underline

shape. During the second step, functional features of designs are extracted in terms of

previously learned geometric features. Afterwards, geometric and functional features are

augmented together to create a functionally-active subspace whose basis captures the ge-

ometric variance of designs and induces variability in the designs’ physics. As the new

subspace accumulates both the functional and geometric variance, it can be exploited for

efficient design exploration and the construction of improved surrogate models for designs’

physics prediction.

ShipGAN. In this work, we developed a ShipGAN model using deep convolutional

generative adversarial networks (GANs) for the versatile parameterisation of ship hulls.

For reliable training, we first select various categories of ship designs, including containers,

oil tankers, bulk carriers, naval and crew supply vessels, etc., resulting in a shape dataset

containing 52,591 designs. This strategy makes ShipGAN a generic parametric modeller

with the ability to perform feasible and plausible design modifications for various hulls.

The new model breaks the current conservatism in the parametric ship design paradigm,
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where parametric modellers can only handle a particular ship type. We developed a new

shape reconstruction strategy to convert all the training designs into a common geometric

representation of the same resolution, as typical GANs can only take fixed dimensional

vectors as input. A space-filling layer is placed right after the generator component to

ensure that the trained generator can cover all design classes without a mode-collapsing

issue. During training, designs are inputted in the form of a shape-signature tensor (SST),

which harnesses the compact geometric representation using geometric moments and, for

the ship design, induces the notion of physics. We have shown through extensive experi-

mentation that ShipGAN can create designs with augmented features resulting in versatile

design spaces that give geometrically valid and practically feasible shapes.

GenYacht. GenYacht, is proposed for creating optimal and user-centred yacht hull

forms. GenYacht is a hybrid system involving generative and interactive design approaches,

enabling users to create various design alternatives. Among them, a user can select a hull

design with desirable characteristics based on its appearance and hydrostatics/hydrodynamic

performance. GenYacht first explores a given design space using a generative design tech-

nique (GDT), which creates uniformly distributed designs satisfying the given design con-

straints. These designs are then presented to a user, and single or multiple designs are

selected based on the user’s requirements. Afterwards, based on the selections, the de-

sign space is refined using a novel space-shrinking technique (SST). In each interaction,

SST shrinks the design space, which is then fed into GDT to create new designs in the

shrank space for the next interaction. This shrinkage of design space guides the exploration

process and focuses the computational efforts on user-preferred regions. The interactive

and generative design steps are repeated until the user reaches a satisfactory design(s).

The efficiency of GenYacht is demonstrated via experimental and user studies, and its

performance is compared with interactive genetic algorithms.
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2.2 Thesis outline

This thesis comprises six technical chapters discussing in depth the significant technical

contributions of this thesis (see Fig. 2.2). Chapter three gives a background on current

industry standards and their usage in SDD. In chapter 4, we explain our intra-sensitivity

approach for identifying the local instabilities caused by the design parameterisation and

design space during the implementation of PSA. Chapter 5 proposes a new geometric

moment-dependent parametric sensitivity analysis approach that offloads the evaluation of

parametric sensitivities from the physical quantity of interest (QoI) to relatively inexpen-

sive geometrical QoI, which, compared to physical ones, are computationally less expensive

to evaluate but provide essential clues about the form distribution and validity of the de-

sign, such as geometric moments and their invariants. A new FE-based DSDR approach,

shape supervised DSDR, is proposed in Chapter 6, which uses a shape-signature vector

composed of shape modification function and geometric moments, whose eigendecomposi-

tion provided a rich and physic-informed design lower-dimension subspace for accelerating

the shape optimisation. In chapter 7, we work on approaches for expediting the construc-

tion of surrogate models with Gaussian process regression at an offline step. Chapter 8

explains our ShipGAN parametric model, which is based on a deep convolutional generative

adversarial network. Finally, in Chapter 9, we present the GenYacht tool based on novel

interactive and generative design techniques for user-centred and optimised exploration of

yacht hull designs.
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Figure 2.2: Thesis organisation.
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Background

3.1 Design parametrisation

Over the past decades, different application-specific and generic parametrisation tech-

niques [55–57], rule-sets [58], and strategies [13, 35] have been proposed. Cagan et al. [57]

described the parametrisation process as an iterative task, in which the decision on the

selection of a suitable parametric approach is typically driven by the design’s performance

objective, its underline geometric representation, allowed number of design parameters

and desired degree of design variability. For a typical engineering design, a feature-based

parametrisation [55] is usually favoured, in which critical performance-associated features

of the design are first identified and then parametrised with a rich set of parameters for

feasible design variations [13, 59]. Compared to the free-form shapes, the parametrisation

of solid models is generally straightforward, especially for those built from simple geomet-

ric primitives, such as mechanical components, and which result from a concurrent design

process in which the designer creates models with respect to their manufacturing processes.

For these models, identification of their features, such as holes, fillets, slots, chamfer, etc.,

is obvious, and the inherited parametrisation of these features, such as diameter of circle,

radius of fillet, length and chamfer angle, etc., can create a complete parametric set [56].

These features are characterised by Langerak [34] as regular form features and are linked
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with the manufacturing process. Such models may be parameterised in a free-form way,

but their deformation may not always result in plausible design variations. A mechanical

gear design can be an example of such components, typically constructed on feature-based

approaches and are parameterised with common parameters such as the number of teeth,

pitch circle diameter, face width, tooth thickness, etc., which are decided based on given

design requirements. In contrast, features of a free-form shape can be theoretically unlim-

ited [34], and their organic nature can be demanding for an efficient parametrisation.

In literature, different techniques, such as direct mesh-, basis vector-, domain element-,

partial differential equation-, free-form deformation (FFD)-, polynomial and spline-based

parametrisation, have been utilised for parametrisation of free-form shapes. A detailed

description of these approaches can be found in [60,60]. Among these, FFD- [61] and spline-

based techniques have been widely utilised in ship design. Some earlier and recent examples

of these are [1, 4, 62–64]. Apart from these CAD-based technologies, an early attempt

at parametric modelling of ships was made by Lackenby [65] in which hull variants are

obtained by modifying the prismatic coefficient, the centre of buoyancy and the extent and

position of the cylindrical mid-body of a hull. In spline-based approaches, control points

defining the surface are often considered design parameters, which may ease the decision on

the number of parameters, but the design modification with control points can be scruffy.

The precise construction of features of free-form shapes often requires many patches, which

have to join with adequate, at least G1−, continuity. Such construction processes increase

the number of control points. For instance, in the case of PD and FFD, the parent hull

constructed with T-spline and NURBS is composed of 114 and 15,401 control points,

respectively. Therefore, taking these control points as design parameters and performing

design modifications based on them can introduce additional redundant control points,

decrease smoothness and, more importantly, features of the modified shape may not retain

their underlying structure. Therefore, these approaches are often augmented to create high-

level parametrisation such as PD [4]. Although tightly application-dependent, PD couples

free-form features with control points through linear procedural relations creating a low-
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dimensional design space with a versatile set of design parameters. Some sophisticated

examples of PD in ship design are [1, 4, 54].

It is noteworthy that the underlying principles used in PD and FFD techniques are

different from each other. Therefore, shape optimisation performed with these techniques

for the same design can lead to different results of varying quality [66]. Consequently, it

is essential to study how PSA behaves when these two parametric approaches, in our case

FFD and PD, are used. We are mainly interested to see which parametric technique is

more efficient in detecting sensitive and intra-sensitive parameters.

3.1.1 Design space

Estimating parameters’ sensitivity with respect to QoI mainly depends on the design space

[30, 31]. Therefore, the identification of viable bounding values for parametric ranges is

crucial. The resulting space should be robust enough to provide feasible design exploration

and wide enough for design diversity to find the most optimal design [38]. For a typical

parametric design problem, Krish [35] recommends forming the design space while keeping

the initial design (in our case, the parent hull) at the centre of the space, representing

this design as the most common one that can be generated. A ϵ-margin sampling-based

approach was proposed by Chen, and Fuge [67], to set a feasible design space. It uses a

data-driven probabilistic model to refine and expand the existing parametric ranges. Wu

and Wang [68] proposed using knowledge-assisted models to set up an initial envelope of

design space and guide the exploration towards its feasible regions. Khan and Awan [13]

recommend that if no prior understanding of design specifications is available, a design

space can be coarsely set up by assigning the lower and upper limits as a percentage of

initial parametric values. Dogan et al., [69] in their generative design work, used a similarity

metric, which set the design space based on the desired degree of diversity in the samples.

The feasibility of the sampled designs was ensured with simple primitive constraints.

Following [35] and [13], this work design space is initially set up while keeping the

baseline design at the centre and defining the lower and upper limit as a percentage of the
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initial parameter values. It was further refined following Chen and Fuge’s [67] strategy to

minimise the possibility of invalid geometries. These invalid geometries are the sampled

designs for which the parametric modeller or simulation tool may fail to provide results.

These geometries can be excluded either by programming the internal constraints within

the parametric modeller or by adjusting the bounding limits. A typical example of invalid

free-form geometries is the designs with self-intersecting and non-watertight surfaces. Once

an initial design space is formed, sensitivity and intra-sensitivity analyses are performed

to identify the regions of designs contributing significantly towards the QoI and for the

refinement of the parametric ranges.

3.2 Parametric sensitivity analysis

PSA has been widely used [70,71], improved [36], adopted [72], and hybridised [31,73] with

other techniques for different purposes, but as stated in [74], one of its primary goals is to

reduce the dimensionality of the design space by screening out the less sensitive parameters

to designs’ performance. It should be noted that there are two types of approaches in the

field of parametric PSA, namely the local (LPSA) and global PSA (GPSA). LSA is usually

derivative-based [31, 75], in which the change in QoI is evaluated against the variation

of a single parameter. LSA investigates how a small perturbation near an input space

value influences the value of QoI. On the contrary, in GSA, all parameters are varied

simultaneously, and sensitivity is assessed over the entire range of each design parameter

constructing the design space [37, 75]. In complex engineering problems, the influence of

a design parameter may vary drastically as the remaining parameters change. Thus, it

could be inadequate to evaluate the impact of a parameter on the QoI with the other

parameters being kept constant. Accordingly, selecting significant parameters for shape

optimisation based on their GSA is more appropriate in real-world applications [76] and

used in the present work. The list of commonly used techniques is extensive, e.g., includes

variance-based (or Sobol’s method), derivative-based, density-based sensitivity and Morris
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method. Interested readers can refer to [72,77,78] for a detailed overview and comparison

of various PSA techniques.

3.2.1 Variance-based analysis

Among these techniques, variance-based methods like Sobol’s analysis is suitable for com-

plex nonlinear and non-additive models, therefore, are well received and utilised in different

design applications. This method investigates how much of the overall variance of QoI is

achieved due to the variability of a single or collection of design parameters. This variance

is usually measured with First-order indices (or main effects) or total-order indices (or

total effects). The former quantifies the direct contribution to QoI variance from an indi-

vidual parameter, and the latter approximates the overall contribution from a parameter

considering its immediate effect and interactions with all the other design parameters.

3.2.2 Active subspace method

An emerging advancement in reduced-order modelling and Global-PSA is ASM, which was

proposed by Constantine [79, 80] and has been used for different applications, including

ship hull design: see, e.g., [81–83]. ASM is based on the concept of discovering orthogonal

active and inactive directions in the original design space for a certain QoI, where QoI

have higher variability along with the active directions compared to the inactive ones.

The active directions are used as the basis for constructing a new design space, referred

to as active subspace, whose dimension is expected to be less than the original design

space. Once discovered, active subspaces can be exploited to identify both local and

global sensitivity of the problem’s parameters on QoI with no additional computational

cost [80]. As demonstrated in the present work, sampling-based estimation of sensitivity

index with ASM is computationally less demanding and robust as it can provide stable

results compared to Sobol’s analysis, even with a small sample size.
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3.2.3 Regional sensitivity analysis

Compared to PSA, regional sensitivity analysis is a new yet evolving field focusing on

investigating the contribution of a parametric range to the variability of QoI. One of the

earliest and well-structured regional analyses is the contribution to the Sample Mean Plot

(CSM) proposed by Sinclair [84] and was further developed by Bolado-Lavin et al. [85].

The motivation behind CSM is that once the most important parameter is detected, the

typical variance-based analyses do not facilitate the user in how any perturbation to the

range of an input parameter influences the overall results. Therefore, CSM can be used to

identify the local regions of the input space, which contributes highly towards the sample

mean of QoI. Other recent extensions of CSM can be found in [86,87].

Inspired by CSM, Tarantola et al. [36] proposed a Contribution to the Sample Variance

plot (CSV). CSV are similar to the CSM; however, instead of mean, they use variance to

infer the effect of local changes in design space on QoI variance. CSM and CSV evaluate

the mean and variance over the different quantile ranges of a parameter and plot them

against the cumulative distribution function of the parameter. If CSM or CSV are close

to the diagonal, it indicates that mean or variance is constant over the entire range. If it

shows fluctuation, then any perturbation in its range is more sensitive towards the mean or

variance of QoI. Both CSM and CSV techniques facilitate users to quantify the variability

of QoI over the range of a single parameter; however, it does not provide any information

on how the sensitivity index of the parameter is varied if its range is changed and what

impact it causes on the sensitivity of other parameters. On the contrary, the proposed

regional analysis not only helps to identify the regions of design that account for the highest

parametric sensitivity towards QoI but also identifies the parameters whose variation in

range triggers the most decisive influence on the sensitivity of other parameters.
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3.2.4 Computational complexity in PSA

The analytical implementation of GSA can often be tricky as it requires solving high-

dimensional integrals. In this case, one has to appeal to sampling methods, such as Monte

Carlo sampling (MCS) [37]. However, MCS is susceptible to slow convergence for stable

results, as it requires evaluating a sufficiently large number of samples via computationally

intensive physical simulations. Although a slightly better convergence rate can be obtained

with quasi-Monte Carlo (Q-MC) or Latin-Hypercube (LH) methods, which are based on

uniformly distributed design sequences, their advantage downgrade considerably in high-

dimensional design spaces [37]. A sequential strategy, namely progressive Latin hypercube

sampling (PLHS), was proposed by Sheikholeslami and Razavi [74]. As implied by its

label, PLHS searches the design in the class of Latin hypercube and uses a criterion of

space-filling to uniformly distribute the designs in a sub-set of sliced design spaces. Similar

to [74], Wu [88] also utilised space-filling to propose a SA, which initially commences

with samples obtained using the max-min principle of Latin hypercube, whose spread was

improved by maximising a Euclidean distance with a coordination sorting algorithm. Gong

et al. [89] compared different baseline sampling approaches, such as good lattice points,

symmetric Latin hypercube uniformity, Ranked Gram-Schmidt and Quasi-Monte-Carlo,

against uniformity scores and found out that a better convergence can be achieved with

the first two approaches. Recently, Khan and Kaklis [18] proposed a Dynamic Sampling

Strategy (DSS), which, along with space-filling, involves criteria of non-collapsing and

repulsion. This method progressively increases the number of samples in each iteration;

the non-collapsing maintains the diversity while repulsion helps create designs different

from previously sampled ones in each iteration. DSS is proven to approximate a solution

closer to the analytical one with a small sample size and, therefore, used in the present

work.

As mentioned earlier, surrogate models such as non-parametric regression [90], poly-

nomial chaos expansions [91], support vector machines [92], low-rank tensor approxima-
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tions [93], Gaussian processes [16], and other Kriging methods [94] are also widely used for

revealing parametric sensitivities with respect to costly physical quantities. Apart from

the traditional surrogate modelling approaches, deep learning approaches [95] have recently

gained attention specifically for quantifying key resource uncertainty in the system. De-

spite their proven efficiency, the sensitivity of parameters evaluated with these methods

heavily depends on the accuracy of the surrogate models [16,37].

Along with using retrofitted versions of the sampling methods to improve convergence

and surrogate models to bypass expensive physics evaluation, few attempts have been

made to ease the computational burden in the context of reducing the dimensions of

a high-dimensional problem before performing PSA. For instance, Pronzato [73] used a

Bayesian Linear Model constructed through a particular Karhunen–Loéve expansion to

estimate Sobol’s indices at a reduced computational cost. Furthermore, Sheikholeslami

et al. [37] utilised a clustering-based strategy to ease the computational burden of imple-

menting typical SA on high-dimensional design problems. Masood et al. [16] performed the

eigendecomposition of the original design space using PCA and then proposed a method to

drive the sensitivity of actual parameters from their lower-order projection. This method

reduces the number of samples required to evaluate the robust sensitivity indices.

3.2.5 Instabilities in PSA

Apart from the high computational cost, another significant but often neglected challenge

SA has to deal with is related to the fact that the sensitivity of parameters varies locally

within the design space, meaning a parameter can be sensitive in some local regions of

the design space but become insensitive in others. Such behaviour makes SA vulnerable

to instabilities even with slight perturbation in the parametric ranges of the design space.

Consequently, SA should be performed cautiously, especially at the preliminary design

stage. At this stage, the design problem needs to be better established, and designers must

be aware of the appropriate parametric ranges for performing a reliable sensitivity study.

SA within a non-viable design space can be dismayed, eliminating essential parameters
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from the design study.

To tackle this problem, we proposed intra-sensitivity to evaluate the behaviour of para-

metric sensitivity in local regions of the design space and to identify parameters whose

perturbation in the range generates the most considerable inconsistency in the sensitivity

of other parameters, respectively. Although these techniques can provide substantial aid

to designers for reliable sensitivity studies, they are computationally demanding because of

the extraction of the local behaviour of parametric sensitivities. Therefore, next, we appeal

to a different direction to support the sensitivity study of design problems using quantities

like geometric moment invariants, which, compared to physical criteria, are time inexpen-

sive even for complex free-form or organic shapes but provide important clues regarding

the physics. This work performs an extensive experimental study to prove that geometric

moments can ease the designer in estimating parameters’ sensitivity at the initial design

stage.

3.3 Feature Extraction

Recently, GANs [32] have been used for reparameterisation of the shape with latent fea-

tures, as baseline parameterisation approaches, like the ones used in free-form deformation,

produce high-dimensional design spaces [18] that do not guarantee feasible/valid shapes.

Chen et al. [32] proposed the Bézier-GAN for two-dimensional (2D) aerofoil design by

introducing a Bézier layer into GAN to maximise subspace’s representation capacity and

compactness. However, the baseline parameterisation cannot automatically guarantee valid

shapes and, as a result, these approaches require a training dataset of existing designs,

which may prevent optimisers from finding innovative designs; a drawback studied in de-

tail by Li and Zhang in [28]. Moreover, their usage can be problematic for novel problems,

as, in this case, creating training datasets can be extremely arduous.

Furthermore, although subspaces resulting from the approaches described above may

address the validity problem, physics-associated features still need to be present. The
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Active Subspace Method [79] and supervised KLE [33] can handle this issue, but they

become computationally intensive as they require direct evaluation of physics quantities

and/or their gradients. Yonekura and Suzuki [26] recently used a conditional variational

auto-encoder (CVAE) for aerofoil design. They used the lift coefficient as a condition to

auto-encoder during training so that the decoder could generate the shape with specific per-

formance. Chen and Ahmed [96] proposed PaDGAN to augment the design performance

into the generator to create high-quality designs with good optimisation convergence. An-

other GANs-based method was proposed by Shu et al. [27], which elevates the quality of

generated designs by iteratively updating the training dataset using performance-based

design filtering. All methods above, i.e., [26, 27, 33, 79, 96] are efficient but supervised and

therefore require performance labels to be evaluated for a large shapes dataset; if not

readily available, the creation of such a dataset is computationally very demanding.
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Intra-sensitivity: Understanding

local behaviour of parametric

sensitivities

“Limit risk with: Deep analysis

Bargain purchase Sensitivity

analysis.”

Seth Klarman

4.1 Introduction

In this chapter, we develop and test a novel approach to tackle the difficulties inherent in

implementing PSA, resulting in several key contributions. First, a regional extension of the

Active Subspace Method (ASM) [79] (§4.2.2) is introduced and implemented to study how

sensitivity indices tend to change when the range of design parameters, forming the design

space, is modified. This helps in identifying local regions of the design space accounting

for higher or lower parametric sensitivity towards QoI. Subsequently, the results obtained

from the regional ASM are used to evaluate the proposed intra-sensitivity metric in order
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to identify parameters whose perturbation in range causes the highest deviation on all

sensitivity indices.

Furthermore, the impact of sensitive and intra-sensitive parameters on the design is

quantified using a feature saliency map built with the aid of Hausdorff distance (§4.2.5).

This provides a visual tool to identify the design features affected by these parameters

and are characterised as sensitive or intra-sensitive features. Furthermore, a Dynamic

Propagation Sampling (DPS) (§4.2.3) is utilised to circumvent the problems associated with

sampling techniques, discussed in Chapter 3. DPS uses space-filling and non-collapsing

criteria to sample as uniformly distributed designs as possible with few samples. Initially,

sampling commences with a small set and iterations are performed to gradually increase the

number of samples. The designs sampled in each iteration are constrained to be different

from those sampled in the previous step using a new repulsion criterion.

To that end, a parent hull, which is similar to the KCS 1 container ship hull, is used

for experiments; however, its length at the waterline (Lwl) is equal to 200m, whereas

Lwl = 232.5m for the original KCS model. A pair of design spaces is generated with two dif-

ferent parametric approaches, namely Free-Form Deformation (FFD) [61] and Procedural

Deformation (PD) [4]. FFD embeds an object within encompassing geometric primitives

and modifies the object within these primitives as the surrounding lattice is modified. In

contrast, PD builds an analytical relation of the design using high-level geometric param-

eters to create a feature-informed parametrisation. The sensitivity and intra-sensitivity

of the parameters of the parent hull model parameterised with both techniques are evalu-

ated and compared against the volume of displacement and the total resistance, which are

critical criteria in ship design. Finally, the effectiveness of the approach is verified with

different comparative studies. The main focus is given on the comparison of the conver-

gence performance of the proposed regional analysis with existing regional and sampling

techniques. The code to implement this approach is available at GitHub repository 2.

1http://www.simman2008.dk/KCS/container.html
2https://github.com/shahrozkhan66/IntraSens.git
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The remainder of this chapter is organised as follows: Section 4.2 discusses the proposed

approach to implement sensitivity and intra-sensitivity analyses. The numerical results of

the proposed technique are given in Section 4.3. Concluding remarks and opportunities

for future work are presented in Section 9.5.

4.2 Problem formulation

Let G0 be a geometric object representing a baseline design (e.g., a parent hull) in an ambi-

ent space A ⊆ R3. We assume that G0 belongs to a rich class of objects in A parametrised

with a set of n design parameters, X = {Xk, k = 1, . . . , n} ⊂ X ⊆ Rn, whose certain

realisation is represented as x = {xk, k = 1, ..., n} and is valued in appropriately defined

intervals bound by lower (xlk) and upper (xuk) limits, xk ∈ [xlk,x
u
k ]. These bounding limits

form an n-dimensional solution/design space (X ) within which sensitivity analysis will be

performed. Next, we assume that:

• We possess a parametric modeller P which, for any value x ∈ X , produces an object

G = P(x), and

• We possess a vector function g : X ⊆ Rn → R, which has continuous partial

derivatives and is square integrable, or a simulation process that, for each x ∈ X ,

provides the output of interest.

• Finally, all the elements of X are also assumed to be statistically independent of each

other, i.e., pX(x) =
∏n
k=1 pXk

(xk), where pX(x) : Rn → R represents the Probability

Density Function (PDF) of X and pXk
(xk) is the marginal PDF of Xk.

4.2.1 Active subspace method

In this subsection, we discuss the theory and mathematical foundation of ASM.

Eigenspace: Let ∇xg to be the gradient of g for any realisation x ∈ Rn. That is,

34



Chapter 4. Intra-sensitivity: Understanding local behaviour of parametric sensitivities

g = g(x), ∇xg = ∇xg(x) =


∂g
∂x1

(x)
...

∂g
∂xn

(x)

 , for all x ∈ X . (4.1)

The objective here is to find an m-dimensional active subspace, where m < n. For this, the

first step is to compute a covariance matrix C (given in Eq. (4.2)), which is a symmetric

and positive semi-definite matrix and defined as an average of the outer product of ∇xg

with itself:

C =

∫
(∇xg)(∇xg)T pX(x)dx. (4.2)

Now, to identify the orthogonal active directions of X , the eigenvectors of C are computed

via its eigenvalue decomposition that can be written as

C = WΛWT , (4.3)

where W = {wk, k = 1, 2, . . . , n} is the [n × n] column matrix of orthogonal eigenvector

(wk ∈ R1×n) with wT
kwk = 1, which defines the rotation of Rn and spans the basis of an

eigenspace. Finally, Λ = diag(λk, k = 1, 2, . . . , n) are the eigenvalues sorted in descending

order λ1 ≥ λ2 ≥, . . . , λn ≥ 0.

Active and inactive subspaces: The eigendecomposition of C reveals the following

structure on g ( [79], Lemma 3.1)

λk =

∫
X

(
wT
k∇xg(x)

)2
pX(x)dx, k = 1, . . . , n, (4.4)

which represents that the kth eigenvalue, λk ∈ R, measures the average squared directional

derivative of g along its corresponding eigenvector, wk. This means if λk > λk+1 then on

average the mean-squared change in g upon perturbing X along wk is higher than wk+1.

As g is continuous, so if λk+1 is equal to zero then the directional derivative, ∇xg
Twk+1,

35



Chapter 4. Intra-sensitivity: Understanding local behaviour of parametric sensitivities

is zero. In other words, g is constant/flat along the direction defined by the wk+1, which

can be ignored for dimension reduction. Thus, to form a reduced order basis, the sorted

W and Λ are partitioned into two sets, containing active and inactive directions as

Λ =

Λ1

Λ2

 , W =

[
W1 W2

]
. (4.5)

The columns of W1 = {wi, i = 1, 2, . . . ,m} and W2 = {wj , j = 1, 2, . . . , n −m} are the

dominant and non-dominant elements of C, which span the basis of the active and inactive

design spaces, receptively, and Λ1 and Λ2 are their eigenvalues. Here, W1 contains first m

columns of W corresponding to the first largest m eigenvalues, Λ1 = {λi, i = 1, 2, . . .m}.

Once identified, x can be projected on these subspaces using Eq. (4.6) to find its active

y = {yi, i = 1, 2, . . . ,m} and inactive z = {zj , j = 1, 2, . . . , n−m} parameters:

y = WT
1 x ∈ Rm, z = WT

2 x ∈ Rn−m. (4.6)

Among y and z, we are only interested in y as its basis W1 covers the largest variability

of g and it is negligibly influenced by inactive variable, z.

Sensitivity: After identifying the active subspace, the global sensitivity of each design

parameter in X = {Xk, k = 1, 2, . . . , n} can be derived using the sensitivity indices denoted

as α(m). The sensitivity index, αk(m), of the kth design parameter is calculated as

αk = αk(m) =
m∑
i=1

λiw
2
k,i, ∀k ∈ {1, 2, . . . , n}. (4.7)

The sensitivity indices in Eq. (4.7) help to measure the contribution of design parameters

towards the variability of output of g. A parameter with a high sensitivity index is more

sensitive/significant than a low one. Once identified, the insignificant parameters (i.e., pa-

rameters with a low sensitivity index) can be fixed to reduce dimensionality. Furthermore,

the range of significant parameters can be refined to reduce uncertainty in the output of
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g. To visually compare indices, αk is normalised as

αk 7→
|αk|√∑n
k=1(αk)

2
, (4.8)

which removes the signs and scales the vector to have norm one. It is noteworthy that

when sensitivity indices are learnt on eigenspace W instead of W1 then it is similar to the

local sensitivity analysis. This is an important feature of ASM that one can evaluate both

local and global indices with no additional computational burden.

4.2.2 Quantifying Intra-Sensitivity

This subsection gives details of mathematical formulation and general assumptions set for

the proposed regional ASM.

Proposed regional ASM: A regional version of ASM can be formulated to study how

a change in the range of a parameter affects the overall sensitivity of other parameters.

Later, these results can be used to assess the intra-sensitivity index of the parameters. To

commence, the covariance matrix in Eq. (4.2) can be rewritten in more detail as

C =

∫ ∞

−∞
· · ·
∫ ∞

−∞
(∇xg)(∇xg)T

n∏
k=1

pXk
(xk)dxk. (4.9)

For regional analysis, the above matrix is evaluated over a reduced range of the parameters.

Suppose the range of parameter, Xk, is reduced from [−∞,∞] to
[
−∞, F−1

k (quk )
]

or to[
F−1
k (qlk),∞

]
, where F−1

k (·) is the inverse cumulative distribution of Xk at quantiles qlk

and quk , with ql,q
u
k ∈ [0, 1]. Then the PDF of Xk is updated as follows:

puXk
(xk) =


pxk(xk)∫ F−1

k
(qu

k
)

−∞ pxk (x)dx

if xk ∈
[
−∞, F−1

k (quk )
]
,

0 elsewhere,

(4.10a)
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plXk
(xk) =


pxk(xk)∫∞

F−1
k

(ql
k
)
pxk (x)dx

if xk ∈
[
F−1
i (qlk),∞

]
,

0 elsewhere.

(4.10b)

Under these new settings, the corresponding covariance matrices can be computed as

Ck(quk ) =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∫ F−1
k (quk )

−∞
(∇xg)(∇xg)T puXk

(xk)dxk

n∏
r=1,r ̸=k

pXr(xr)dxr, (4.11a)

Ck(qlk) =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∫ ∞

F−1
k (qlk)

(∇xg)(∇xg)T plXk
(xk)dxk

n∏
r=1,r ̸=k

pXr(xr)dxr. (4.11b)

In Eq. (4.11), multiple integrals are evaluated over the entire range, [−∞,∞], for all

the parameters expect Xk, for which the integral is evaluated either over
[
−∞, F−1

k (quk )
]

or
[
F−1
k (qlk),∞

]
. In similarity to Eq. (4.3), the eigendecomposition of these covariance

matrices is evaluated as

Ck(quk ) = Wu
kΛ

u
kW

u
k
T , Ck(qli) = Wl

kΛ
l
kW

l
k
T
, (4.12)

where, Wu
k , Λu

k and Wl
k, Λ

l
k denote the eigenvector and eigenvalue matrices evaluated over

the reduced range,
[
−∞, F−1

k (quk )
]

and
[
F−1
k (qlk),∞

]
, of Xk, respectively. As a result of

this decomposition, the corresponding sensitivity indices of all parameters can be expressed

as:

αk′(q
u
k ) =

m∑
i=1

λui (wuk′,i)
2, αk′(q

l
k) =

m∑
i=1

λli (wlk′,i)
2, ∀k′ ∈ {1, 2, . . . , n}. (4.13)

If k′ = k then αk′(q
u
k ) and αk′(q

l
k) represent the sensitivity index calculated over the reduced

range of Xk, while if k′ ̸= k then αk′(q
u
k ) and αk′(q

l
k) represent the sensitivity indices of

the remaining parameters in X calculated over the reduced range of Xk. After evaluating
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αk(q
u
k ) and αk(q

l
k), q

u
k , q

l
k ∈ [0, 1], one can plot them on a 2D space, [0, 1]2, with quk and

qlk on x-axis representing a fraction of distribution range of Xk. If the computational cost

permits, a regional analysis can be performed while simultaneously varying quk and qlk. In

this case, the range of Xk is reduced from [−∞,∞] to
[
F−1
k (qlk), F

−1
k (quk )

]
and along with

the constraint qlk < quk , a three-dimensional (3D) plot can be created in [0, 1]3 with qlk/q
u
k

on the x-/y-axis, respectively, and αk(q
l,u
k ) on the z-axis. Then the covariance matrix can

be formulated as:

Ck(qlk, quk ) = Ck(quk )− Ck(qlk) =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∫ F−1
k (quk )

F−1
k (qlk)

(∇xg)(∇xg)T p∗Xk
(xk)dxk

n∏
r=1,r ̸=k

pXr(xr)dxr, (4.14)

where the PDF of Xk is evaluated as:

p∗Xk
(xk) =


pxk(xk)∫ F−1

k
(qu

k
)

F−1
k

(ql
k
)
pxk (x)dx

if xk ∈
[
F−1
k (qlk), F

−1
k (quk )

]
0 elsewhere,

(4.15)

and the corresponding sensitivity expressed as:

αk′(q
l
k, q

u
k ) = αk′(q

u
k )− αk′(qlk) =

m∑
i=1

λl,ui (wl,uk′,i)
2 ∀k′ ∈ {1, 2, . . . , n}, (4.16)

where λl,ui and wl,uk′,i are the elements of the matrices Λl,u
k and Wl,u

k , respectively, obtained

from the eigendecomposition of Ck(qlk, quk ).

Both 2D and 3D regional plots, which will be discussed in § 4.3.2, can help designers to

analyse the behaviour of parameters’ sensitivity indices over their entire variability range.

Furthermore, these analyses also facilitate the identification of the regions where a certain
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parameter has the least and maximum impact towards the variability of output of g. With

these data in hand, designers can make informed decisions on how to set the bounding limits

of design parameters while having the highest or reduced impact of certain parameters on

the overall performance.

Intra-sensitivity: As mentioned earlier, the reduction in the range of one parameter

may affect not only its sensitivity index but also the sensitivity indices of other parameters.

The study of the effect of any parameter’s range on the sensitivity of remaining parameters

can itself be a sensitivity study. This could identify the parameter whose reduction in

the range may cause the highest deviation in the sensitivity index of the entire set of

parameters, and this is what we call intra-sensitivity. More specifically, for the parameter

Xk the intra-sensitivity index, Ik, can be measured as

Ik =

n∑
k′=1,k′ ̸=k

||αmaxk′ (qlk, q
u
k )− αmink′ (qlk, q

u
k )||, ∀k ∈ {1, 2, . . . , n}, (4.17a)

αmaxk′ (qlk, q
u
k ) = max

(
αk′(q

l
k, q

u
k ), ∀qlk, quk ∈ [0, 1] | qlk < quk

)
, ∀k′ ∈ 1, 2, . . . , n (4.17b)

αmink′ (qlk, q
u
k ) = min

(
αk′(q

l
k, q

u
k ), ∀qlk, quk ∈ [0, 1] | qlk < quk

)
, ∀k′ ∈ 1, 2, . . . , n (4.17c)

For simplicity, the expressions, αk′(q
l
k, q

u
k ), αmaxk′ (qlk, q

u
k ) and αmink′ (qlk, q

u
k ), are repre-

sented as αk′(q
l,u
k ), αmink′ (ql,uk ) and αmaxk′ (ql,uk ), respectively. To differentiate, the sensitivity

index can be defined as a measure of the impact of the variability of an input parameter on

the variability of QoI. In contrast, the intra-sensitivity index is a measure of the impact

of the variability of an input parameter on the sensitivity index of other input parameters.

4.2.3 Tackling the computational complexity

The elements of the covariance matrix, C, are n−dimensional integrals, so its eigendecom-

position for evaluation of W and Λ require evaluating high-dimensional integrals, which

can be difficult, if not impossible, to evaluate. Although one could use deterministic nu-

merical integration methods, they are unsuitable for high-dimensional problems, especially
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if evaluating g is computationally costly [79, 97]. Therefore, eigenpairs of C are approxi-

mated using Eq. (4.18) with sampling methods, where samples are drawn from density,

pX(x) [79].

C ≈ 1

N

N∑
b=1

∇xg(xb) ∇xg(xb)
T (4.18)

Here, N is the number of design instances sampled from X , which, along with their per-

formance output (Y ), create a training dataset, D, and ∇xg(xb) is the gradient vector (see

Eq. (4.1)) for bth design, xb, in D. The approximation accuracy of C depends on the distri-

bution of N design over X [80]. Additionally, evaluation of C requires the gradients, ∇xg,

which can be estimated with various techniques in the literature. For instance, if numerical

noise in g is small enough and if the baseline legacy code or simulation allows, one could

use finite-difference or adjoint solvers. However, often these capabilities are absent when

simulation includes multiple or coupled components. Moreover, for a complex problem

involving free-form shapes like ships, ∇xg, especially evaluated from adjoint solvers, tends

to be qualitatively correct (i.e., they have right relative scaling and right sign). However,

quantitatively, in terms of magnitude, they are not reliable [97,98], at least when they are

used for ASM.

For discovering the active subspaces, we are interested in the local behaviour of the

problem; therefore, ∇xg can be approximated with a local surrogate model. Inventors of

ASM proposed a heuristic approach for building local model-based gradients, in which a

local linear model is fitted within a subset of predictions from the training dataset [79]. In

this approach, to evaluate the gradients for bth design, xb, we obtain a subset of ℓ designs

from D nearest to xb. A local model is then fitted on this subset and its gradients are

evaluated. This process is repeated for all N samples in D.

Therefore, the appropriate selection of N is crucial for the sensitivity indices’ robust-

ness and stable design parameters’ ranking. On the one hand, small N will not accurately

estimate the eigenpairs; thus, it will result in an unstable ranking. On the other hand,
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large N will impose a computational barrier as it will require running a large number of

computationally demanding physical simulations. Even though one could use a heuristic

metric that estimates N needed to approximate the spectrum of sums of random metrics,

such as N = γn log(n), where γ ∈ [1, 10] [79]. But this could still spawn computationally

demanding sensitivity evaluation. Therefore, we use an iterative approach that progres-

sively increases N and tracks the ranking of the parameters as described in Algorithm

1. In this approach, the sampling is started with N = γn log(n) samples, and sensitivity

ranking is obtained. At each iteration, new samples are added to D and iterations are ter-

minated when we reach the maximum number of allowable samples (Nallow) or sensitivity

ranking remains invariant for five consecutive iterations. It should be stressed that if the

latter criterion is used, the sensitivity ranking of two insensitive parameters with small or

similar sensitivity indices may deviate even with a slight change in their sensitivity index.

Therefore, instead of terminating the Algorithm 1 with the ranking of all parameters, the

termination criterion involves only the significant parameters.

It should be noted that convergence of Algorithm 1 may slow down if MC-based sam-

pling is used because of the aforementioned reasons in §3.2. Furthermore, as shown in

the subsequent sections, sampling similar designs in the subsequent iterations may prolong

convergence as no new information is added to expedite it. Therefore, we adopted Dynamic

Propagation Sampling (DPS), which is based on Khan and Gunpinar’s technique [38] and

samples uniformly distributed and diverse samples at each iteration.

Dynamic propagation sampling

Let the design space X be bounded by the lower xl and upper xu bounds of design param-

eters (i.e., X := {xlk ≤ xk ≤ xuk , ∀k ∈ {1, 2, . . . n}}). During sampling, our objective is to

explore X in order to find a set S consisting of N samples (S = {x1,x2,x3, . . . ,xN} ∈ X )

while incorporating the criteria of space-filling, non-collapsing and repulsion.

Space-filling criterion: This criterion (F1(S)) is implemented using Audze and Eglais

[99] approach, which follows a physical analogy that molecules, designs in our case, in
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Algorithm 1 The pseudo-code of sensitive ranking algorithm

1: function sensitivity(X ,G0,P, g)
2: Input: Create a baseline design, G0, and parametrise it with n parameters to create a

parametric modeller, P.
3: Input: Select a suitable function or simulation model, g, to evaluate QoI.
4: Input: Define the design space with lower and upper bounds of n parameters, X :=
{xlk ≤ xk ≤ xuk , ∀k ∈ {1, 2, . . . n}}.

5: Initialise ∇Dtotal ← ∅ to store the gradients over iterations, N ← round(γ n log(n)),
iteration count (i← 0) and Ŝ ← ∅ to store samples of each iteration.

6: Set Nallow based on the allowable computational budget.
7: while size(∇Dtotal) ≤ Nallow do
8: i← i+ 1
9: Generate sampling set S = [x1,x2, . . . ,xN ]T using Algorithm 2.

10: Evaluate g(x) for all elements of S and a create set, Y = [Y1, Y2, . . . , YN ]T , containing
its outputs.

11: Create dataset D = [S Y] consisting of columns of S as independent variables and
Y as dependent variable.

12: Evaluate set ∇D = [∇xg(x1),∇xg(x2), . . . ,∇xg(xN )]T , which contains gradients for
all N elements of D.

13: ∇Dtotal ← ∇Dtotal ∪∇D
14: Compute C with elements of ∇Dtotal and its eigenvalue decomposition as C ≈

1
N

∑N
b=0∇xf(xb) ∇xf(xb)

T = WΛWT

15: Partition eigenspace of C: Λ =

[
Λ1

Λ2

]
, W =

[
W1 W2

]
16: Calculate sensitivity index set, αi, at ith iteration for all parameters, αi = {αk, ∀k =

1, 2, . . . , n}.
17: Obtain ranking, Ri, of X = {Xk, k = 1, 2, . . . , n} at the ith iteration based on αi

18: Store Ri, R← Ri

19: if i ≥ 5 then
20: if last five elements of R, {Ri−4,Ri−3, . . . ,Ri}, are identical then
21: return αi and Ri

22: end if
23: end if
24: if i = 1 then
25: N ← N/2.
26: end if
27: Ŝ ← Ŝ ∪ S {//Samples Ŝ will be used in next iteration at step 9 to sample S

different from Ŝ.}
28: end while
29: return αi and Ri
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space exert repulsive forces on each other that lead to potential energy in a space. These

molecules are in equilibrium in case of minimum potential energy, which guarantees their

uniform distribution over the entire space. This criterion for N design is evaluated as.

F1(S) =
N−1∑
p=1

N∑
q=p+1

1

M(xp,xq)2
, (4.19a)

M(xp,xq) =

√√√√ n∑
k=1

(xp,k − xq,k)2. (4.19b)

Here,M(xp,xq) is the Euclidean norm between the pair of designs, p and q. Minimisation

of F1(S) favours their uniform distribution in X .

Non-collapsing criterion: In the case of high-dimensional design spaces, the space-

filling criterion favours the placement of designs towards the boundaries of the design space.

Therefore, along with space-filling, a criterion of non-collapsing is also incorporated during

sampling to ensure an even proportion of samples over X . This criterion divides the range

of each element of X into N intervals and constraints the placement of more than one

design in the same interval. It is incorporated into the search process using Eq. (4.20),

which calculates the number of intervals that N designs share. Minimising this equation

can lead to either complete or quasi-non-collapsing designs depending on a user-controlled

parameter ω, which adjusts the relative weight of F2(S).

F2(S) = ω

N−1∑
p=1

N∑
q=p+1

K(yp,yq), (4.20a)

K(yp,yq) =

n∑
j=1

f(yp,k, yq,k), (4.20b)

f(yp,k, yq,k) =


1 if yp,k = yq,k

0 otherwise

. (4.20c)
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In Eq. (4.20), K(yp,yq) denotes the number of intervals that designs p and q share, and yp

and yq are the discrete position for xp and xq, respectively. For each kth design parameter,

xp,k, of pth design its range between the upper and lower limits is partitioned in N intervals

and yp,k is the order of sub-interval that contains xp,k.

Repulsion criterion: To maintain diversity in the dataset, designs sampled in each

iteration of Algorithm 1 should be different than the previously sampled ones; otherwise, no

new information will be produced, which may result in unnecessary computational cost.

Therefore, along with space-filling and collapsing, a repulsion criterion is introduced to

sample the previously unexplored spaces of the design space, which is implemented as

F3(S, Ŝ) =
N∑
p=1

N̂∑
q=1

1

M̂(xp, x̂q)2
, (4.21a)

M̂(xp, x̂q) =

√√√√ n∑
k=1

(xp,k − x̂q,k)2, (4.21b)

and follows an analogy of a typical repulsion process in physics. In which minimising

F3(S, Ŝ) increases repulsive forces, under the influence of which designs in S tend to move

away from designs of Ŝ. Similar to Eq. (4.19b), M̂(xp, x̂q) is the Euclidean norm between

pth newly sampled design, xp, and qth previously sampled design, x̂q. N̂ is the total number

of previously sampled designs in set Ŝ.

Minimising F3(S, Ŝ) makes the newly sampled design to be apart from the previously

sampled designs, and F1(S) tries to distribute these designs over the hitherto unexplored

regions uniformly. Considering the three criteria introduced above, we set up a minimisa-

tion problem for the objective function F(S, Ŝ) as
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min
S

F(S, Ŝ) =

N−1∑
p=1

N∑
q=p+1

1

M(xp,xq)2
+ ω

N∑
p=1

N∑
q=p+1

K(yp,yq)

+

N∑
p=1

N̂∑
q=1

1

M̂(xp, x̂q)2

subject to S ∈ X

(4.22)

The above optimisation problem is solved with Khan and Gunpinar’s [38] metaheuristic-

based approach. It commences with an initial population, P, consisting ofN sub-populations,

P = {pL, L = 1, 2, . . . N}. The Lth sub-population, pL, of P consists of ns randomly sam-

pled designs as pL = {xc, c = 1, 2, . . . ns}. The position of these designs is then optimised

following the stepwise procedure mentioned in Algorithm 2. The termination criterion for

optimisation can be the maximum number of function evaluations or allowable optimisa-

tion iterations. At the end of the optimisation, a sampling run will be completed with an

optimal sample set S of N space-filling, non-collapsing and repulsive designs at the output.

(a) (b)

#1
#2
#3
#4
#5
#6
#7
#8
#9
#10

Sampling runs

...

Figure 4.1: Comparison of samples generated using (a) the proposed DPS (Dynamic Prop-
agation Sampling) and (b) MC (Monte-Carlo) approaches in a 2D design space over ten
iterations.

During each iteration of Algorithm 1, the design will be generated at its step 9 using

Algorithm 2. Fig. 4.1 (a) shows the results of DPS in a two-dimensional (2D) design space

over ten iterations, with each iteration generating 20 designs. In the first iteration (far left

image), designs are uniformly distributed and quasi-non-collapsing over the entire design

space. In the second iteration (second image from the left), new samples (highlighted in

orange) are not only uniformly distributed but also different from the previously sampled
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Algorithm 2 The pseudo-code of sampling algorithm

1: function DPS(X , Ŝ, N, ns, imax, ω)
2: Input: Initialise design space (X ), samples of previous iteration (Ŝ), number of designs

to be sampled (N), sub-population size (ns), maximum optimisation iterations (imax)
and parameter ω.

3: Randomly create an initial population (P) consisting of N sub-populations
{p1, p2 . . . , pN} of size ns.

4: Initialise S = {xp1 ,xp2 , . . . ,xpN } with one design from each sub-population.
5: Initialise iteration count, i← 0.
6: while i ≤ imax do
7: i← i+ 1.
8: for L = 1 to N do
9: for c = 1 to ns do

10: Update design xc of pL using a meta-heuristic optimiser and obtain updated
design, x′

c.
11: Calculate F1(S ′), F2(S ′) and F1(S), F2(S), respectively, for S ′ =

{x′
c,xp2 , . . . ,xpN } and S = {xc,xp2 , . . . ,xpN }.

12: if size(Ŝ) > 0 then
13: Calculate F3(S, Ŝ) and F3(S ′, Ŝ) with previously selected designs Ŝ =

{x̂p1 , x̂p2 , . . . , x̂pN̂ }.
14: F(S, Ŝ)← F1(S) + F2(S) + F3(S, Ŝ).
15: F(S ′, Ŝ)← F1(S ′) + F2(S ′) + F3(S ′, Ŝ).
16: else
17: F(S, Ŝ)← F1(S) + F2(S).
18: F(S ′, Ŝ)← F1(S ′) + F2(S ′).
19: end if
20: if F(S ′, Ŝ) < F(S, Ŝ) then
21: Replace the old design xc with x′

c in pL.
22: else
23: Reject the new design x′

c and keep xc in pL.
24: end if
25: end for
26: Obtain the updated pL and set as p′L.
27: Find the new best design x′

pL
from p′L.

28: Replace xpL with new x′
pL

in set S (i.e., S = {x′
p1 ,xp2 , . . . ,xpN }).

29: end for
30: end while
31: return Optimal design set S.
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designs. As iterations continue, more and more regions of design space are covered, and

all designs are different from each other. MC results for a similar case are shown in Fig.

4.1 (b), which clearly indicates that DPS outperforms MC in terms of sample quality.

4.2.4 Design parametrisation of free-form shapes

Contemporary CAD representations, such as B-splines and Non-Uniform Rational B-

splines (NURBS), as well as their recent extensions [100–102], provide a variety of tools

for constructing free-form shapes at the required level of accuracy and smoothness (fair-

ness). For a free-from feature, depending on its complexity and the desired accuracy, single

or multiple surfaces can be used, which are then knitted together to construct the entire

shape. These surfaces can inherently provide local or global modification with a set of

control points defining the control polygon/cage enclosing the surface. Similar to [103],

one could use these control points as parameters to create design variations, but it can be

challenging if the shape is composed of multiple patches; then geometric continuity between

different patches must be retained; otherwise, design modification would result in invalid

or irregular geometries. If geometric continuity is not the problem, then precise contrac-

tion of features requires a higher degree of surface representation, increasing the number

of control points. This higher number of control points can give rise to surface irregulari-

ties during modification and can cause the curse of dimensionality during PSA and shape

optimisation. Therefore, because of the aforementioned difficulties of parametrisation with

control points, different specific application-dependent PD-based techniques [1,4,104] have

been proposed for shape modification of free-form shapes.

In the PD context, a set of surface control points defining a particular free-form fea-

ture is coupled with a linear procedural relation creating a versatile and high-level design

parameter set. For any parametric value, the procedural relations systematically modify

the control net, which not only performs a plausible and fair surface modification but

also ensures geometric continuity and validation of constraints. With this parametrisation,

complex shapes can be parametrised with a considerably small number of parameters.
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However, constructing such parametric models requires a significant understanding of the

baseline design, its performance aspect and underlining geometric representation.

Unlike PD, FFD is a generic approach, originally proposed by Sederberg and Parry [61],

used for parametrisation and modification of shapes and is independent of the underlying

geometric representation used to create the object. This makes FFD easy to implement and

efficient to create a simple transformation to achieve the desired level of design variation.

FFD and its variation have been widely utilised in computer graphics [105] and in various

design applications, including ship design [106].

Fig. 4.2 shows a parent hull similar to the KCS, which is extensively used in the Naval

Architecture and Marine Engineering field for different studies; thus, used for experimen-

tation in the present work. In the subsequent section, we discuss the parametrisation of

this model with PD and FFD. It should be noted that both PD and FFD are implemented

on the half part of the model below the waterline, mirrored along the longitudinal axis to

generate the full hull form.

Figure 4.2: Baseline (parent) ship hull and its segmentation into different parts

Procedural deformation

The PD-based parametric modeller P(X), used in this work, is based on the technique

which was introduced by Kostas et al. [1] and further developed by Katsoulis et al. [2].

In this case, P(X) is a vector function Rn → A that provides the geometry of the object

G, which corresponds to a user-specified parameter vector X = Xk, k = 1, 2, . . . , 24. If

PD adopts a B-rep representation, as is the case in this work which employs T-splines for
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representing surfaces, then P(X) = T (CG(X); Ω), where T : R2 → R3 is a vector-valued

function, maps each point of the two-dimensional parameter domain, Ω, to a point on the

surface bounding the object G. Here, CG(X) represents the control cage of the ship hull,

obtained with the aid of an automatic process (ibid.), which maps X onto the control points

of CG. The topology of CG is built in the above automatic process along with a set of

internal parameters specified by the developer to accommodate the requirements implied

by the chosen ship hull. X is a high-level parametric set containing different families of

parameters of both local and non-local in nature, providing shape modification of local

features (e.g. length and height of bow) and semi-global features (i.e., length and position

of the parallel middle body). The graphical representation of these parameters on hull

geometry is depicted in Fig. 4.3.

Apart from X, there are also three global parameters defining the length at the water-

line, beam (width) and depth of the hull. In our analysis, these three parameters are kept

fixed as they are the most shape-influential parameters and are prefixed by the customers.

Fixing these parameters keeps the bounding box surrounding the model fixed. X is defined

according to the following procedural scheme:

Xk = X̂k · fk (X1, X2, . . . X24) , X̂ ∈ [0, 1], k = 1, 2, . . . , 24. (4.23)

where X̂k is the kth non-dimensional version of Xk and fk is an affine function of these

parameters defining the procedural relation and is specified by the developer. Like X, X̂ is

also an external parametric set and is bounded by [0, 1]. During design modification, [1,2]

recommend the usage of X̂ by the user as these parameters support the robustness by

avoiding setting the parametric values that would result in creating invalid and implausible

geometries. Once the values of global parameters and X̂ are provided, the control cage for

each of the five hull segments shown in Fig. 4.2 can be constructed. For further details on

the formulation of this approach, interested readers should refer to [1, 2].

Note that in Fig. 4.3, along with Xk, k = 13, 14, there are two more parameters, X ′
k,
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Figure 4.3: Ship-hull parametrisation adopted by the PD-based parametric modeller. Sen-
sitivity analysis is performed only for the parameters depicted in red and parameters in
green, X ′

13 and X ′
14, linearly depend on X13 and X14.

k = 13, 14 (highlighted in green), for the forward and the aft segment of the hull. However,

each pair {Xk, X
′
k} is linearly dependent, i.e., X ′

k = pint,kXk, where pint,k, k = 13, 14, is an

internal parameter, decided by the developer and kept fixed for a given materialisation of

PD and thus X ′
k, k = 13, 14 are not included in the final parametric set for which sensitivity

and intra-sensitivity are evaluated.

Free-form deformation

FFD is composed of a set of control points that belong to the trivariate parametric hyper-

patch. It encloses the free-form shape to be deformed and is also referred to as the control

volume of FFD. The variation of lattice control points induces modification in the embed-

ded shape. In analogy to the control net of splines, the deformation is governed by the

control volume, and depending on the underlying basis, both local and global deformation

can be achieved. For detailed formulation on FFD, interested readers should refer to [61].

The geometric representation of design parameters of the parent hull created with

FFD is shown in Fig. 4.4. In this case, the hull is divided into four segments, namely

bow, forward, middle and aft, instead of segmentation into five parts employed in the

PD case. More specifically, the PD stern and aft segments are merged into a single one

in the FFD case. Otherwise, a separate stern segment would require a separate control

cage, substantially increasing the number of control points needed to define the shape.
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𝑥
𝑦

𝑧

Figure 4.4: Ship-hull parametrisation based on FFD (Free-Form Deformation). Layers of
the lattice cage depicted in red are fixed to maintain continuity between the connecting
segments. Moreover, the control points marked in red, purple and yellow only move in the
z-direction, whereas control points in green can move in all three directions, and blue ones
move in x- and y-directions.

The lattice cage is constructed separately for each segment of the hull in Fig. 4.2. The

forward and aft segments consist of eight planar layers, each consisting of [5 × 6] control

points, whereas the bow consists of four layers, each containing [3× 2] control points. To

maintain the G0 and G1 geometric continuity between segments during deformation, the

two layers of each segment neighbouring to the connecting point of the other segment are

kept fixed, which are depicted in red in Fig. 4.4. The control points close to the hull

surface in the forward and aft segment are moved in the z-direction as they significantly

affect the deformation compared to the other control points. The movable control points

in each segment of the hull are indicated in Fig. 4.4. The selection of movable control

points is made to ensure that they modify the similar feature as of PD, creating the same

ground for comparison of both techniques. Furthermore, the modification at the middle

body segment is not performed to satisfy the bounding box constraint. However, changing

the parameters, X15 to X79, enables this parameterisation to render the hull shape more

cylindrical and thus change the length and position of the midship part.
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4.2.5 Assessing the impact of sensitive parameters on geometry

As mentioned earlier, unlike solid models resulting from concurrent modelling, the parametri-

sation of free-form shapes is not fully feature-driven. The impact of the change of param-

eters on the shape can be challenging to quantify precisely how much a particular region

of the free-form shape will deviate when any design parameter is altered. Therefore, once

a set of sensitive parameters is obtained, it is essential to estimate the impact of these

parameters on the free-form shape to identify the geometrical features sensitive to the QoI.

Moreover, identifying these features can also facilitate the comparison of different para-

metric modellers, which may be different with respect to the adopted design space and its

dimensionality, as in the case of PD and FFD.

To identify these features, we propose an approach similar to [3,107], which uses Haus-

dorff distance to compute the geometric difference between the two free-form shapes. In

the present case, hull form parametrised with PD and FFD is composed of T-spline and

NURBS surfaces, respectively; therefore, before evaluating the Hausdorff distance, it should

be discretised either by sampling points on it or by creating a mesh, in which vertices are

used as points to measure Hausdorff distance.

Consider the value of a kth design parameter, Xk, of baseline design, G, is changed from

xk to x′k and is inputted to the parametric modeller, which creates a new design G′. After-

wards, both G and G′ are discretised to create point sets, O = {oi, ∀i ∈ {1, 2, . . . , no}} ∈

G ⊆ R3 and O′ = {o′j ,∀j ∈ {1, 2, . . . , n′o}} ∈ G′ ⊆ R3, respectively, containing total no and

n′o points. Now, to identify the regions of the design which are modified by changing xk

to x′k and to measure the extent of this modification, we evaluate Hausdorff distance, E,

between O and O′ as

E(G,G′) = max(e(oi,G′), ∀i ∈ {1, 2, . . . , no}), (4.24a)

e(oi,G′) = min(M(oi,o
′
j), ∀j ∈ {1, 2, . . . , n′o}), (4.24b)
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M(oi,o
′
j) =

√√√√ 3∑
t=1

(ot,i − o′t,j)2, (4.24c)

where, E(G,G′) is the one-sided Hausdorff distance between G and G′, M(oi,o
′
j) is the

Euclidean norm between two points and e(oi,G′) is minimum distance between the ith

point oi ∈ R3 on G and all the n′o points (oj ,∀j ∈ {1, 2, . . . , n′o} ∈ R3) on G′. It should be

noted that Hausdorff distance is not symmetrical (i.e., E(G,G′) ̸= E(G′,G)). Therefore, a

two-sided Hausdorff distance, E(Xk), is evaluated as

E(Xk) = max(E(G,G′), E(G′,G)). (4.25)

As we know, each design parameter is bounded by the upper and lower limit. Therefore,

xk can be varied between its parametric range (i.e., x′k ∈ [xlk, x
u
k ]), and we are interested in

identifying x′k that results in maximum deviation of G′ from G. Hence, E(Xk) is evaluated

over the entire range of Xk as

Emax(Xk) = max(Emax(G,G′), Emax(G′,G)), (4.26a)

Emax(G,G′) = max(E(G,P(x′k)), ∀x′k ∈ [xlk, x
u
k ]), (4.26b)

Emax(G′,G) = max(E(P(x′k),G), ∀x′k ∈ [xlk, x
u
k ]). (4.26c)

Once the realisation x′k giving Emax(Xk) is obtained then at this value Eq. (4.24b) can

be evaluated for all no points of G (i.e., e = e(oi,G′), ∀i ∈ {1, 2, . . . , no}). Afterwards,

these values are projected on the points of G and the feature saliency map is created,

which helps to visually identify the region of design that is modified by changing Xk. An

example of this map is shown in Fig. 4.5. Once Emax(Xk) is obtained for all the parameters

in X, then a parameter with the highest value of Emax(Xk) can be regarded as most shape

influential as it has the highest impact on the modification of the baseline design.

In this work, O consists of the vertices of a triangular mesh over the bounding surface
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Figure 4.5: Illustration of the features saliency map between two free-form surfaces: origi-
nal surface (left image), modified surface (middle image), the feature saliency map (right
image) with red regions indicating the maximum deviation of the modified from the origi-
nal surface.

of G. This mesh is created using Rhinoscript’s MESH function, which, on a PC with a

Xeon(R) Gold 6226, 2.7-GHz processor, and 128-GB memory, takes 0.84, 1.83 and 8.47

seconds for Rhinoceros®3 3D to mesh the parent hull surface with no = 39, 823, 246, 023

and 2, 228, 224 vertex points, respectively. This indicates that the computational cost of

mesh generation is very close to a linear function of no.

4.3 Results and discussion

In this section, we first discuss the experimental settings used for the verification of the

proposed approach. Afterwards, under these settings, the results of sensitivity analysis

performed with ASM are presented along with its proposed regional version to determine

the intra-sensitivity of parent hull parametrised with PD and FFD. The features of the

parent hull corresponding to the sensitive and intra-sensitive parameters are evaluated,

and a correlation between the results of PD and FFD is studied. Finally, the performance

of the Algorithm 1 and 2 is compared with Sobol’s sensitivity, CSV and MC sampling

3https://www.rhino3d.com/
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approach.

4.3.1 Experimental configuration

The proposed method is tested for a parent hull parametrised with PD and FFD, respec-

tively, creating a design space with n = 24 and n = 104 dimensions. The volume of

displacement (∇) and total resistance (RT ) of the model are taken as QoIs. Here, ∇ is

the volume of the water displaced by the ship, which is purely an associated geometrical

quantity and RT is the total resistance of the ship travelling with constant velocity on the

otherwise clam free surface of the ocean. Both quantities are of critical interest during

all phases of ship design. Thus, it is typical that the designer aims to reduce RT while

keeping ∇, which is essentially the displacement, close to the baseline design. The three

basic components of the RT are frictional resistance (RF ), wave-making resistance (RW )

and viscous pressure resistance (RV ). In this study, RT is evaluated using the well-known

regression method of Holtrop and Mennen [108], which is widely used at the preliminary

design stage. The main particulars and RT value for the parent hull are given in Table 4.1.

Table 4.1: Parent container-ship hull: main particulars and total resistance RT

Quantity Symbol Unit Value

Volume of displacement ∇ m3 44868.95
Wetted surface area S m2 8293.65
Length at waterline. Lwl m 200
Beam at waterline Bwl m 32.20
Draft T m 10.80
Water density ρ kg/m3 1025
Kinematic viscosity ν m2/s 1.09E-6
Gravity acceleration g m/s2 9.803
Speed V knots 25

Total resistance RT N 2.6374e+06
Total resistance coefficient CT - 0.0038

The design spaces for both parametrisation methods are created using the strategy

mentioned in §3.1.1. In order to create the same ground for comparing PD and FFD, the
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parametric ranges are set in a way that both parameterisations provide similar variability

for ∇ and RT . The PDF of ∇ of the designs sampled from both design spaces are shown

in Fig. 4.6. From these results, it can be seen that for both design spaces, the distribution

of ∇ is similar. The statistical results, given in Table 4.2, also show that the ∇ of designs

sampled from PD and FFD-based design spaces have a similar standard deviation, mean,

maximum and minimum values.

(a)


 


(b)


 
  


Figure 4.6: PDF (Probability Density Distribution) of ∇ (Volume of Displacement) of
designs sampled from a design space created with (a) PD (Procedural Deformation) and
(b) FFD (Free-Form Deformation).

Table 4.2: Statistics of ∇ from samples of the design space created with PD and FFD.

PD FFD

Standard deviation 2398.42 2351.92
Mean 44827.21 44767.22
Maximum 51718.96 51691.54
Minimum 37189.46 37506.49

4.3.2 Sensitivity analysis of hull parametrised with PD

The evaluation of parameters’ sensitivity indices for ∇ and RT commences with Algorithm

1 which takes X , G, P, g and ℓ as inputs. Then iterations are performed until the total

number of samples, N , reaches the allowable number of samples, Nallow = 2000 or sensi-
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tivity ranking of parameters gets stable for 5 consecutive iterations. During each iteration

of Algorithm 1, DPS is performed with 10 optimisation iterations to create a sample set,

S, containing N designs sampled from X . At the first iteration γ in N = γn log(n) is set

γ = 1.31, which resulted in N = 100 samples for first iteration. In the subsequent iterations

N is half of its initial value. Furthermore, following [38], DPS optimisation parameters, ns

and ω, are set to n and n/2, respectively.

Once sampling is completed, the samples are fed to the PD-based parametric modeller

to create modified instances. Afterwards, ∇ and RT of these instances are obtained along

with their gradients, estimated with the local-surrogate model constructed with a subset

containing ℓ = 60 samples, to construct the covariance matrices. The eigendecomposition

of these matrices provides the corresponding eigenvalues and eigenvectors. The former

defines a separation measure for active and inactive subspace while the latter span their

bases. Then sensitivity analysis is performed in the active subspace to assess the global

sensitivity indices of parameters in X. The eigenvalue plots for ∇ and RT are shown in

Fig. 4.7 (a).

For both ∇ and RT , these plots reveal a large gap between the first and the second

eigenvalues, which shows strong potential for one-dimensional (m = 1) active subspaces.

The sensitivity indices, evaluated via Eq. (4.7), for ∇ and RT , are shown in Fig. 4.7 (b).

From these results it can be observed that in case of ∇ the parameter, X9, is the most

sensitive one followed by X15, X10, X7 and X14, whereas X1, X3 and X17 to X23, show

negligible effect. In case of RT , parameters, X10, X9 and X7, are the three most significant

followed by, X15, X12, X16 and x17, with relatively lower impact. It is interesting to note

that parameter, X17, which affects the bulbous bow height, had the lowest impact on ∇

but have a relatively high influence on RT , which can be attributed due to the fact that

the bulbous bow plays a significant role in reducing RT .

Fig. 4.8 shows the convergence plot for the sensitivity index, α, and ranking, R, versus

the number of designs over the first 20 iterations of Algorithm 1. It can be observed

that the sensitivity indices and the ranking of the sensitive parameters tend to be stable
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Figure 4.7: (a) Eigenvalues and (b) Sensitivity indices of all 24 PD (Procedural Defor-
mation) parameters obtained from Eq. (4.3) and (4.7), respectively, when ∇ (Volume of
Displacement) and RT (Total Resistance) are used as QoI (Quantities of Interest).

even after the first few iterations. For instance, in case of ∇, parameters, X9, X15, X10

X7 and X14, become stable after 7th iteration at N = 400. Similarly, highly significant

parameters for RT , namely X10, X9, X7, X15 and X12, achieve stability after the 3rd

iteration. This reveals that the stability of the parametric ranking with respect to the

sample size is directly proportional to their sensitivity indices. Meaning, a parameter with

a high sensitivity index is less affected by the sample size than an insensitive one. The

main reason for such a behaviour is that sensitivity indices of the least sensitive parameters,

{X1, X2, X3, X18, . . . , X24}, are very close to each other so, as explained earlier, a slight

change in their indices changes their ranking. Therefore, it requires a large number of

samples to stabilise the ranking of these parameters. It is worthy to point out that a

designer is not always interested in the right ranking of parameters as the decision on

characterising parameters as significant or insignificant is made based on sensitivity indices

not on the ranking [31]. Therefore, to save the computational budget, Algorithm 1 can be
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Figure 4.8: Convergence plots of sensitive indices and parametric ranking of all 24 PD
parameters for (a) ∇ (Volume of Displacement) and (b) RT versus the number of samples
over the first 20 iterations of Algorithm 1 when it is used in conjunction with DPS (Dynamic
Propagation Sampling).
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terminated as soon as the ranking of the significant parameters stabilises.

Regional analysis with PD

Using the setting already set in this section we proceed with the regional analysis for

∇ and RT . Here, the formulation and the detailed results for ∇ are discussed first and

then a condensed summary of the results of RT are provided. To start with, Fig. 4.9

depicts 2D regional sensitivity indices of ∇ with fixed upper limit and varied lower limit,

αk′(q
l
k) (highlighted in blue), and vice versa αk′(q

u
k ) (highlighted in orange), for all 24

parameters obtained using Eq. (4.13). As it can be easily seen from this Figure that for

some parameters these indices have a monotonic trend while for other parameters they

exhibit a flat behaviour over their parametric range. It is noteworthy that the sensitive

parameters, X7, X9, X10, X14 and X15, follow a monotonic behaviour as their range

shrinks. A rather strong decline in αk′(q
l
k) and αk′(q

u
k ) is observed within the sub-range

[qlk = 0, quk = 0.5] and [qlk = 0.5, quk = 1.0], respectively, which gradually slows down after

qlk, q
u
k = 0.5.

Furthermore, parameters with a sensitivity index close to 0.05, such as X4, X12 and

X16, also show averagely a monotonic but non-smooth behaviour over their range. The

parameters with negligible (≪ 0.05) value of sensitivity index are insensitive with respect

to the reduction to their range. This shows that the higher the sensitivity index is, the

probability of having a monotonic and smooth behaviour of αk′(q
l
k) and αk′(q

u
k ) over their

range is also high.

Fig. 4.10 shows the 3D regional sensitivity indices, αk′(q
l,u
k ), obtained over the entire

parametric range for ∇ using Eq. (4.16). To analyse these plots we provide some auxiliary

remarks. In the lower triangle of the unit square we have αk′(q
l,u
k ) = 0 as the result of

the fact that quk and qlk do not obey the constraint, quk > qlk. Moreover, along the counter

diagonal of the unit square (i.e., the line connecting [qlk = 0, quk = 1] and [qlk = 1, quk = 0])

the range of Xk reduces symmetrically, e.g., from [qlk = 0, quk = 1] to [qlk = 0.1, quk = 0.9].

In the lower triangle of the unit square, any point on a line parallel to the diagonal has the
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Chapter 4. Intra-sensitivity: Understanding local behaviour of parametric sensitivities

same range length, i.e., |quk−qlk| is the same, nevertheless, αk′(q
l,u
k ) is not constant along this

line. For instance, in case of X10, α9′(q
l,u
10 ) is equal to 0.01175 for [qlk = 0.94736, quk = 1],

whereas it is equal to 0.01946 for [qlk = 0, quk = 0.05264]. Even though both intervals

[qlk = 0.94736, quk = 1] and [qlk = 0, quk = 0.05264] share a common length, but they have

different location over [0, 1] and, as implied by Figure 10, their sensitivity indices are

different. In addition to that these plots also accumulate the information of 2D plots in

Fig. 4.9. The boundary of the lower triangle parallel to the qlk axis shows the values of

αk′(q
l
k), likewise the boundary parallel to quk axis show αk′(q

u
k ).

Fig. 4.11 shows the 3D regional sensitivity plots for αk′(q
l,u
9 ), with k′ = 1, 2, . . . , 24,

when ∇ is used as QoI. These plots show the effect of shrinkage in the range of X9 on the

sensitivity of the remaining parameters. It can be seen that the sensitivity of all parameters

changes as the range of X9 varies. This variational effect is small on some parameters, such

as X1, X5, X17 to X23, while substantial on others. Except from α6′(q
l,u
9 ) for X6, all the

remaining parameters show a similar but an interesting trend. The value of all αk′(q
l,u
9 )

is relatively constant along qu9 specially at the boundary and it tends to vary along ql9,

however, for X6 this increment is noticeable along both qu9 and ql9.

When the range of X9 changes from [qlk = 0, quk = 1] to [qlk = 0, quk = 0.6842], the

sensitivity ranking for ∇ also changes from X9 > X15 > X10 > X7 to X15 > X7 >

X9 > X10. This shows that, within the local region defined by the sub-range, [qlk =

0, quk = 0.6842], the parameter X9 has low sensitivity impact on ∇ compare to X15 and

X7. This shows that, the sensitivity of a parameter depends on how a design space is

set. For any parameter, its sensitivity does not only depend on its own parametric range

but also on the range of the remaining parameters. Here, we are mainly interested in

this local variational behaviour of parameters’ sensitivity. To visualise this we proposed

to use variational sensitivity plots, as shown in Fig. 4.12 for all 24 design parameters.

These plots accumulate the key information related to all 24 3D plots, used to study the

regional sensitivity of a certain parameter, into a single 2D plot. For a kth parameter,

Xk, the variational sensitivity plot shows maximum, αmaxk′ (ql,uk ) (indicated in black), and
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Chapter 4. Intra-sensitivity: Understanding local behaviour of parametric sensitivities

minimum, αmink′ (ql,uk ) (indicated in red), index values, which are evaluated using Eq. (4.17b)

and (4.17c), respectively. More importantly these plots also includes the variability between

maximum and minimum values of αk′(q
l,u
k ) (highlighted in cyan) for all parameters when

range of Xk varies between qlk, q
u
k ∈ [0, 1].

A preliminary insight on the results of Fig. 4.12 shows that any perturbation in the

range of X6, X9, X10 and X15 induces high variability in the sensitivity of all parameters

(see cyan bars in the plots of Fig. 4.12). Interestingly, among these parameters, X6 is

the least sensitive one but still shows a profound impact on other parameters’ sensitivity,

which is prominent on X9, X10 and X15. Furthermore, between X7 and X16, the parameter

X7, despite having higher sensitivity index, have low effect on the variation of αk′(q
l,u
7 ).

Similar, behaviour can be observed for the results of RT given in Fig. 4.13. Along with the

most sensitive parameters, X10, X9, X15, the change in range of one of the least sensitive

parameters, X6, greatly influences the sensitivity of the remaining parameters.

To conclude, the results of regional sensitivity obtained in this subsection can not only

facilitate designers in analysing the behaviour of the sensitivity within a certain region of

the design space but, along with intra-sensitivity, also help to make informed decisions in

setting the parametric ranges to create a viable design space.

Intra-sensitivity of PD parameters

Fig. 4.14 shows the intra-sensitivity index, Ik, defined in Eq. (4.12), of the PD parame-

ters for both ∇ and RT . It can be seen that despite being the least sensitive parameter,

X6 has the highest intra-sensitivity index for both ∇ and RT that is the sensitivity of

other parameters is highly affected by its parametric range. The next three most intra-

sensitive parameters are X9, X10 and X15 for both ∇ and RT . Furthermore, X7, which is

the fourth/third sensitive parameter for ∇/RT , respectively, is sixth in the intra-sensitive

ranking. As for the remaining sensitive parameters, such as X12, X14, X17, they do not

show any significant intra-sensitivity. This shows that a sensitive parameter is not neces-
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sarily an intra-sensitive one or vice versa.
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Figure 4.14: Intra-sensitivity of all 24 PD (Procedural Deformation) parameters obtained
from Eq. (4.17) when ∇ (Volume of Displacement) and RT (Total Resistance) are used as
QoI (Quantity of Interest).

Any change in the range of intra-sensitive parameter significantly affects the sensitivity

indices of the other parameters, thereby, altering their ranking. For instance, in case of ∇

at [ql6 = 0, qu6 = 1] the ranking of parameters is X9 > X15 > X10 > X7 > X14 > X16. When

the range of X6 is perturbed to [ql6 = 0.2105, qu6 = 0.8947] or [ql6 = 0.4211, qu6 = 0.6316]

the ranking changes to X10 > X15 > X9 > X7 > X14 > X16 or X15 > X9 > X7 >

X12 > X14 > X16, respectively. It is interesting to note that at [ql6 = 0.4211, qu6 = 0.6316]

the parameter X10, which is the fourth most sensitive parameter over the original range,

is not in the group of top-six sensitive parameters. Therefore, studying only parametric

sensitivity is not enough especially at the preliminary design stage. This is due to the fact

that at this stage designer is not knowledgeable of the appropriate parametric ranges for

performing a reliable sensitivity study; thus, the sensitivity results may not align with the
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designer’s intuition regarding the sensitivity of parameters. Therefore, measuring the intra-

sensitivity of parameters is essential for viable design space. As explained earlier, designers

commonly use sensitivity analysis either for design space dimensionality reduction via fixing

low sensitive parameters or for uncertainty reduction to reduce QoI’s variability. Therefore,

sensitivity analysis within a non-viable design space can be dismaying; either resulting

in the elimination of an important parameter from the design study or in wastage of

computational resources if uncertainty reduction is performed with inaccurately estimated

sensitive parameters.

The results of the intra-sensitivity analysis can help not only to evaluate the specific

parametric interval, within which a parameter can have a high or low sensitivity but also

identifies a parameter whose variation in range notably affect the sensitivity ranking. Con-

sequently, during the design analysis, the results of intra-sensitivity can facilitate designers

in tuning an existing design space in such a way that a specific parameter becomes more

significant compare to other parameters. Furthermore, care can be taken while setting the

parametric limit of the most intra-sensitive parameter so that variation in range does not

highly affect the parameters’ ranking. For instance, in a certain design study, a parameter

is significant for a certain criterion, which, let us say, is associated with the manufacturing

process. Now the designer intends to include this parameter in the list of final significant

parameters when sensitivity analysis is performed with respect to the design’s performance.

However, for any specific setting of the design space, this parameter may be insignificant

with respect to performance. Therefore, to make it significant from both manufacturing

and performance point of view, the designer must also perform intra-sensitivity analysis.

Then, based on the obtained results from this analysis they should refine the design space

so that this parameter becomes significant for both criteria.

4.3.3 Sensitivity analyses of hull parameterised with FFD

Similar to PD, the sensitivity index of FFD parameters for ∇ and RT are evaluated with

the Algorithm 1. For the economy of the presentation, we shall discuss the results of ∇
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only. Algorithm 1 initiates by setting γ = 1.242, which results in N = 600 samples for

the first iteration and N is equal to 300 for the subsequent. In this case, the number of

parameters is n = 104; thus, in comparison to PD, FFD requires a larger number of samples

resulting in the high computational cost of Algorithm 1 and 2. To evaluate the model-

based gradients, the size of the subset is set to ℓ = 200. The results of eigendecomposition

for ∇ are shown in Fig. 4.15 (a), which reveals a potential for a one-dimensional active

subspace. The global sensitivity indices for ∇ obtained from this active subspace using

Eq. (4.7) are shown in Fig. 4.15 (b).

It can be seen that parameters, X31, X28 and X41, are the three most sensitive param-

eters with similar indices followed by X38, X42 and X76. Among these six parameters, X76

affects the aft segment of the hull while the reaming ones influence the forward segment.

This means that, in term of ∇, the forward segment is more significant. These results also

align with the results of PD in which among the top three significant parameters, X9, X15

and X10, the first two, X9 and X15, are related to the forward segment of the hull.

As the design space in FFD has a significantly higher dimension in comparison to

PD (n = 24 for PD and 104 for FFD), therefore, the visual interpretation of the sen-

sitivity results is more challenging. To ease analyses of such high dimensional problem,

Sheikholeslami et al. [37] recommend clustering the parameters based on their sensitivity

indices and then classify them as significant or insignificant based on the clusters’ mean

value. Following ibid, we used k-means clustering with k = 10. The clustered parameters

are given in Table 4.3 and the obtained mean index values are shown in Fig. 4.15 (c). As it

is clear from this Figure the cluster, C3, is the most sensitive one, which is followed by C7,

C10 and C5. Note that C3 contains the top three sensitive parameters, [X31, X28, X41] (see

Table 4.3). Cluster C7 only contains X38, which is the third sensitive parameter. Similarly,

parameters [X37, X42, X76] and [X32, X47, X48, X91] compose C10 and C5, respectively.

On the other hand, C1 is the biggest yet the least sensitive of clusters. As we will show in

the §4.3.4, this clustering of parameters also facilities analysing their impact on the design

and comparing sensitive features obtained from FFD and PD.
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Table 4.3: Results of k-means clustering of all 104 parameters of FFD (Free-Form Defor-
mation) based on their ∇-sensitivity indices (∇:=Volume of Displacement)

Clusters Parameters

C1 X1, X3, X4, X5, X6, X9, X10, X11, X12, X13, X14,
X19, X23, X24, X25, X34, X35, X45, X55, X56, X57,
X58, X59,X60, X61, X62, X63, X65, X69, X74, X79,
X84, X89, X93, X94, X95, X99, X99, X103, X104

C2 X36, X43, X51, X71, X77, X86

C3 X28, X31, X41

C4 X20, X29, X30, X39, X40, X49, X50, X66, X67,
X68, X73, X75, X78, X82, X92, X98

C5 X32, X47, X48, X91

C6 X17, X18, X21, X26, X33, X53, X80, X87, X90,
X96, X97, X100

C7 X38

C8 X2, X7, X8, X15, X22, X44, X54, X64, X70, X83,
X85, X88, X102

C9 X16, X27, X46, X52, X72, X81, X101

C10 X37, X42, X76

Regional analysis and intra-sensitivity index of FFD parameters

Similar to PD, regional sensitivity analysis is performed with FFD to evaluate the intra-

sensitivity of its parameters. Providing the 2D or 3D regional plots of 104 parameters is

rather prohibitive so we are limiting ourselves to deliver the variation plot of the most

significant parameters, X31 and the intra-sensitive results of all parameters; see Fig. 4.15

(d) and (e), respectively. Similar to PD, when the range of X31 is shrunk its sensitivity

changes monotonically, which also induces variation in the sensitivity indices of another

parameter as shown in Fig. 4.15 (d). Like PD, these variations are high in the sensitive

parameters as compared to insensitive ones.

The intra-sensitivity is also analysed by clustering the parameters based on their intra-

sensitivity indices. The clustering results are given in Table 4.4 and their mean values

are shown in Fig. 4.15 (f). The cluster C4 contains top two intra-sensitive parameters,

X31 and X28 (see Table 4.4). C2 is the second intra-sensitive cluster containing X38, X41

73



Chapter 4. Intra-sensitivity: Understanding local behaviour of parametric sensitivities

Table 4.4: Results of k-means clustering of all 104 parameters of FFD (Free-Form Defor-
mation) based on their ∇-intra-sensitivity indices (∇:=Volume of Displacement)

Clusters Parameters

C1 X17, X27, X46, X51, X52, X81, X86, X101

C2 X38, X41, X42

C3 X3, X5, X6, X10, X19, X22, X25, X55, X57, X59, X60,
X62, X63, X64, X74, X83, X85, X93, X94, X95, X99

C4 X28, X31

C5 X21, X29, X49, X50, X66, X75, X82, X92

C6 X32, X36, X37, X48, X76, X77

C7 X16, X26, X72, X90

C8 X1, X2, X4, X7, X8, X9, X11, X12, X13, X14, X15,
X20, X23, X24, X34, X35, X44, X45, X53, X54, X56,
X58, X61,X65, X69, X70, X71, X73, X78, X79, X80,
X84, X88, X89, X96, X98, X100, X102, X103, X104

C9 X18, X30, X33, X39, X40, X67, X68, X87, X97

C10 X43, X47, X91

and X42. The parameters X38 and X41 have similar intra-sensitive indices, giving both

parameters third place in the intra-sensitivity ranking. It is noteworthy that in the case

of FFD, the five most intra-sensitive parameters are also the most sensitive ones; however,

their individual ranking is different. Furthermore, there are also few other parameters, such

as X17 and X77, which do not show significant sensitivity effect on ∇ but do possess some

intra-sensitivity; X77, is ranked 17th and 10th based on its sensitivity and intra-sensitivity,

respectively.

4.3.4 Impact of sensitive and intra-sensitive parameters of FFD and PD

on geometry

After identifying the sensitive and intra-sensitive parameters of PD and FFD, their impact

on hull geometry is assessed to identify the geometrical features or regions, which are sen-

sitive and intra-sensitive to ∇ and RT . These results are then analysed for understanding

whether these two approaches reveal similar sensitive and intra-sensitive features.
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Fig. 4.16 (a) shows the plot of two-sided Hausdorff distance, E(X), calculated with

Eq. (4.25) versus the parameter values of PD over their range. It can be observed that,

apart from X6, X14 and X17, all parameters show maximum deviation from the baseline

design at the upper limits of their range. For X6, X14 and X17, the largest geometric

deviation occurs at the lower limits. Once the parametric values giving the maximum

geometrical deviation is identified then it can be used in Eq. (4.24b) to provide the feature

saliency maps like in Fig. 4.16 (b). Recall that these maps provide a graphical tool for the

identification of affected regions of the hull when parameters change. It is also noteworthy

that, apart from X14, X15 and X17, E(X) is zero at 0.5 as during the refinement of the

design space their range remained unaffected and thus for these parameters parent hull

stayed at the centre of the design space.

As it can be seen from Fig. 4.16 (b), X9 and X15, the two sensitive parameters for

∇ and RT , affect the forward segment of the hull close to the bow. On the other hand,

X10, which is also a sensitive parameter for both ∇ and RT influences the regions near the

stern. Finally, the intra-sensitive parameter, X6, affects the similar regions as of X9 and

X10. From these results, it can be anticipated that these regions of the hull account for the

most variation in ∇ and RT . Moreover, RT of the hull also significantly affected by X7,

which affects the shape of the bulbous bow and as explained earlier, it plays an important

role in reducing RT .

Similar to PD, after evaluating the clusters of sensitive and intra-sensitive parameters

of FFD the hull features corresponding to these parameters are identified. In this case, the

highest deviation in shape occurred when the value of all parameters is set at their upper

limit. The first five images of Fig. 4.17(a) shows the feature saliency map of parameters

in the two most sensitive and intra-sensitive clusters, which affect the forward segment

of the hull. Whereas, the last two images are the feature saliency map of X76 and X91,

which are the only two parameters of third and fourth sensitive and intra-sensitive clusters

affecting the aft segment of the hull. It can be seen that each of these parameters create

a very localised effect on the surface. Moreover, regions identified by these parameters
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Figure 4.16: (a) Plot showing the two-sided Hausdorff distance (E(X)) versus the PD
(Procedural Deformation) parameter values over their entire range; (b) Feature saliency
map of sensitive and intra-sensitive PD parameters of the parent ship hull.
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do not correspond to the sensitive and intra-sensitive regions identified in the case of PD.

Thus, a question could be raised here is that as the sensitivity and intra-sensitivity of FFD

parameters is analysed in term of clusters so what effect it creates when the combined effect

of these parameters is visualised on the hull surface. Therefore, we project the parameters

in the first sensitive and intra-sensitive clusters on the hull surface, whose results are

depicted in Fig. 4.17(b) and (c), respectively. Interestingly, the regions identified in this

case show slight similarity with the sensitive regions identified by parameters X9, X10

and X15 of PD. Consequently, it can be concluded that when the combined effect of FFD

parameters is analysed then both parametrisation types, to some extent, can identify the

similar type of features. However, the computational cost, for FFD is significantly high as

it creates a high-dimensional design space.

4.3.5 Optimisation

In order to observe if sensitive and intra-sensitive parameters can result in the same op-

timal design when optimisation is performed in the original design space. We performed

shape optimisation of the parent hull, parameterised with PD, in order to optimise its

shape against RT . In this optimisation process, three different design spaces are tested.

The first design space is the original 24-dimensional with all hull parameters, while the

second design space is of considerably lower dimension, constructed with the eight most

sensitive parameters, namely X7, X9, X10, X12, X14, X15, X16 and X17. Furthermore,

the third design space, along with the eight most sensitive parameters, includes the most

intra-sensitive parameter, namely X6, which results in a 9-dimensional design space. The

efficiency of these design spaces to obtained optimal design with faster convergence is

analysed. For this optimisation, we utilised Jaya Algorithm (JA) [109], which is a newly

proposed, simple yet effective metaheuristic optimisation technique, whose performance

has been proven in various engineering applications. JA is a population-based technique,

which requires a set of randomly sampled initial solutions to start the optimisation. Unlike

most of the population-based metaheuristic optimisation techniques, JA does not require
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Figure 4.17: Feature-saliency map of (a) individual and (b, c) clustered sensitive and intra-
sensitive FFD (Free-Form Deformation) parameters on parent hull form.
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the tuning of any algorithmic specific parameters. This nature lifts an additional burden

from the user and ensures a solution closer to the global optimal. Moreover, as JA is a

stochastic technique, which may provide different results in each run, we performed five

different optimisation runs and in each run, a total of 50 iterations are conducted. Fig.

4.18 shows the average values of RT in five runs. The optimal designs obtained from 24-
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Figure 4.18: Results of optimisation of parent hull performed with PD when the design
space is constructed using all parameters (blue curve), only sensitive parameters (red
curve), and sensitive along with intra-sensitive parameters (yellow curve).

, 9- and 8-dimensional design spaces, which are shown in Fig. 4.19, have RT equal to

1512518.018, 1539117.543 and 1512601.389 newtons, respectively. From these results, it

can be seen that the final design obtained from the 24-dimensional space has slightly better

performance than one obtained from the 8-dimensional design space, which is composed

of only sensitive parameters. Moreover, it is interesting to note that when, along with

sensitive parameters, intra-sensitive parameter, X6, is included in the optimisation (i.e.,
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9-dimensional design space) then the design obtained from this space has total resistance

similar to the one obtained from the 24-dimensional space. Furthermore, the order of con-

vergence of the optimiser in both lower-dimensional design spaces is faster. For instance,

in the case of 8- and 9-dimensional design spaces, the convergence started even after the

20th iteration, whereas in the case of the 24-dimensional space, convergence is slower as

the optimiser has to explore the high-dimensional design space and starts after the 30th

iteration. Thus running optimisation in this space has a higher computational cost.

(a) (b) (c)

Figure 4.19: Comparison between the parent and optimised hulls obtained from (a) 24-,
(b) 8- and (c) 9-dimensional design spaces.

4.3.6 Comparative studies

In this section we discuss the results of the comparative studies to verify the performance of

components of the proposed approach. First, the convergence performance of Algorithm 1

is analysed when designs are sampled with DPS (Algorithm 2) or MC sampling. Secondly,

the results of ASM and its proposed regional version are compared with the widely used

Sobol’s sensitivity and CSV (Contribution to the Sample Variance) techniques, respectively.

Comparison of DPS with MC: Fig. 4.20 shows the convergence plot of Algorithm

1 with MC over first 20 iterations in case of PD when ∇ is used as QoI. It can be seen that

in comparison to DPS (see Fig. 4.8), the convergence of Algorithm 1 with MC is slow. The

sensitivity indices and the parametric ranking are unstable not only for the insignificant

parameters but also for the significant ones even after 20 iterations. This demonstrates

that DPS outperforms MC in terms of achieving stable and robust results with respect to

the least number of designs. Furthermore, we used box and whiskers plots, shown in Fig.
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4.21, to check the variability of the sensitivity indices obtained with MC and DPS over

20 iterations. The results obtained from DPS have lower variability versus those obtained

with MC, which again confirm the stable behaviour of Algorithm 1 when it is used in

connection with DPS.

Figure 4.20: Plot showing the convergence of: (a) sensitive indices and (b) parametric
ranking of PD parameters for ∇ (Volume of Displacement) versus the number of samples
over the first 20 iterations of Algorithm 1 when it is used in conjunction with MC (Monte-
Carlo).

Despite that, the computational cost of running DPS is higher versus to that of MC as

it is based on the optimisation strategy. However, MC requires a large number of designs

for convergence. As a consequence, the overall computational cost becomes much higher,

especially for high-dimensional problems. The same conclusions can be drawn when this

comparison is performed with RT in place of ∇.

Comparison of ASM with Sobol’s sensitivity analysis: Sensitivity results ob-

tained with ASM (see Fig. 4.8 (a) and 4.21 (a)) are also compared with results obtained

from Sobol’s sensitivity analysis. At each iteration, N = 100 designs are sampled and
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Figure 4.21: Box and whiskers plots of the sensitivity indices of the PD parameters for ∇
evaluated with Algorithm 1 when designs are sampled with: (a) the proposed DPS and (b)
MC sampling.

Figure 4.22: (a) Convergence and (b) box and whiskers plots of sensitivity indices of PD
parameters for ∇ evaluated with Sobol’s sensitivity analysis.
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Sobol’s analysis is performed until sensitivity indices stabilise. On the basis of [80], one

may expect that both approaches behave similarly. However, our experiments show that

Sobol’s analysis exhibits slower convergence compared to ASM, as can be easily seen by

comparing Figures 4.8 (a) and 4.22 (a). In Fig. 4.22 (a) sensitivity indices of all the pa-

rameters fluctuate highly up to ten iterations and tend to stabilise only after 20 iterations,

where N = 2000. The variation of these sensitivity indices is given in Fig. 4.22 (b), which

in comparison to the ASM results in Fig. 4.21 (a), show higher variability even when they

are computed with a large number of samples.

Comparison of ASM-based regional analysis with CSV: We also compare the

proposed regional approach with CSV to investigate if the latter can help to identify the

intra-sensitivity of parameters. CSV results of PD with ∇ for the sensitive parameters are

shown in Fig. 4.23. It can be seen that CSV only informs how ∇ varies over the quantile

range of a parameter and does not provide any information on how the perturbation in

the range of a parameter influences the sensitivity of other parameters. It does, however,

identifies the regions of the range of any parameter where ∇ have the highest variability

compared to other regions. For instance, X9 plot in Fig. 4.23 shows that ∇ has higher

variability over [0, 0.6] than over [0.6, 1]. If the CSV curve (highlighted in red) close to the

diagonal then the variability of QoI is the same over the entire range of the parameter,

such behaviour is represented by X16 and also somewhat by X6, which from our analysis

resulted as the most intra-sensitive parameter.

4.4 Conclusions and future works

In the previous sections, we presented a methodology for investigating regional non-uniformities

of parametric sensitivity for facilitating the creation of viable design spaces for free-form

shape optimisation. The proposed regional analysis is based on ASM (Active Subspace

Method), which not only identifies regions of high parametric sensitivity against the cho-

sen QoI’s (Quantity of Interest) but also reveals the so-called intra-sensitive parameters
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Figure 4.23: Contribution to the sample variance plots of the most sensitive parameters of
PD showing the variability of ∇ over the parametric range.
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whose perturbation in the range has a strong impact on the sensitivity of the remaining

parameters. Once an intra-sensitive parameter is identified its range can be refined to

obtain the desired sensitivity ranking of the parameters or to reduce uncertainty in the

sensitivity results.

Shape optimisation in the context of contemporary industrial engineering applications

usually involves high-dimensional design spaces, which requires a large number of sam-

ples for stable and robust results. Therefore, an iterative approach is utilised to evaluate

the sensitivity and intra-sensitivity of the parameters, which progressively increases the

number of samples during the iterations. At each iteration, designs are sampled with a

Dynamic Propagation Sampling approach. To obtain uniformly distributed samples, our

approach utilises the criteria of space-filling and non-collapsing along with the so-called

repulsive criterion for improving diversity by taking on board designs from previously un-

explored regions of the design space. This iterative process is terminated when the ranking

of the sensitive parameters becomes stable. Once sensitive and intra-sensitive parame-

ters are secured then free-form features corresponding to these parameters are evaluated

using a feature saliency map. This map, generated via a Hausdorff distance-based ap-

proach, provides a visual tool to detect features or regions of the design affected by these

parameters.

To verify the performance of the proposed pipeline a container ship hull is used,

parametrised with two different parametric modellers based on procedural and free-form

deformation. The sensitivity and intra-sensitivity of their parameters are evaluated against

two QoI’s, namely the volume of displacement and the total resistance, which are used in

all phases of ship design. Finally, comparative studies presented with regard to the per-

formance of dynamic propagation sampling, ASM-based sensitivity and regional analysis

showed that these components of the proposed scheme result in faster convergence and

more robust and reliable results.

Our medium-term plans include the exploitation of intra-sensitivity in shape optimisa-

tion problems in the area of energy-saving devices, e.g., bulbous-bow modifications, pro-
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peller fin attachments, with QoI’s involving the use of the medium- and high-fidelity mod-

ern hydrodynamic solvers, such as IGA4-based Boundary Element Methods [110,111], and

RANS5-based CFD solvers [112], respectively. We are also keen to work on the usage of

shape integral properties as QoI to infer the sensitivity of parameters for design’s physics.

4IGA: IsoGeometric Analysis
5RANS: Reynolds Averaged Navier Stokes
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Geometric moment-dependent

global sensitivity analysis without

simulation data

5.1 Introduction

In this chapter, we aim to address the aforementioned challenges associated with SA by

offloading the evaluation of parametric sensitivities from physical quantities to relatively

inexpensive quantities compared to physical ones but provide important clues about the

form distribution and validity of the design. More specifically, it is well known that shape’s

integral properties, such as geometric moments and their invariants [14,51] serve as a geo-

metric foundation for different designs’ physical analyses. Like physics, they rely strongly

on design’s geometry, but their evaluation is substantially less expensive. Therefore, we

propose a geometric moment-dependent SA approach that harnesses the geometric vari-

ation of designs in a design space using geometric moments as a geometrical Quantity

of Interest (QoI) to measure parametric sensitivities. These results can serve as a prior

estimation of parametric sensitivities and use to construct a design space of lower dimen-
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sion with only a subset of highly/strongly sensitive parameters for shape optimisation

performed against physical QoI. This approach can significantly reduce the computational

time because, typically, sensitivities are learnt directly with physical QoI, which can add a

heavy computational burden on the entire design process as one has to perform computa-

tionally intensive physical simulations for both SA and shape optimisation. Fig. 5.1 shows

the systematic workflow of the proposed approach, which uses geometric moments for SA

and design’s physics for shape optimisation. The selection of geometric moments for SA

in our work is motivated by the following fundamental insights:

1. Geometric moments of a shape are intrinsic properties of its underlying geometry and

act as a unifying medium between geometry and its physical evaluation [113,114].

2. Physical analysis requires the evaluation of such integral properties of the geometry

such as the stiffness and mass matrices, and moments of a domain are sufficient to

ensure accurate integration of a large class of integrands [14,115].

3. Like physics, geometric moments also act as a compact shape signature or descrip-

tor to a specific design falling in a specific category, which facilitates various shape

processing tasks [116–118].

In this work, we show through extensive experiments the competitive performance of

the geometric moments for making an informed decision on the sensitivity of parameters

without performing computationally intensive physical simulations. The results of SA via

geometric moments permit to categorised a prior the design parameters as strongly sensi-

tive, moderately sensitive, weakly sensitive, and insensitive. According to Sheikholeslami et

al. [37] and Klepper [119], when such categorisation of parameters is available, then com-

putationally efficient SA with physics can be performed for each category. As explained

earlier in this section, different physical analyses have a dependence on shape integral prop-

erties such as geometric moments, but during any design process, there are many physical

criteria (varying from application to application) that have to be investigated and may not
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be dependent on geometric moments. Thus, the use of moments does not aim to eliminate

the need to perform SA with respect to physics but rather to support the designer for a prior

check regarding the sensitivity of parameters for those physical quantities that are compu-

tationally expensive and share relevance with geometric moments. Therefore, we restrict

our aim to exploring the capability of these geometric moments in the context of ship-hull

design, namely, with regard to their capability to reveal the sensitivity of its parameters

for the wave-making resistance coefficient (Cw), which is one of the significant components

of total ship’s resistance and a critical design criterion.

Wave-making is caused when an object moves on or near the free surface of the water.

The waves are generated from the variation of pressure over the wetted surface of the ship

and carried behind it in the form of the so-called Kelvin wave pattern through a mechanism

that is due to the kinematic and dynamic conditions satisfied on the free surface of the

ocean. The importance of Cw reduction at the preliminary design stage, its effect on hull

geometry and its connection with geometric moments will be discussed and formulated in

§5.3.1. To experimentally demonstrate the effectiveness of geometric moments, we used

two ship hulls parameterised with 26 and 27 parameters using two different techniques

based on Procedural Deformation (PD) [1] and Global Modification Function (GMF) [12],

respectively. The former parameterises a hull geometry constructed using the NURBS

(non-uniform rational B-splines) representation and parameters directly associated with

the hull’s key features. In contrast, the latter is defined directly on a design grid and creates

a global surface deformation. For the hull parameterised with PD, its Cw is evaluated using

an inviscid BEM (Boundary Element Method) isogeometric solver [15]. For the GMF-based

hull, Cw is obtained with a method based on the linear potential flow theory as well [120].

Geometric moments for both hulls are evaluated via the divergence theorem [121], which

is applied on the triangulated mesh surfaces of the hull.

To commence SA, we first construct the so-called Shape-Signature Vector (SSV), which

acts as a unique descriptor for the shape and contains all the geometric moments up to a

certain order. To better correspond to Cw, all the moments in this vector are formulated
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to be invariant to translation and scaling. A global variance-based SA [78] is performed

concerning SSV and Cw. Here, the former is purely a vector quantity containing the

moment of various orders, while the latter is a scalar one but computationally expensive

to evaluate. Therefore, learning sensitivity to SSV requires implementing a multivariate

output SA technique, such as covariance decomposition [122], which provides generalised

sensitivity indices of design parameters to all moments in SSV. Afterwards, a series of

experimentations are performed to identify a common set of sensitive parameters between

SSV and Cw. Furthermore, the higher the order of SSV is, the better it can describe

the shape, and as a result, its parametric sensitivity better correlates with Cw. However,

evaluation of higher-order moments can be prone to numerical noise. Therefore, following

various other applications of moments in literature [113, 123] we restrict our analysis to

geometric moments up to fourth-order. We also study the local effect of geometric moments

evaluated after segmenting the hull shape to compensate for this. To further demonstrate

the effectiveness of geometric moments, for each test case, two shape optimisations are

performed in the design spaces constructed with parameters sensitive to SSV and Cw.

Their results are compared to optimal design obtained when optimisation is performed

within the actual high-dimensional design space.

5.1.1 Geometric moments in design and analysis

From a geometric point of view, these moments are typically used to evaluate the overall

volume enclosed by the shape, its centre of mass, and moment of inertia. Geometric

moments are used over a wide spectrum of applications ranging from probability and

statistics to signal processing, computing tomography [124], object recognition [118], shape

retrieval [117], rigid body transformation [116], feature extraction [53] etc. In physical

analyses, they are used for governing equation of motions for flows around a body [113],

integrating accurately implicit functions [115], modelling nonlinear material properties in

the cut-cell method [125], simplifying history-dependent material modelling in the case of

crack propagation [126], and material field modelling to develop an integral representation
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for fields that supports a wide range heterogeneous data [114]. Recently, meshfree methods

have also been developed [14, 127, 128], which use moments to generate quadrature rules

for the geometric domain to aid the interoperability between CAD representation and its

physics.

Similar to the present work, Taber et al. [14] used a moment-vector for composing

components of moments of a different order; however, there is a slight difference in their

construction and the number of moments they contain. A new integration technique called

Shape Aware Quadratures (SAQ) was proposed by Vaidyanathan, and Vadim [127] to effi-

ciently integrate arbitrary integrable functions over arbitrary 2D/3D domains even in the

presence of small features. It uses different derivative-based shape sensitivities of first and

second-order to construct shape correction factors used in the moment-fitting equations.

These shape correction factors ensure that the quadrature rule determined by the moment-

fitting equations is aware of the shape of the integration domain, especially associated with

the small features. Christian et al. [128] proposed a new type of analysis pipeline, eXtended

Finite Element Method (XFEM), mainly to support smooth interoperability between CAD

and physical simulation during shape optimisation. The core of their contribution lies in

using a moment-fitting technique to compute on-the-fly a modified set of quadrature rules

that accurately handle integration over curved domains of varying shape and size, bounded

by NURBS and planar patches, and evaluate shape derivatives with respect to these rules

to quantify the shape sensitivities caused on the volume integral with the change of the

design parameters. The derivative-based shape sensitivities evaluated in [127,128] are usu-

ally referred to as local sensitivities [31, 75], which enables identifying the local influence

of a single parameter on the QoI. As explained earlier, in this work, we use GSA, which

provides a holistic view of the influence of all design parameters on the QoI in question.

The remainder of this chapter is organised as follows: Section 5.2 discusses the problem

formulation, evaluation of geometric moments and SA for problems with univariate and

multivariate outputs. A detailed discussion on the relevance of geometric moments with

Cw, along with the description of the test cases, is given in Section 5.3. The numerical
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results of the proposed technique are provided in Section 5.4. Concluding remarks and

plans for future work are presented in Section 5.5.

5.2 Geometric moment-dependent sensitivity analysis

This section provides an in-depth description of the proposed approach, including the

general assumptions, mathematical formulation of geometric moments and their invariants

and a brief overview of SA for univariate and multivariate outputs models.

5.2.1 Problem formulation

Let a geometric design G be parameterised with a set of n continuous design parameters

t = {ti, i = 1, 2, . . . , n} ∈ X ⊆ Rn. Here X is the n-dimensional solution/design space,

bounded by lower tl and upper tu limits of the associated parameters (i.e., X := {tli ≤

ti ≤ tui ,∀i ∈ {1, 2, . . . n}}). Moreover, all the elements of t are assumed to be statistically

independent from each other, i.e., pt(t) =
∏n
i=1 pti(ti), where pt(t) : Rn → R represents the

Probability Density Function (PDF) of t and pti(ti) is the marginal PDF of ti. Now, the

objective of the present work is to assess the sensitivity indices, SI = {SI1, SI2, . . . , SIn},

of each element of t with respect to geometrical QoI, such as geometric moments of G.

Therefore, we assume to posse a shape-signature vector, MIs, which contains all the

geometric moments from 0th to sth order. Construction ofMIs will be discussed in detail

in the subsequent subsections. Once the SA is performed, the aim is to find a subset tMI

of m highly sensitive parameters whose sensitivity index is greater than a threshold, ϵ,

where m is favourable to be less than n. The subset of m parameters forms a design space

XMI of reduced dimension, which is exploited to expedite the shape optimisation carried

out directly with a physical QoI; represented as y = g(t) : X ⊆ Rn → R. In conclusion,

the overall problem can be stated as follows:
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Sensivity:

Find tMI ⊆ t sensitive w.r.t. MIs

where t ∈ X ⊆ Rn

Construct XMI such that

tMI ∈ XMI ⊆ Rm

m < n

Optimisation:

Find t∗MI ∈ Rm such that

g(t∗MI) = min
tMI∈XMI

g(t∗MI)

(5.1)

5.2.2 Geometric moments

We shall use moments for quantifying the shape of an object (design, in the so-far termi-

nology) G of finite extent, defined by the following formula:

Mp,q,r(G) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
xp yq zr ρ(x, y, z) dxdydz, p, q, r ∈ {0, 1, 2, . . . }, (5.2)

which gives the sth−order geometric moment of G, where s = p+ q+ r and ρ(x, y, z) =

1/0 for (x, y, z) ∈ / /∈ G, respectively. Given a non-negative integer s, the vector Ms will

contain which contains (s+1)(s+2)/2 moments Mp,q,r(G) such that p+q+r = s. The ideal

order of M will result in a vector containing geometric moments capturing not only global

features of the shape but also the local features. For instance, moment of (s = 2)th−order

contains

M2 =

[
M2,0,0(G) M0,2,0(G) M0,0,2(G) M1,1,0(G) M1,0,1(G) M0,1,1(G)

]
. (5.3)
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As pointed out in [14], moments can be thought of as projections (with respect to L2

inner product) of ρ onto any polynomial basis, such as monomials, Legendre polynomials,

etc. In Mathematical Analysis, the classical moment problem, which has been treated by

various famous mathematicians such as Markov in 1883 and Stieltjes in his famous 1894

chapter on: ”Recherchers sur les fractions continues”, can be simply stated as follows:

Recover a function f(x) given its moments Mp =
∫
xpf(x)dx, p = 0, 1, .... In all these

guises, the moment problem is recognised as a notoriously difficult inverse problem, often

leading to the solution of very ill-posed systems of equations that usually do not have a

unique solution [124].

In Eq. (5.2), if ρ(x, y, z) represents the volume density then the zero- and first-order

moments, M0,0,0(G), M1,0,0(G), M0,1,0(G), and M0,0,1(G), are widely used in computer

graphics, CAD and engineering for computing the object volume, V = M0,0,0(G), and the

coordinates of the centre-of-volume:

c(G) =


Cx

Cy

Cz

 =


M1,0,0(G)
M0,0,0(G)

M0,1,0(G)
M0,0,0(G)

M0,0,1(G)
M0,0,0(G)

 . (5.4)

If ρ(x, y, z) is the PDF of a continuous random variable, then M0, M1, M2, M3 and M4,

represent the total density, mean, variance, skewness and kurtosis of the random variable,

respectively. Moreover, the moments of second-order can be organised in a second rank

tensor, the moment of inertia tensor (MoI), which is represented as follows:

MoI =


M0,2,0(G) +M0,0,2(G) −M1,1,0(G) −M1,0,1(G)

−M1,1,0(G) M2,0,0(G) +M0,0,2(G) −M0,1,1(G)

−M1,0,1(G) −M0,1,1(G) M2,0,0(G) +M0,2,0(G)

 . (5.5)
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An appropriate combination of geometry and its moments results in a vector that

better captures the shape’s intrinsic features and offers a more accurate and unique shape

representation that acts as its descriptor or signature [116]. The more moments we use, the

better we capture the shape’s intrinsic features. Our moment-driven SSV is represented

by Ms =
[
M0,M1,M2, . . . ,Ms

]
, where s is appropriately large to cover the shapes of

interest [116]. Theoretically, s ranges from 0 to ∞, though there exist classes of objects

for which s is finite when, e.g., dealing with the class of the so-called quadrature domains

in the complex plane [129] or when approximating convex bodies using Legendre moments

[130]. The geometric moments of Γ can be thought of as projections (with respect to L2

inner product) of ρ onto any polynomial basis, such as monomials, Legendre polynomials,

etc. [14]. In Mathematical Analysis, the classical moment problem, which has been treated

by various famous mathematicians such as Markov in 1883 and Stieltjes in his famous 1894

chapter on: ”Recherchers sur les fractions continues”, can be stated as follows: Recover

a function f(x) given its moments Mp =
∫
xpf(x)dx, p = 0, 1, .... In all these guises,

the moment problem is recognised as a notoriously difficult inverse problem, often leading

to the solution of very ill-posed systems of equations that usually do not have a unique

solution [124].

There exists a variety of methods available in the literature for computing geometric

moments, which use either lower-order approximating mesh [131] or high-order surface [51]

representations, such as B-splines and NURBS, of G. The most commonly used method

is Gauss’s divergence theorem [121], which evaluates geometric moments by converting

volume integrals to integrals over the surface bounding the volume. In 5.2.2, we summarise

the evaluation of geometric moments using the divergence theorem for a triangulation

S =
N⋃
i=1

Ti approximating the surface bounding G, where N is the total of triangular

elements T .
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Geometric moment invariants

The moments in Ms are variant with respect to rigid and non-rigid transformations, such

as translation, rotation and scaling [132]. However, most physical quantities are invariant

to either all or some of these transformations. For instance, evaluating Cw for the ship is

invariant to translation and scaling if assessed at a certain Froude number. Therefore, to

measure the sensitivity of these parameters with respect to the geometry, the invariant of

these geometric moments with respect to translation and scaling has to be secured. A de-

scription of geometric moment invariants with respect to translation and scaling presented

in this section and their other invariants can be found in [132].

If Eq. (5.2) is applied for G, while placing it at its centiod, c(G) = (Cx, Cy, Cz), then we

get the so called central geometric moment of sth−order, which is invariant to translation

and is expressed as:

µp,q,r(G) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(x− Cx)p (y − Cy)q (z − Cz)r ρ(x, y, z) dxdydz. (5.6)

It is noteworthy that as G is placed at its centroid; therefore the first-order moment is zero,

i.e., [µ1,0,0, µ0,1,0, µ0,0,1] = 0 . To achieve invariance of µp,q,r to scaling we assume that G is

uniformly scaled by a factor λ, which gives

µ̂p,q,r(Ĝ) = λp+q+r+3µp,q,r(G). (5.7)

Then, one can easily conclude that

MIp,q,r =
µp,q,r

(µ0,0,0)1+(p+q+r)/3
(5.8)

is an invariant moment form for G under uniform scaling and translation [132]. For any

non-negative integer, s, the moment invariant vector, MIs contains all the moments in-

variant to translation and scaling such that p + q + r = s. By definition this invariance
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satisfies MI0,0,0 = 1 and MI1 =
[
MI1,0,0,MI0,1,0,MI0,0,1,MI1,1,0,MI1,0,1,MI0,1,1

]
=

0. As M0,0,0 represents the volume of G, which is intrinsically invariant to transla-

tion; therefore, the invariant SSV, MIs, contains M0,0,0 instead of MI0,0,0 (i.e., MIs =[
M0,0,0,MI2,MI3, . . . ,MIs

]
).

Moment computation

To start the computation of geometric moments of G, let be given a vector field f : Rn → R3

over V, whose boundary is piece-wise smooth surfaces. The divergence theorem states that

the volume integral of the divergence (div) of f over V equals the surface integral of the

normal component n̂ of f over triangulation S, which can be formalised as

div(f) =
∑ ∂fi

∂ti
(5.9)∫

V
div(f) dV =

∫
S
f · n̂ dS. (5.10)

With Eq. (5.10) we convert the volume integrals, which are difficult to evaluate, into

surface integrals that are easy to evaluate over S. However, this theorem is only applicable

if f is continuous and have continuous first partial derivatives in the region containing V.

To evaluate moments using this theorem, consider the following field:

f =
1

3
xp yq zr

(
x

p+ 1
ı̂ +

y

q + 1
ȷ̂ +

z

r + 1
k̂

)
. (5.11)

and thus

Mp,q,r(G) =

∫
V

div(f) dV =
N∑
i=1

∫
Ti

f · n̂ dSi, (5.12)

where n̂i is the unit normal vector on the triangle Ti, which can be represented as a linear

parametric surface as
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Si(u, v) = αiu+ βiv + ci, (u, v) ∈ Ωi ⊂ R2, (5.13)

here Ωi can be taken to be the triangle with vertices (0, 0), (1, 0), (0, 1). Then

Mp,q,r(G) =
N∑
i=1

∫
Ti

f · n̂i
√
EiGi − F2

i dudv, (5.14)

where

Ei = Si,u · Si,u = |αi|2, Fi = Si,u · Si,v = 0, Gi = Si,v · Si,v = |βi|2. (5.15)

Here, Ei, Fi and Gi are the constant first-order fundamental quantities of the Si. Now,

substituting Eq. (5.15) into Eg. (5.14) we get

Mp,q,r(G) =
N∑
i=1

∫
Ti

f · n̂i |αi||βi| dudv (5.16)

with

n̂i =
Si,u × Si,v√
EiGi − F2

i

=
αi × βi
|αi||βi|

(5.17)

and

f(x, y, z)|Ti = f
(
ti(u, v), yi(u, v), zi(u, v)

)
, (5.18)

with xi(u, v), yi(u, v) and zi(u, v) are the x−, y− and z−components of Si(u, v).

5.2.3 Global sensitivity analysis

In GSA, variability of QoI is measured when all parameters vary over the entire design

space. This allows users to evaluate the relative contribution of each parameter to QoI’s

output variation, which is the focus of the present study. Different sensitivity analyses

have been proposed in the literature, such as variance-based (or Sobol’s method), density-

based sensitivity, elementary effects test (or Morris method), etc. Interested readers can
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refer to [78] for a detailed overview of these techniques. Among these methods, variance-

based probabilistic methods like Sobol’s analysis [133] is suitable for complex nonlinear

and non-additive models; therefore, it is well received in different design applications and

thus used in the current study. This method investigates how much of the overall variance

of QoI is achieved due to the variability of a collection of design parameters. This vari-

ance is usually measured with First-order indices (or main effects) or total-order indices

(or total effects). The former quantifies the direct contribution to QoI variance from an

individual parameter over the entire design space. The latter approximates the overall

contribution of a parameter considering its direct effect and interactions with all the other

design parameters.

Sobol’s sensitivity analysis

Sobol’s analysis is often classified as a variance-based model-independent method, which

is based on the variance decomposition and can handle the underlying non-linearity of

QoI under consideration. Under the probabilistic interpretation of elements of t, Y is

the output of g with mean (E(Y )) and variance (V (Y )). Consider g(t1, t2, . . . , tn) to be

square integrable over X ⊆ Rn with Lebesque measure dt = dt1 . . . dtn. The Sobol’s

SA is based on a decomposition of the model into summands of functions of increasing

dimensionality referred to as ANOVA (functional ANalysis Of VAriance) or Hoeffding-

Sobol decomposition [133], that can be written as

g(t) = g0 +

n∑
s=1

∑
i1<···<is

(
ti1 , . . . tis

)
, (5.19)

where g0 is the expectation (mean) of Y defined as

g0 = E(Y ) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
g(t1, . . . , tn)

n∏
k=1

ptk(tk)dtk, (5.20)

and gi1,...,is(ti1 , . . . tis) satisfy the unicity condition
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∫
gi1,...,is(ti1 , . . . tis)pti1,...,i2 (ti1 , . . . , tis)dti1 . . . dtis = 0, s = 1, 2, . . . , n. (5.21)

The interior sum in Eq. (5.19) can be extended over all different groups of indices

i1, i2, . . . , is such that 1 ≤ i1 < i2 < · · · < is ≤ n. With this condition, Eq. (5.19)

can be expanded as

g(t1, . . . , tn) = g0 +
n∑
i=1

gi(ti) +
n∑
i=1

n∑
j=i+1

gij(ti, tj) + · · ·+ g1,...,n(t1, . . . , tn). (5.22)

Eq. (5.22) consists of 2n terms with each term is assumed to be squared integral over

X with zero average. The terms gi(ti), 1 ≤ i ≤ n, are functions of a single variable and are

the so-called first-order indices (or main effect). Each of them represents the variation in Y

due to the change in ti. The functions of more than one variable, gij(ti, tj), 1 ≤ i ≤ j ≤ n,

are called interactions and represent the variation in Y not accounted when ti and tj

are varies individually. With the condition in Eq. (5.21), all the term in Eq. (5.22) are

naturally orthogonal and can be expressed as integrals of g(t) as

gi(ti) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
g(t1, . . . , tn)

n∏
k=1,k ̸=i

pti(ti)dt1 . . . dtn − g0

= Et∼i(Y |ti)− g0,

(5.23a)

gij(ti, tj) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
g(t1, . . . , tn)

n∏
k=1,k ̸=ij

pti(ti)dt1 . . . dtn − gi − gj − g0

= Et∼ij (Y |ti, tj)− gi − gj − g0.

(5.23b)

In the similar way, Eq.(5.23) continues for the higher-orders. Here, Et∼i(·) is the mean of

Y taken over all possible values of t when ti is fixed through its full distribution range,

whereas Et∼ij (·) is also the mean of Y but evaluated when both ti and tj are fixed.
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With the hypothesis that all the input parameters are independent of each other, the

variance of the output (V (Y )) can be also be decomposed into 2n − 1 partial variances of

increasing orders as [134]

V (Y ) =
n∑
i

Vi +
∑
i

n∑
j=i+1

Vij + · · ·+ V12...n (5.24)

where

Vi = V
(
gi (ti)

)
= Vti

(
Et∼i

(
Y |ti

))
, (5.25a)

Vij = V
(
gij
(
ti, tj

))
= Vti,tj

(
Et∼ij

(
Y |ti, tj

))
− Vti

(
Et∼i

(
Y |ti

))
− Vtj

(
Et∼j

(
Y |tj

))
.

(5.25b)

Herein, Vti(·) and Vtj (·) is the variance over all possible values of ti and tj , respectively.

The contribution of individual design parameter’s variance to the total output variance

can be evaluated with the above relation. Therefore, by the dividing Eq. (5.23) with the

total variance V (Y ) of Y one could determine the first and second-order sensitivity index

of ti as

SIi =
Vi

V (Y )
=
Vti

(
Et∼i

(
Y |ti

))
V (Y )

, (5.26a)

SIij =
Vij
V (Y )

=
Vti,tj

(
Et∼ij

(
Y |ti, tj

))
− Vti

(
Et∼i

(
Y |ti

))
− Vtj

(
Et∼j

(
Y |tj

))
V (Y )

. (5.26b)

Likewise, indices of the sth−order can be defined as

SIi1,i2,...,is =
Vi1,i2,...,is
V (Y )

. (5.26c)

SIi is the main effect index of ti and can also be referred to as the average reduction of the

total variance of Y when ti is fixed over its full distribution range. Another well known

variance-based sensitivity measure is the total effect sensitivity index [134], which can be
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derived as

SIT i =
Et∼i

(
Vti
(
Y |t∼i

))
V (Y )

= 1−
Vt∼i

(
Eti
(
Y |t∼i

))
V (Y )

. (5.27)

Here, SIT i is the total sensitivity index for ti and Et∼i

(
Vti
(
Y |t∼i

))
is the expected re-

duction in variance that is obtained if all, but ti, parameters are fixed. The lower value

of SIT i represents ti is less significant. Furthermore, the indices in Eq. (5.26) satisfy∑
i SIi +

∑
i

∑
j>i SIij + · · ·+ SI12...n = 1 and sum of the indices in Eq. (5.26a) is greater

than or equal to one. In this analysis, if SIi = SIT i then there is no interaction effect

between ti and other elements of t and model is additive, which, based on the assumption

of orthogonality of input parameters. If a model is not additive then Sobol’s indices can

also be used for identifying the effective dimensions [135].

In summary, SIi as the main effect measures the fractional contribution of a single

parameter to the output variance. SIij are used to measure the fractional contribution of

parameter interactions to the output variance. The total effect, SIT i, is more adequate as

its evaluation takes into account the main, second-order, and higher-order effects over the

entire range of X [134]. Therefore, in this work, we focus on evaluating SIT i of parameters

with respect toMIs. However, as shown above, the analytical evaluation of SIT i requires

solving high-dimensional integrals; therefore, as explained in §3.2.4, sampling methods are

used.

5.2.4 Sensitivity analysis of multivariate output

MIs of sth−order is a vector quantity composed of multiple moments invariant vector

terms. For instance, MI2 is composed of one zeroth-order and six second-order moment

invariants, which create a problem with the multivariate output. The typical Sobol decom-

position is obtained for each component of the model output, leading to many sensitivity

measures for each output variable. These sensitivities can be redundant if the correlation in

the model output is essential, leading to difficulties interpreting these results. To deal with
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this problem, two different alternatives have been proposed in the literature for multivari-

ate output, referred to as output decomposition [136] and covariance decomposition [122]

approaches.

Output decomposition method

The output decomposition method was initially proposed by Campbell et al. [136] and

is based on the eigendecomposition of a set of output variables into a lower-dimensional

representation. Therefore, it is primarily suitable for problems involving time series output

data in which the dimensionality of model output is extensively high. Since MIs is the

QoI in the present case, we assume that the elements of the MIs form a moment space

from which a dataset MI consisting of N ′ samples is constructed as

MI =


MIs1
MIs2

...

MIsN ′


=


MI0 MI21 MI31 . . . MIs1

MI02 MI22 MI32 . . . MIs2
...

...
...

. . .
...

MI0N ′ MI2N ′ MI3N ′ . . . MIsN ′


. (5.28)

Let C represents covariance matrix of MI defined as

C =
1

N ′MITc MIc, (5.29)

where MIc is centered matrix obtained by subtracting mean of each column, µ, of MI, i.e.,

MIc = MI − µ. Now, to identify the orthogonal active directions of moment space, the

eigenvectors are computed via their eigenvalue decomposition, which can be written as

C = WΛWT . (5.30)

Herein, W = {w1,w2, . . . ,ws} is an [s × s] matrix whose columns are orthogonal eigen-

vectors (wk ∈ R1×s), which spans the new basis to form an eigenspace. Moreover,

Λ = diag(λ1, λ2, . . . , λs), with λi’s being the eigenvalues sorted in descending order λ1 ≥
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λ2 ≥ · · · ≥ λs, which represents the variance resolved along the corresponding eigenvectors.

Based on the above decomposition and the variance-based SA, one can use Lamboni et

al.’s [137] generalised sensitivity indices for multivariate outputs using the eigenmodes or

principal components (DI) obtained with first K eigenvectors which covers at least 95% of

the empirical variance, i.e., DI = (MI +µ){W}Kk=0. The generalised first-order sensitivity

index for the ith variable is defined as

GSIi =

K∑
k=1

λk
V (Y )

SIi,k, (5.31)

and the generalised total-order sensitivity index for the ith variable is evaluated as

GSITi =
∑
ωi

GSIωi , (5.32)

where ωi includes all the components in the ANOVA decomposition with all subscripts

including i. SIi,k in Eq. (5.31) are the first-order sensitivity indices of the ith variable,

evaluated as in Eq. (5.26a), on the new orthogonal basis wi,k. Under this new setting it

can be written as

SIi,k =
Vi,k
Vk

, (5.33)

where Vi,k is the partial variance of the kth eigenmode caused by the variation in the ith

parameter and Vk is equal to the eigenvalue λk. The generalised sensitivity indices in Eq.

(5.32) give the significance of the parameters for MIs in the same way as the sensitivity

indices do in the univariate output case in Eq. (5.27). For more details, interested readers

should refer to [136,137].

Covariance decomposition approach

Gamboa et al. [122] proposed the covariance decomposition approached, which is based on

the Hoeffding-Sobol decomposition as in Eq. 5.22. It can be generalised for any arbitrary
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number of output variables,

MI =MIr0 +
n∑
i=1

MIri (ti) +
n∑
i=1

n∑
j=i+1

MIrij(ti, tj) + · · ·+ MIr1,...,n(t1, . . . , tn),

r = 1, 2, . . . , s,

(5.34)

which implies that the covariance matrix of the model output can be partitioned into a

sum of covariance matrices as follows:

C (MIs) = C
(
MI0, . . . ,MIs

)
=

n∑
i=1

Ci
(
MI0, . . . ,MIs

)
+

n∑
i=1

n∑
j=i+1

Ci,j
(
MI0, . . . ,MIs

)
+ · · ·+ C1,2,...,n

(
MI0, . . . ,MIs

)
. (5.35)

The above equation is equivalent to the decomposition of variance in Eq. (5.23) which is

used for the scalar output. This implies that the main effect indices can be obtained as

SIi = Vi/V (M0,0,0) = Ci/C(M0,0,0). Gamboa et al. used this idea to project C onto a

scalar through multiplication by an identity matrix and then taking its trace (Tr) as

Tr
[
C (MIs)

]
= Tr

[
C
(
MI0, . . . ,MIs

)]
=

n∑
i=1

Tr

[
Ci
(
MI0, . . . ,MIs

)]

+
n∑
i=1

n∑
j=i+1

Tr

[
Ci,j
(
MI0, . . . ,MIs

)]
+ · · ·+ Tr

[
C1,2,...,n

(
MI0, . . . ,MIs

)]
. (5.36)

On the basis of the above, the multivariate main effect indices of the ith variable can be

obtained as

GSIi (MIs) =
Tr [Ci]
Tr [C]

, (5.37)
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while the multivariate total effect sensitivity indices are given as

GSITi (MIs) =
Tr [Ci] +

∑n
i=1

∑n
j=i+1 Tr

[
Cij
]

+ · · ·+ Tr
[
C1,2,...,n

]
Tr [C]

. (5.38)

As the trace, Tr
[
C (MIs)

]
is equal to the sum of variances of all elements of MIs in Eq.

(5.36), GSIi can be interpreted as the expected percentage reduction in the total variance

of the outputs, which is obtained when variable ti is kept fixed. Garcia-Cabrejo and Valoc-

chi [138] also demonstrated that if the covariance of MIs is fully captured by the first K

eigenvectors, then GSIi obtained from this method are equal to GSIi from output decom-

position approach in the previous subsection. We will base our SA using the covariance

decomposition approach in the present case. Unlike in time series data, the dimension-

ality of moment space is not extensively high in our case. Furthermore, the covariance

decomposition approach reduces the possibility of approximation error during the dimen-

sion reduction and numerical inaccuracies resulting from using the output decomposition

method during eigendecomposition.

5.2.5 Selection of sensitive parameters

After obtaining the sensitivity indices, a subset of the highly sensitive parameters, whose

variation influence significantly the QoI while ignoring those that do not contribute signif-

icantly toward design improvement against QoI. Therefore, only a small subset of sensi-

tive parameters are allowed to vary during shape optimisation, and others are kept fixed,

thereby accelerating the shape optimisation process. The selection of a subset of sensi-

tive parameters can be made either based on the available computational budget [18,135],

using a predefined threshold value (such as ϵ) [72, 139] or clustering the parameters into

groups of high and low sensitive ones based on their sensitivity indices [37,119]. In the first

approach, for instance, if only a limited number of design evaluations are allowed to be

performed during optimisation, then the designer will favour selecting a smaller subset of

only highly sensitive parameters to achieve maximum possible design improvement within
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the available computational budget. A threshold ϵ is defined based on a statistically signif-

icant value in the second approach. Any parameter with sensitivity indices greater or equal

to ϵ is included in the analysis, and others are kept fixed. The second approach is more

favourable and widely practised among these three approaches. It provides the subset of

sensitive parameters that are statistically sufficient to redefine the problem with a smaller

set of parameters. However, the setting of ϵ is important as the smaller value may result

in selecting more parameters, and a larger value may form the subset containing fewer

sensitive parameters. For complex analyses, ϵ = 0.05 is widely used [139]. The influence

of ϵ on the selection of significantly sensitive parameters will be analysed in §5.4.

5.3 Test cases

To experimentally demonstrate geometric moments’ capability to make an informed deci-

sion regarding the parametric sensitivity, we use the wave resistance coefficient, Cw, as a

physical criterion. Cw is part of the overall resistance affecting the movement of objects

on or near the free surface of oceans, lakes and rivers. It reflects the energy spend for

creating the free-surface waves following the moving body. Although the overall resistance

of the ship is composed of different components, Cw is a vital component and especially

prominent for relatively full hull forms travelling at high speeds. It is noteworthy that

Cw is highly sensitive to local features of the hull so that a significant reduction can be

achieved without affecting the overall cargo capacity. Similar to geometric moments, Cw

is affected by the distribution of the hull’s shape, and it can be used as a physics-informed

shape signature. Minimising this resistance at the preliminary design stage is crucial, but

its evaluation can be computationally demanding.

5.3.1 Relation of moments with wave resistance coefficient

Our motivation to investigate the utility of moments in SA for ship design stems from

the extensive use of SAC (Sectional Area Curve) in Computer-Aided Ship Design and
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Hydrodynamic Analysis. SAC is a function S(x) of 2D zeroth-order moments describing

the longitudinal variation of the area of ship sections below the waterline. In [140], it is

stated: “A SAC provides an effective and simple description of global geometric properties.

At the same time, it is closely related to the resistance and propulsion performance of

a ship. From this point of view, the ship hull form distortion approach based on SAC

transformation is one of the most effective global design methods for the preliminary design

stage.” In analogous spirit, [141] stresses that “geometric properties of SAC have a decisive

effect on the global hydrodynamic properties of ships”. Historically, the importance of SAC

in ship design has been initiated back in the 1950s with the introduction of Lackenby

transformation [65] for modifying SAC, which has been further enriched in the context of

modern CAD representations and used in ship-design optimisation, see, e.g., in [142,143].

Furthermore, linear wave-resistance analysis performed by eminent hydrodynamicists,

e.g., E.O. Tuck [144,145], J.V. Wehausen [146], has revealed the importance of the longitu-

dinal rate of change of cross-sectional area, i.e., S′(x), which determines the strength of the

Kelvin-source distribution used to model the disturbance caused by the body as it moves

on the sea’s free-surface. It is worth noticing that the flow around a slender ship moving on

the free surface with a constant velocity can be represented by using an appropriate source-

sink distribution along its centre plane. The strength of these sources is proportional to

the longitudinal rate of change of the ship’s cross-sectional area [144,146], and this aspect

can be well captured by geometric moments, especially those of higher order. In fact,

an early derivation for the evaluation of Cw for slender ships, known as Vosser’s integral,

reveals explicit dependence on the longitudinal derivative of the cross-sectional area [146],

i.e., S′(x) = d
dxS(x) where S(x) =

∫
Ω(x) dydz is the cross-sectional area, and Ω(x) denotes

the cross-section of a ship hull at the longitudinal position x. Let now mp =
∫ L
o x

pS′(x)dx

be the p−th order moment of S′(x) with x = 0 and x = L corresponding to the stern and

bow tips of the hull, respectively. Assuming that S(0) = S(L) = 0 we get:

mp = −p
∫ L

0
xp−1S(x)dx = −p

∫ L

0

∫
Ω(x)

xp−1dxdydz, (5.39)
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which leads to

mp = −pMp−1,0,0, (5.40)

where Mp−1,0,0 is a component of the hull’s geometric moments vector of order s = p +

q + r = p − 1 (see Eq. (5.2)). Thus, p−order 1D moments of S′(x) are directly linked to

(p− 1)−order 3D longitudinal moments of the hull. These physics-informed moments are

included in the set of moments used for building the SSV we use for SA.

5.3.2 Parametric modellers

To validate our claim regarding geometric moments, we used two different test cases based

on a different type of parameterisation, namely Procedural Deformation (PD) [1, 4] and

Global Modification Function (GMF) [12]. PD is used for the parameterisation of the hull

shown in Fig. 5.2(a), which shares some closeness to the well known KCS1 ship hull model,

and shall be referred to as the PD hull from this point forward in this chapter. GMF is used

to parametrise a DTMB 54152 naval ship model (see Fig. 5.2(b)), an early and open to the

public version of the USS Arleigh Burke destroyer DDG 51, which is another extensively

used benchmark ship model for shape optimisation problems.

(a)

(b)

Figure 5.2: Three-dimensional CAD geometries of (a) PD and (b) DTMB 5415 hull models
used as test cases for the proposed approach.

PD creates a high-level parameterisation via coupling free-form features with control

points of the underlying surface representation through linear procedural relations. This

1http://www.simman2008.dk/KCS/container.html
2http://www.simman2008.dk/5415/combatant.html
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results in a fully feature-driven parameterisation, i.e., each parameter defines and alters a

specific feature of the PD hull, such as the length, width or length of the bulbous bow.

This parameterisation provides both local and global shape modification. GMF is a grid

modification approach performed using a shape modification function based on vector-

valued functions defined on a design grid. These functions are defined with the objective

that during modification, the underlying structure of the design should be preserved, the

design grid used for simulation to evaluate Cw does not have to regenerate, and a prescribed

degree of similarity should be maintained. However, unlike PD, the parameterisation

obtained from GMF is not feature-driven as varying a parameter may alter a specific

feature and features in its neighbourhood. Variations of hull designs obtained from both

types of parameterisation are shown in Fig. 5.3.

Procedural deformation (PD)

Let G be a member of a rich class of objects in an ambient spce A ⊆ R3. The PD-based

parametric modeller, P, used in this work is based on the technique proposed by Kostas

et al. [1], which for any t ∈ X produces a new shape G′ = P(t). In this case, P(t) is a

vector function Rn → A that defines the underlying geometry of G, which corresponds to

t = ti, i = 1, 2, . . . , 26. As the PD in this case adopts the NURBS (Non-Uniform Rational

B-splines) surface representation, P(t) = N(CG(t); Ω), where N : R2 → R3 is a vector-

valued function that maps each point of the two dimensional domain, Ω, to a point on

the surface bounding G. Here, CG(t) represents the control cage of G, which maps t

onto the control points of CG. Parameters in t are classified in four categories, namely

global, local, semi-global and shape transition parameters, providing shape modification

of different nature. The parametric definition on the hull geometry is shown in Fig. 5.4.

The global parameters, hull length at waterline, beam and depth, are the most shape

influential. Typically, these parameters are predefined during the design process based

on the customer requirements; therefore, these are kept fixed in our analysis. The local

parameters, such as parameters defining lengths at flat side and bottom at the aft and
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Figure 5.4: Parametrisation of PD hull adopted by the PD-based parametric modeller.

forward (t5, t6, t9, t10), bulb bow (t14 - t17), stern (t22 - t24) , bilge radius (t4), shaft (t25,

t26) dimensions, etc., affect small areas of the geometry but can cause significant changes

on Cw [1]. Semi-global parameters affect relatively large hull areas, such as the length and

position of the mid-ship body (t1 and t2). Transition parameters are also local, controlling

the transition between different sections of the shape, for instance, the transition from

mid-ship to bow (t19). In this case, all these parameters are defined as

ti = t̂i · fi (t1, t2, . . . t26) , t̂ ∈ [0, 1], i = 1, 2, . . . , 26, (5.41)

where t̂i is the ith non-dimensional version of ti bounded by [0,1] and fi are affine functions

of these parameters defining the procedural relation and is specified internally by the

developer. During shape modification, [1] recommends using t̂ for supporting robustness

by avoiding setting parametric values that would result in creating invalid and implausible

geometries. Once the values of global parameters and t̂ are given, the control cage, shown

in Fig. 5.4, is automatically constructed. For further details on the formulation of this

parameterisation, interested readers should refer to [1].

Global modification function (GMF)

Let be given a set of cordinates ζ ∈ G ⊂ Rn, with n = 1, 2, 3, and assume that the design

variables set t defines a continous shape modification vector δ(ζ, t) ∈ Rn̂, with n̂ = 1, 2, 3,
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which for any t ∈ X modifies each ζ ∈ G of the baseline shape to a new shape ζ′ ∈ G′ as

ζ′ = ζ + δ(ζ, t), (5.42)

where G′ is the modified version of the G. In the present work, δ(ζ, t) is defined us-

ing a recursive combination of n = 27 shape modification vectors over a hyper-rectangle

embedding the demi hull:

ψi(ζ) : A = [0, Lζ1 ]× [0, Lζ2 ]× [0, Lζ3 ] ∈ R3 −→ R3, (5.43)

with i = 1, . . . , n. Specifically,

δ(ζ, t) = δn, (5.44)

where

δi(ζ, t) = tiψi(ζ), with

 ζ = ζ + δi−1

δ1 = 0
(5.45)

The coefficients {ti, i = 1, . . . , n ∈ R} are the design parameters and forms a 27−dimensional

initial (original) design space X . For modification, the shape functions are defined as

ψi(ζ) :=
3∏
j=1

sin

(
aijπζj
Lζj

+ rij

)
eq(i). (5.46)

In Eq. (5.46), {aij , j = 1, 2, 3} ∈ R define the degree of the function along j-th axis,

{rij , j = 1, 2, 3} ∈ R are the corresponding spatial phases and {Lζj , j = 1, 2, 3} ∈ R are the

hyper-rectangle edge lengths; eq(i) is a unit vector. Modifications are applied along ζ1, ζ2,

or ζ3, with q(i) = 1, 2, or 3 respectively. Details of setting parameters can be found in [12].

The objective of using two different types of parameterisation on two different hulls is

to see if geometric moment invariants capture the sensitivity of parameters under various

design settings.
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5.3.3 Hydrodynamic solver and setup

Two inviscid solvers are for two ship hulls, both symmetric with respect to the xz-plane.

For the one hull referred to as the PD hull model, the PD parameterisation is used, while

for the other hull, referred to in the literature as the DTMB hull, we employ the GMF

parameterisation.

PD hull model: Hydrodynamic calculations to estimate Cw for the PD hull are per-

formed using the Isogeometric Analysis-based Boundary Element Method (IGA-BEM) de-

veloped by Belibassakis et al. [15]. This solver applies the Isogeometric Analysis (IGA) [147]

for solving the boundary integral equation (BIE) associated with the linearised Neu-

mann–Kelvin formulation for the calculation of Cw of ships. The IGA concept is based

on exploiting the same NURBS basis used to represent the exact geometry of the hull

for approximating the singularity distribution of the associated BIE, or, in general, the

dependent physical quantities. In BIE, the dependent/unknown variable is the density of

Neumann Kelvin sources distributed over the hull’s wetted surface, which is accurately

represented with parametric NURBS surfaces or a collection of smoothly joined NURBS

patches; referred to as multi-patch NURBS surface. In our case, the PD hull is composed

of a signal cubic NURBS surface with 108 control points, whose iso-mesh is shown in Fig.

5.5 and simulation is performed on the unit scaled right demi-hull.

DTMB hull model: Hydrodynamic simulations of this hull model are conducted

using the code WARP (Wave Resistance Program), developed at CNR-INM. Cw computa-

tions are based on linear potential flow theory using Dawson (double-model) linearisation.

The frictional resistance is estimated using a flat-plate approximation based on the lo-

cal Reynolds number. Details of equations, numerical implementations, and validation of

the numerical solver are given in [120]. As with the DTMB hull model, simulations are

performed for the demi-hull. Figure 5.5 (b) shows the computational grid used for the sim-

ulation. The computational domain for the free-surface is defined within 1Lpp upstream,

3Lpp downstream, and 1.5Lpp sideways. A total of 75× 20 grid nodes are used for the free
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surface, whereas 90× 25 nodes are used for the hull discretisation. The main particulars,

test conditions and Cw values for both type hulls are given in Table 5.1.

(b)

(a)

Figure 5.5: Computational grid of (a) PD hull and (b) DTMB 51415 hull used during the
simulation for approximation of Cw.

Table 5.1: Main particular, test conditions and Cw values of PD hull and DTMB 5415 hull.

Quantity Symbol Unit Value
DTMB Hull PD Hull

Volume of displacement ∇ m3 8419.31 5112.56
Wetted Surface area S m2 2974.23 2076.56
Length at waterline Lwl m 142.73 100.00
Max Beam at waterline Bwl m 19.06 16.25
Draft T m 6.15 4.51
Water density ρ kg/m3 998.50
Kinematic viscosity ν m2/s 1.09E-6
Gravity acceleration g m/s2 9.80
Froude number Fr – 0.25
Wave resistance coefficient Cw – 1.0531E-03 1.0678E-04

5.4 Results and discussion

This section demonstrates the effectiveness of geometric moment invariants for evaluating

parametric sensitivities using various experiments on the previously described test cases.

We first provide the results of geometric moment invariants for PD and DTMB hull models

and then discuss the Sensitivity Analysis (SA) results with respect to Shape-Signature
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Vector (SSV) and Cw for both hull types, along with the correlation between the results.

Finally, for both test cases, we present the optimisation results performed in the sensitivity

spaces evaluated with SSV and Cw.

5.4.1 Moment Evaluation

As mentioned before, for any shape satisfying the conditions mentioned in Section 5.2.2,

there exist geometric moments of arbitrary order. In this work, we mainly focus on per-

forming SA with respect to fourth-order geometric moments invariant to the translation

and scaling. This choice results from two facts:

1. Higher-order moments can be sensitive to noise acquisition [118]. The risk of nu-

merical inaccuracies, specifically due to the use of finite-precision arithmetics, also

increases as we move towards evaluating high-order moments [116]. Therefore, it

could be challenging to include moments of order greater than 10 as computational

complexity increases with the order.

2. Literature review in various application areas, e.g., kinetic equations [148] and shape

retrieval [132], reveals that it is unlikely to use moments of order higher than 4.

Thus, SSV of order s = 4 (MI4) is used to evaluate the sensitivity of parameters of

both test cases. In MI4, there are 1, 6, 10 and 15 components of 0th− 2nd−, 3rd− and

4th−order geometric moments, respectively. The values of these invariants for two hulls are

shown in Table 5.2. As explained earlier in Section 5.2, all the moment invariants of first-

order are zero, while the zeroth-order moment is equal to one due to its scale invariance.

Therefore, the effect of sensitivity of parameters in the case of zeroth-order is measured

with M0,0,0 instead of MI0,0,0, as M0,0,0 defines the volume of the shape.

5.4.2 Sensitivity Analysis of PD hull model

As described earlier, the PD hull is parameterised with 26 procedural parameters, so a

26-dimensional design space is created while keeping the baseline hull at the centroid of
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Table 5.2: Geometric moment invariants up to 4th−order evaluated for the PD and DTMB
hull models.

Designs M0,0,0 MI2,0,0 MI0,2,0 MI0,0,2 MI1,1,0

DTMB Hull 8.4193E+03 2.3151 4.1970E-02 6.9840E-03 0
PD Hull 5.1126E+03 1.7426 5.7126E-02 5.4962E-03 0

MI1,0,1 MI0,1,1 MI0,0,3 MI0,1,2 MI0,2,1

DTMB Hull -2.3789E-02 0 -3.3039E-04 0 1.0767E-03
PD Hull -3.8124E-03 0 -4.7635E-05 0 3.7467E-04

MI0,3,0 MI1,0,2 MI1,1,1 MI1,2,0 MI2,0,1

DTMB Hull 0 2.7862E-03 0 -9.0788E-03 2.4529E-03
PD Hull 0 -6.2258E-05 0 -4.8513E-03 1.7167E-02

MI2,1,0 MI3,0,0 MI0,0,4 MI0,1,3 MI0,2,2

DTMB Hull 0 4.4042E-01 1.3333E-04 0 2.2588E-04
PD Hull 0 1.5272E-01 5.5021E-05 0 3.1210E-04

MI0,3,1 MI0,4,0 MI1,0,3 MI1,1,2 MI1,2,1

DTMB Hull 0 3.9970E-03 -8.8414E-04 0 -5.5388E-04
PD Hull 0 6.7697E-03 -2.8814E-05 0 -1.8780E-04

MI1,3,0 MI2,0,2 MI2,1,1 MI2,2,0 MI3,0,1

DTMB Hull 0 2.2982E-02 0 6.0453E-02 -2.2388E-01
PD Hull 0 9.2384E-03 0 6.3636E-02 -2.3872E-02

MI3,1,0 MI4,0,0

DTMB Hull 0 12.3709
PD Hull 0 6.5083
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the design space. To commence the SA, the design space is sampled with N ′ = 9000

samples using a progressive sampling technique [18,38]. This sampling technique is based

on the space-filling criterion, searching the design space in the class of Latin-Hypercube

to ensure a uniformly distributed and diverse set of samples. MI4 and Cw of designs

are evaluated on the basis of the setting described in Section 5.2.2 and 5.3.3, respectively.

Afterwards, two different datasets are created, the first containing the design parameter

values as independent variables and Cw as dependent variables. The second dataset is

composed of MI4 as dependent variables. Afterwards, Sobol’s global SA for univariate

output is performed to measure the sensitivity of parameters towards Cw, and multivariate

output Sobol’s analysis with covariance decomposition approach is utilised to estimate the

parameters’ sensitivity toMI4. In the remainder of this section, we first discuss the results

on the sensitivity of parameters with respect to Cw (shown in Fig. 5.6) and then we present

the results of parameters’ sensitivity measured with respect to the zeroth- to the fifth-order

(shown in Fig. 5.7 and 5.8) SSV to observe how the sensitivity of parameters varies with the

increment in the order. Finally, we compare the sensitivity indices of parameters evaluated

with MI4 and Cw.
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Figure 5.6: Sensitivity indices of PD hull’s 26 design parameters obtained using Eq. (5.27)
with respect to Cw.

To select the set of sensitive parameters, a threshold is set equal to ϵ = 0.05 [139].

From Fig. 5.6, it can be seen that in case of Cw, 4 out of 26 parameters, t1, t2, t6 and t19,
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have a sensitivity index greater than ϵ and thus regarded as the Cw sensitive parameters.

Among these parameters, t1 and t2 have a substantially higher sensitivity index, defining

the mid-body length and position. These parameters are of semi-global nature and have

the highest impact on the hull’s shape after the three global parameters, and thus, they

significantly affect the variation of Cw. The next two sensitive parameters, t6 and t19, have

a sensitivity index close to ϵ. Here, t6 is a local parameter, which modifies the flat-of-side

length at the aft of the hull and t19 is the transition parameter defining the interaction of

the bow and bulb of the hull. These results align with the literature [18] as parameters

associated around the bulbous bow segment of the hull are known to have a significant

influence on Cw.

The parametric sensitivity indices obtained with SSV are shown in Fig. 5.7. We will

start the discussion with the results related toMI0, which only consists of the zeroth-order

moment, M0, i.e., the volume of the submerged part of the hull. In this case, there are

three parameters, t1, t4 and t6, sensitive to MI0. The reader should recall that, among

these parameters, t1 and t6 are sensitive to Cw, which means that MI0 is able to capture

50% of the parametric sensitivity to Cw. Obviously, the parameter t1 is more sensitive to

volume as it modifies the length of the mid-body of the hull. However, as the volume does

not get affected by changing the position of the mid-ship, t2, which is a third sensitive

parameter with regards to Cw, has a negligible effect onMI0. Interestingly, in the case of

MI2, similar with respect to Cw, there are four parameters, t1, t2, t5 and t6, with indices

higher than 0.05 and out of these four sensitive parameters, three parameters, t1, t2 and

t6, are also sensitive to Cw. Note that the sensitivity index of t2 is now close to that

obtained with Cw, which means thatMI2 can capture the sensitivity of the shape caused

by varying mid-body position (i.e., the parameter t2). More importantly, the parameters,

t1, t2 and t6 are the top three most sensitive parameters both with respect to Cw andMI2.

The parameter, t5, which is only sensitive to MI2, is local by definition and modifies the

flat-of-side at the forward part of the hull.

From the results depicted in Fig. 5.7, it can be seen that viaMI2 we are able to capture
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Figure 5.7: Sensitivity indices of PD hull’s 26 design parameters obtained using Eq. (5.38)
with respect to MI0, MI2, MI3 and MI4.

the sensitivity of not only the semi-global parameters (t1, t2) but also the sensitivity of the

local parameters (t5, t6), which means the in comparison withMI0,MI2 is more capable

of reflecting the sensitivity of parameters with respect to Cw. For the transition parameter,

t19, its sensitivity index has increased, but it is still far from being categorised as sensitive.

Therefore, geometric moment invariants of higher order may be required.

In the case of MI3 and MI4, the sensitive parameters remain the same as in the

case of MI2. However, the sensitivity indices of almost the entire set of parameters

differ from what was obtained with MI0 and MI2. As we moved from MI0 to MI4,

the domination of sensitivity indices of highly sensitive parameters (t1, t2) reduces and

sensitivity indices of other parameters increases. Primarily, this is prominent for t1, whose

sensitivity indices decreases significantly from 0.7625 (MI0) to 0.2889 (MI4). However,

from MI3 to MI4 sensitivity indices remain similar. Another essential point to note

here is that, when sensitivity analyses are performed with MI4, the sensitivity index of

transition parameter t19, which is sensitive with respect to Cw and is the only parameter

that could not be categorised as sensitive to geometric moments, increases monotonically

as 0.0045 (MI0), 0.0122 (MI2), 0.0212 (MI3) and 0.0447 (MI4). It can be seen that

at MI4, the sensitivity index of t19 becomes very close to one obtained with Cw. This

indicates that as we move towards higher-order geometric moments, we capture more

detailed geometric information of the hull, including its local features. To further validate

this, we increased the order of SSV from 4 to 5 and analysed the behaviour of parametric
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sensitivities with the inclusion of 5th order moments in SSV (i.e., MI5). It can be seen

from Fig. 5.8 that parameters sensitive with respect to MI4 are also sensitive to MI5.

However, the sensitivity indices obtained with MI5 tends to be similar to ones obtained

with Cw. Summery of these sensitivity results is provided in Table 5.3.
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Figure 5.8: Sensitivity indices of PD hull’s 26 design parameters obtained with respect to
4th and 5th order SSV (i.e., MI4 and MI5) and wave resistant coefficient (Cw).

Table 5.3: Sensitive parameters of PD hull with respect to Cw and MIs with s =
0/2/3/4/5.

QoI Sensitive parameters NMSE Similarity

Cw t1, t2, t6, t19 - -
MI0 t1, t4, t6 0.7399 58%
MI2 t1, t2, t5, t6 0.4822 75%
MI3 t1, t2, t5, t6 0.2221 75%
MI4 t1, t2, t5, t6 0.2146 75%
MI5 t1, t2, t5, t6 0.1856 75%

Note the correlation results discussed above are evaluated at ϵ = 0.05. As stated in

§5.2.5, when the value of ϵ changes the then parameters sensitive to both Cw and MIs

change. For instance, in Fig. 5.6, when we set ϵ = 0.1, we will have only one parameter

in the subset of significantly sensitive parameters and setting ϵ = 0.075/0.05/0.04/0.03

will result in 2/4/4/10 sensitive parameters, respectively, in the final subset. Similarly,

in Fig. 5.7, when ϵ is equal to 0.04 and 0.05 then parameters sensitive to MI0 are

[t1, t4, t5, t6] and [t1, t4, t6], respectively. In both cases, [t1, t4] are also sensitive to Cw. So,
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respectively of the specific value adopted for ϵ, one can make a good preliminary estimation

of sensitive parameters at a significantly reduced computational cost. A commonly used

threshold value is ϵ = 0.05 [72, 139], specifically for selecting a subset of significantly

sensitive parameters to construct a design space of reduced dimension. This is the value

used in this work.

Moreover, as the parametric sensitivities are evaluated based on SDD [18], we also

perform an experiment where the number of samples is varied against the sensitivity indices

of parameters. Fig. 5.9 show the sensitivity indices of the top 5 sensitive parameters

(t1, t2, t4, t5 and t6) evaluated with respect to MI4 versus the number of samples. It can

be seen that sensitivity indices vary as the sample size increases, especially for parameter

t1, which is the topmost sensitive parameter. However, sensitivity indices reach a plateau

after a sample size equal to 1000, sufficient to reach true parametric sensitivities.
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Figure 5.9: Plot showing sensitivity indices evaluated with respect to MI4 versus the
number of samples used to perform the geometric moment-dependent sensitivity analysis.
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Metric to measure correlation

To further analyse the effect of sensitivity of parameters with respect to geometric moments

and to compare it versus the sensitivity indices to that obtained for Cw, we introduce two

metrics as below:

NRMSE =

√∑n
i=1

(GSITi−SITi)
2

n

max (SIT )−min (SIT )
(5.47)

similarity =
SIT ·GSIT

||SIT || ||GSIT ||
=

∑n
i SITi GSITi√∑n

i SITi

√∑n
i GSITi

(5.48a)

where

SITi =


1 if SITi ≥ ϵ

0 otherwise

, GSITi =


1 if GSITi ≥ ϵ

0 otherwise

. (5.48b)

The first metric (Eq. (5.47)) is the normalised root mean squared error (NRMSE)

which works directly on the sensitivity indices and measures the deviation between the

two sets of sensitivity indices evaluated with Cw (SIT ) and MIs (GSIT ). The second

metric ( Eq. (5.48)) is based on the cosine similarity, bounded between [0,1], which is used

to measure the similarity between the parameters sensitive to MIs and Cw. The perfect

scenario will be that the parameters sensitive to Cw are also sensitive toMIs or vice versa.

Therefore, we measure the similarity on the two binary sensitivity vectors evaluated with

Cw (SIT ) and MIs (GSIT ) obtained with Eq. (5.48b). A sensitive parameter, i.e., a

parameter with a sensitivity index greater than or equal to 0.05, gets a score of one, and

an insensitive parameter gets zero. This is preliminary because we are not interested in the

sensitivity indices; instead, we intend to categorise a parameter as sensitive or insensitive

according to the sensitivity indices using the set threshold, ϵ.

Figures 5.10(a, b) and Table 5.3 depict the NRMSE and similarity values obtained using

Eq. (5.47) and (5.48) for MI0, MI2, MI3, MI4 and MI5. From these figures, it can
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Figure 5.10: Plot showing (a, c) NRMSE and (b, d) similarity values obtained using Eq.
(5.48) and (5.47) for MI0 to MI5 and MI0 to MI4 obtained for PD hull.
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be seen that NRMSE achieves its maximum forMI0 and has a steep descent up toMI3.

There is no significant difference between NRMSE of MI3 and MI4; however, it reduces

slightly from 0.2146 to 0.1856 when sensitivity analyses are performed with MI4 and

MI5. This is an apparent behaviour occurring as we increase the order of SSV by adding

high-order geometric moments. The sensitivity indices of the parameters become closer

to the sensitivity indices obtained with Cw. As mentioned earlier, sensitive parameters

identified by MI2, MI3, MI4 and MI5 are the same, i.e., in all three cases, there is a

0.75 (or 75%) similarity between the sensitive parameters of SSVs and Cw. This shows

that adding higher-order moments to SSV can better capture the parametric sensitivities;

however, the improvement is marginal.

So far, we have measured the sensitivity of the parameters usingMIs, which contains

all the geometric moments from up to sth−order. The question arises what would be the

result if we use geometric moment invariants of a particular order to perform SA, i.e., if

we measure sensitivity to MIs which contains the moments of sth−order only. The results

of this experiment are shown in terms of NRMSE and similarity in Figures 5.10(c) and

(d), respectively. At M0, NRMSE is the highest, and similarity is the lowest. These values

are equal to the case when MI0 is used as MI0 = M0 due to the reason mentioned

earlier in Section 5.2.2. When MI2 is used to measure the sensitivity of the parameters,

interestingly, NRMSE is lower thanMI2, and both have the same similarity to the sensitive

parameters of Cw. Similarly, NRMSE obtained with MI3 is lower than theMI3; however,

the similarity with sensitive parameters of Cw is only 57%, which is the same when MI0

is used. The NRMSE of sensitivity indices obtained with MI4 and Cw is 0.3103, which

is higher than the ones obtained with MI3 and MI4; nevertheless, the similarity is the

same as MI4. These results show fluctuations in the sensitivity indices when only MIs

are used. This is because for geometric moments to be used as a shape descriptor, the SSV

should be composed of all the geometric moments up to a specific order [116].
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(a)

(b)

Figure 5.11: Sensitivity indices obtained with sensitivity analysis preformed (a) with only
local and transition parameters (t3 to t26) and (b) with only bow parameters (t14 to t17)
of PD hull using Eq. (5.27) and (5.38) with respect to Cw and MIs, respectively.

Sensitivity analysis while excluding most dominating sensitive parameters

In this section we have so far observe that parameters t1 and t2 are the most sensitive

parameters to Cw, MI2, MI3 and MI4, which, as indicated in Section 5.3.2, are semi-

global in nature when it come to their high impact on shape modification. Therefore, it will

be interesting to see if we exclude (i.e., keep them fixed) these parameters and perform

SA on the remaining 24 parameters with respect to MI4 and Cw. The results of this

experimentation are shown in Fig. 5.11(a).

There is a couple of noteworthy remarks regarding these results. First of all, there are
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six and five parameters, [t5, t6, t7, t13, t16, t19] and [t5, t6, t13, t16, t19] sensitive to Cw and

MI4, respectively, with ϵ ≥ 0.05. In the case of Cw, parameter, t19, is the most sensitive

one, followed by t6. Note that out of these parameters, t6 and t19, are also sensitive when

SA is performed with all 26 parameters; see in Fig. 5.7 and Table 5.4. It is noteworthy that

in this case, t19 is a third sensitive parameter to MI4 and unlike the results in Fig. 5.7,

it has significant sensitivity with the index value close to that of t5 and t6. Furthermore,

apart from parameter t7, all the remaining parameters sensitive to MI4 are also sensitive

to Cw. Therefore, there is a high degree of similarity between sensitive parameters obtained

with both quantities with similarity values equal to 0.9129 (91.29%) and NRMSE equal to

0.1296. This shows that by identifying more sensitive parameters with SSV, one can also

fix the most dominating sensitive parameters and re-perform the sensitivity study as the

computational cost of evaluating the moments is significantly less than evaluating Cw.

Table 5.4: Local and transition sensitive parameters of PD hull with respect to Cw and
MI4.

QoI Sensitive parameters NMSE Similarity

Cw t5, t6, t7, t13, t16, t19 - -
MI4 t5, t6, t13, t16, t19 0.1296 91%

5.4.3 Sensitivity analysis for shape with simple geometry

As stated earlier in this section, selecting the order of SSV is influenced by the nature

of problems’ physics and geometry. It is reasonable to expect that for a simple geometry

with fewer complex features, lower-order SSV would be sufficient for SA. To analyse this

effect, we perform SA only for the parameters [t14, t15, t16, t17] associated with the width,

length, height and tip height of PD hull’s bulbous bow. Compared to the overall hull form,

the geometry of the bulbous bow is simple (mainly of elliptical type) but critical from

the physical point of view. Sensitivity analyses are performed to measure the sensitivity

of these parameters with respect to Cw and SSV, MIs with s = 0/2/3/4 while fixing
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other parameters. The results of this experimentation are shown in Fig. 5.11(b). It

can be seen that parameters [t16, t17] sensitive to Cw with sensitivity indices greater than

ϵ = 0.05, are also sensitive to SSV of all orders. However, for MI0, the indices of t16

and t17 deviate largely from what obtained with respect to Cw. As order increases, the

index of t16 increases whereas index of t17 decreases; getting closer to indices obtained with

Cw. There is no significant difference between sensitivity indices obtained with respect to

MI2, MI3 and MI4. Interestingly, in the case of MI2, MI3 and MI4, the sensitivity

ranking of parameters is the same as obtained via Cw; thus, it gives similarity equal to

1.0000 (100%). The results of this experiment reveal that in the case of simple geometry,

geometric moments of lower order are enough to capture parametric sensitivities associated

with the local features of the hull.

5.4.4 Sensitivity analysis of DTMB hull model

As in the case of the PD hull, SA for the parameters of the DTMB hull commences

with a 27-dimensional design space, which was sampled to create a dataset consisting of

N ′ = 9000 samples. First, SA is performed to measure the sensitivity of parameters with

respect to Cw, which is evaluated using the potential flow solver as described in Section

5.3.3. Afterwards, the covariance decomposition approach, along with Sobol’s SA, is used to

evaluate generalised total sensitivity indices for the parameters with respect toMI0,MI2,

MI3 andMI4. As the objective here is to preliminary evaluate the parametric sensitivity

using geometric moments, we first analyse results in terms of NRMSE and similarity, which

are shown in Fig. 5.12(a) and (b), respectively. These results exhibit similar behaviour as

the results in the case of the PD hull shown in Fig. 5.10(a) and (b). NMSE obtained with

sensitivity indices of Cw and MI0 is the highest and decreases steadily up to MI4, with

similar values when SA is performed with MI2 and MI3. Likewise, with the increase in

the order of SSV, the similarity between the sensitive parameters obtained using Cw and

geometric moments increases gradually from 0.1690 (16.90%) (evaluated with MI0) to

0.7715 (77.15%) (evaluated with MI4). One should recall that in the previous test case,
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Figure 5.12: Plot showing (a) NRMSE and (b) sensitivity values obtained using Eq. (5.48)
and (5.47) for MI0 to MI4 obtained for DTMB hull. (c) Sensitivity indices of DTMB
hull’s 27 design parameters obtained using Eq. (5.27) and (5.38) with respect to Cw and
MI4, respectively.

the similarity value of 0.75 was consistent forMI2,MI3 andMI4, i.e., 75% of parameters

sensitive to Cw were identified. However, in this test case,MI2 could only identify 66.81%

of the parameters sensitive to Cw. Nevertheless, the similarity value achieved with MI4

for this test case is slightly higher than what was obtained for the PD Hull. This shows

that also in this test case, MI4 achieves the highest similarity and lowest NRMSE to

sensitivity indices of Cw, whereas MI0 shows the least similarity and highest NMSE. In

conclusion, even for a test case like DTMB, whose parameterisation is not feature-driven,

geometric moments can still significantly capture the sensitivity of parameters associated

with physics. Summery of above discussed sensitivity results is provided in Table 5.5.

Fig. 5.12(c) show the sensitivity indices of the 27 design parameters obtained with
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Table 5.5: Sensitive parameters of DTMB hull with respect to Cw and MIs with s =
0/2/3/4.

QoI Sensitive parameters NMSE Similarity

Cw t4, t8, t14, t15, t17, t22, t26 - -
MI0 t9, t22, t23, t25, t26 0.3984 17%
MI2 t3, t4, t8, t9 t14, t15, t24, t26 0.1964 69%
MI3 t4, t8, t9 t14, t15, t22, t26 0.1868 77%
MI4 t4, t8, t9 t14, t15, t22, t26 0.1366 77%

respect to Cw and MI4. It can be seen that for Cw, 7 out of the 24 parameters, [t4, t8,

t14, t15, t17, t22, t26], have a sensitivity index greater than ϵ and thus can be regarded as

the most sensitive parameters with respect to Cw. Among these parameters, t14, t8 and

t15 have substantially high sensitivity index while t17, t22 and t26 have a sensitivity index

close to ϵ = 0.05. In case of MI4, there are 6 parameters, [t4, t8, t9 t14, t15, t22, t26],

with sensitivity index higher than 0.05. It is interesting to note that, except parameter t9,

parameters sensitive to MI4 are also sensitive to Cw. More importantly, the parameters,

t4, t14, t8 and t15, are the top 4 sensitive parameters with respect to both Cw and MI4.

5.4.5 Composite geometric moment invariants

For complex geometries containing many features, SSV may require to include high-order

geometric moments to capture detailed information about the shape, mainly associated

with local intrinsic features. However, as mentioned earlier, higher-order moments are

sensitive to noise. Therefore, instead of evaluating higher-order geometric moments for

capturing detailed features, one may decompose the geometry into smaller segments whose

geometries are simple enough to be represented easily with lower-order geometric moments.

This will create a Composite-Shape-Signature Vector containing the geometric moment

invariants up to sth−order for all shape segments and then use it to perform SA. In this

connection, we shall henceforth refer to compositeMIs versus the globalMIs used in the

previous section.
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Figure 5.13: Shape segmentation of PD and DTMB hulls used for sensitivity analysis
performed with composite MIs.

The segmentation of ship hulls used as test cases in the present work is shown in Fig.

5.13. Both hulls are divided into four parts: bow ( bulbous bow for the PD hull and

sonor dome for the DTMB hull), forward, mid-body, and aft segments. This segmentation

is relatively easy for ship hulls and widely adopted in the literature. However, for other

shapes, one can perform the segmentation based on the visible features or use an automatic

segmentation method similar to one presented in [149]. After the segmentation, MI4 is

evaluated, and the multivariate SA is performed, whose sensitivity results, along with

Cw, are shown in Fig. 5.14 and 5.15 for PD hull and DTMB hull, respectively. The set of

sensitive parameters of both hulls with respect to composite-MI4 are provided in Table 5.6.

We shall first comment on the sensitivity results of the PD hull obtained with composite

MI4 and compare them with the sensitivity results of globalMI4 evaluated for the entire

shape, given in Fig. 5.7. In this case, sensitivity results for Cw are the same as previously

presented; however, the sensitivity of parameters to geometric moments changes due to the

usage of compositeMI4. From these results it can be seen that there are five parameters,

[t1, t2, t5, t6, t19], sensitive to composite MI4 where, apart from t19, the four remaining

parameters are also sensitive with respect to global MI4. One should recall that in Fig.

5.7, t19 is the only parameter sensitive with respect to Cw but insensitive to global MI4.

However, it is noteworthy that in the case of composite MI4, this parameter is sensitive

with a substantial increment in its sensitivity index value. This results in the decline
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in NRMSE from 0.2145 (obtained with global MI4) to 0.1661 (obtained with composite

MI4) and increment in similarity from 0.75 (75%) to 0.8944 (89.44%). Moreover, in the

case of composite MI4, the first two sensitive parameters have the same ranking as the

ranking obtained with Cw. This again shows the usability of geometric moments to perform

reliable global SA.
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Figure 5.14: Sensitivity indices of PD hull’s 26 design parameters obtained using Eq. (5.27)
and (5.38) with respect to Cw and composite MI4, respectively.

Similar to the PD hull, interesting and improved results (shown in Fig. 5.15) are

obtained when SA are performed for DTMB hull with composite MI4. In this case,

instead of 7 we have 6 sensitive parameters, [t4, t8, t14, t15, t22, t26]. All the parameters

sensitive to composite MI4 are also sensitive with respect to Cw. Furthermore, now the

similarity between two sets of sensitive parameters increases from 0.7715 (77.15%) to 0.9258

(92.58%) and only one parameter, t17, could not be categorised sensitive with respect to the

composite MI4. The parameters t9 and t24 are sensitive with respect to global MI4 and

insensitive with respect to composite MI4 with significant reduction in their sensitivity

indices. Furthermore, the parameter t22 is sensitive with respect to composite MI4 and

Cw, but is insensitive with respect to global MI4 (see results in Fig. 5.12(c)). Therefore,

NRMSE reduces from 0.1366 to 0.1301.
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Figure 5.15: Sensitivity indices of DTMB hull’s 27 design parameters obtained using Eq.
(5.27) and (5.38) with respect to Cw and composite MI4, respectively.

Table 5.6: Sensitive parameters of PD and DTMB hulls with respect to composite-MI4.

QoI Sensitive parameters NMSE Similarity

PD Hull
Composite-MI4 t1, t2, t5, t6, t19 0.1661 89%

DTMB Hull
Composite-MI4 t4, t8, t14, t15, t22, t26 0.1301 93%
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5.4.6 Selection of SSV’s order to commence SA

From the above experimentation, it can be concluded that selecting the right order of

SSV can be based on the complexity of the shape’s geometry. For a geometry with fewer

complex features, it would be sufficient to work with lower-order SSV, e.g., of order 2 or 3.

On the contrary, complex geometries with many features may require SSV to include high-

order geometric moments (e.g., of order ≥ 4) to capture detailed information about the

shape, mainly associated with local intrinsic features. However, the higher-order moments

can be sensitive to noise acquisition [118]. Therefore, instead of evaluating higher-order

geometric moments for capturing detailed features, one could decompose the geometry into

smaller segments whose geometries are simple enough to be represented easily with lower-

order SSV. As a rule of thumb, we recommend using 4th-order global-SSV for a simple

geometry and 4th-order composite-SSV for complex geometry with many features. This is

also supported by the fact that various application areas, e.g., kinetic equations [148] and

shape retrieval [132], use geometric moments up to the order of 4 and as shown in §5.4.2,

with SSV of order higher than 4 only a marginal improvement can be excepted. The above

discussion on the selection of the right order of SSV in relation to geometry complexity

also aligns with the result of experiments performed in §5.4.2 and 5.4.3. For instance, in

the case of PD hull, only composite-SSV could categorise parameter, t19, related to local

feature like bulbous bow as sensitive; see Fig. 5.7, 5.8 and 5.14 for comparison. In contrast,

for a bulbous bow, whose geometry type is simple compared to the overall hull form, the

global-SSV of 2nd-order was enough to capture the parametric sensitives; see Fig. 5.11(b).

5.4.7 Summary of sensitivity results

Before proceeding to the last part of this section, which will exploit our SA approach for

shape optimisation, we offer the reader a summary of the sensitivity results obtained:

1. For both the PD and DTMB hulls, the NRMSE between sensitivity indices evaluated

with respect to Cw and MIs reduces with the increment in s.
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2. Similarity between the parameter sensitivities with respect to Cw andMIs increases

with respect to s up to s = 3 but no significant improvement is observed when s = 4.

3. In comparison to globalMIs, the compositeMIs captures better parametric sensi-

tivities.

4. The results in Fig. 5.7 and 5.11 show that out of the 26 parameters that control the

parametric modeller of PD, 7/8 parameters are significantly sensitive with respect to

MI4/Cw, respectively (see Table 5.7).

5. A similar behaviour is observed from Fig. 5.12 and 5.15 for the DTMB hull: 7/6 pa-

rameters out of the 27 parameters are sensitive with respect toMI4/Cw, respectively

(see Table 5.7).

6. The similarity between the subsets of significantly sensitive parameters with respect

to Cw and MI4 is 79.06% for the PD hull and 92.58% for the DTMB hull.

7. In the case of PD (DTMB) hull, the SA with respect to MI4 helps to achieve a

73.08% (74.07%) reduction in the dimension of the design space.

Table 5.7: Summary of the sensitivity analysis results obtained from the previously dis-
cussed experimentation.

Sensitive Parameters Similarity

with respect to Cw

PD Hull t1, t2, t5, t6, t7, t13, t16, t19 -
DTMB Hull t4, t8, t14, t15, t22, t26 -

with respect to MI4

PD Hull t1, t2, t5, t6, t13, t16, t19 79.06%
DTMB Hull t4, t8, t14, t15, t17, t22, t26 92.58%

136



Chapter 5. Geometric moment-dependent global sensitivity analysis without simulation
data

5.4.8 Shape optimisation

One of the key objectives of extracting parametric sensitivities is to achieve rapid design im-

provements already at the preliminary stage of shape optimisation. In this connection, once

the subset tMI of parameters sensitive toMI4 is selected from the original parametric set

t, we use them to construct a design space XMI of lower dimension to expedite the shape

optimisation performed against physical QoI, i.e., Cw. For the PD and DTMB hulls, their

sensitive parameters tMI = {t1, t2, t5, t6, t13, t16, t19} and tMI = {t4, t8, t14, t15, t17, t22, t26}

create two 7-dimensional design spaces (XMI). As stated earlier that typically parametric

sensitivities are learnt directly with physical QoI, which can be extensively computational

demanding due to the need of performing physical analysis for both SA and shape op-

timisation. To experimentally prove the potential of moments for learning parametric

sensitivities to aid optimisation, we construct a reduced-dimension design space Xcw with

the subset tcw of parameters sensitive to Cw. The shape optimisation is performed in XMI

and Xcw with an objective to minimise their Cw.

The parametric modellers [1,12] used in this work ensure the generation of valid geome-

tries, i.e., the possibility of generating disjoint and self-intersecting surfaces is negligible.

However, a valid geometry may be unrealistic or impractical; therefore, our optimisation

in Eq. (5.1) can be reformulated based on the set of design constraints as:

Optimisation:

Find t∗MI ∈ Rm such that

Cw(t∗MI) = min
tMI∈XMI

Cw(t∗MI)

subject to 0.95V0 ≤ V (tMI) ≤ 1.05V0,

0.95Bwl0 ≤ Bwl(tMI) ≤ 1.05Bwl0,

Lwl(tMI) = Lwl0,

T (tMI) = T0.

(5.49)
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Here, tMI is a subset of sensitive parameters obtained with respect to moment and

XMI is the corresponding design space, whose dimension is less than the original space

(X ). V,BWL, LWL, T correspond to volume, length and beam at the waterline, and draft,

respectively. The sub-index (·0) indicates the quantity values for the baseline hull de-

sign. These constraints focus on exploring an optimal design whose key features reside in

the vicinity of the baseline design. Therefore, the resulting optimal design is considered

practical as the baseline design.

The optimisation is performed using the Jaya Algorithm (JA) [109], with the objective

to minimise Cw. JA is a simple yet effective stochastic meta-heuristic optimisation tech-

nique whose performance has been proven in various engineering applications. JA may

provide different results in each run; therefore, five different optimisation runs are per-

formed in the present work. In each run, a total of 150 iterations are conducted. Table 5.8

shows the Cw values obtained at the 150th iteration of shape optimisation performed in

Xcw and XMI) for PD and DTMB hulls, along with the average Cw in all five runs. From

this table, it can be seen that in the case of the PD hull, the best design is obtained at

the fourth and fifth run from XMI and Xcw with Cw equal to 1.0205E-07 and 1.0302E-07,

respectively. Fig. 5.16 (a) shows Cw values in all 150 iterations for these two runs. It is

noteworthy that the optimal design obtained from XMI has better performed (i.e., its Cw

value is less) compared to the design obtained from Xcw . However, on average, the Cw

obtained from XMI with fives run at their 150th iteration is slightly higher, with Cw equal

to 1.0335E-07, compared to the design obtained from Xcw , which is equal to 1.0316E-07.

The optimal designs obtained for the PD hull from this shape optimisation experiment are

shown in Figures 5.17. Figures 5.17(a) and (b) compare the baseline and optimal designs

obtained from XMI and Xcw in terms of their cross-sections (bodyplan) while Fig. 5.17(c)

show this comparison between the two optimal designs.

Figures 5.17(d-f) show the intensity of deviation between the features of these designs

as a heat map plotted using the one-sided Hausdorff Distance (Hd) between two objects

and features with maximum deviation (Hd = 1) are highlighted in red. Similar features are
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highlighted in dark blue when Hd = 0. From these results, it can be seen that the design

optimised from Xcw has maximum deviation at the forward part of the hull, and the design

optimised from XMI show maximum deviation from the baseline design at the aft segment.

These slight geometric dissimilarities between the two optimised hulls (see Fig. 5.17 (c)

and (f)) are due to the existence of one extra parameter (t7) in tcw , which, as shown in Fig.

5.4, modifies the rise of the forward part of hull’s flat-of-side. Nevertheless, in terms of

performance, there is no significant difference between two hulls; i.e., the Cw of optimised

hulls in Fig. 5.17(a) and (b) obtained with tcw and tMI is 1.2976E-07 and 1.0328E-07,

respectively. The Cw value of the baseline PD hull (shown in Fig. 5.1(a)) is 1.07E-04, which

is higher than the optimal designs obtained from both sensitive design spaces. This shows

that one can achieve significant improvement in the design using sensitive parameters only.

Fig. 5.16 (b) shows the Cw values over 150 iterations during the fourth and fifth

optimisation run for the DTMB hull performed in XMI and Xcw created for DTMB hull.

From the results in Fig. 5.16 (b) and Table 5.8 it can be seen that, like in the case

of PD hull, the optimal design obtained in XMI has also lower Cw value compared to

the design obtained from Xcw . These values are notably less than that of the baseline

design of DTBM hull in Fig. 5.1(b), which is equal to 1.05E-03. Moreover, for this hull,

the average Cw value of five optimisation runs, shown in Table 5.8, is 5.0917E-04 when

optimisation is performed in XMI , which, unlike the case of PD hull, is slightly higher then

average Cw (equal to 5.0447E-04) obtained from Xcw . The percentage difference between

the two values is 0.92%, which is negligible. The comparison between the optimal and

baseline design of the DTMB hull is shown in Figure 5.18 in terms of the bodyplan and

the Hausdorff distance heat map. The map in Fig. 5.18 (d) shows that in the case of XMI

the maximum deviation of the optimal design from the baseline occurs close to the waterline

at the mid-body segment of the hull. In contrast, the design optimised from Xcw deviates

notably from the baseline design at the forward segment close to the entrance of the hull;

Fig. 5.18 (e). On the other hand, comparing the two optimised in Figure 5.18(c) and (f)

one can observe a similar behaviour as the PD hull in term of geometric variation. For the
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Figure 5.16: Plot showing Cw versus optimisation iterations performed to optimise (a) PD
and (b) DTMB hulls in XMI and Xcw .
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DTMB hull, parameters sensitive to Cw and MI4 are tMI = {t4, t8, t14, t15, t17, t22, t26}

and tcw = {t4, t8, t14, t15, t22, t26} and again, apart from t17, parameters sensitive to both

sets are the same. However, geometric variation between two optimised DTMB hulls is

slightly higher compare to PD hulls. However, despite the design difference both optimised

designs have similar performance, e.g., their Cw is equal to 5.0269E-04 and 5.0314E-04.

Table 5.9: Cw values and the percentage improvement in baseline design of PD and DTMB
hulls made when shape optimisation is performed in sensitive ((XMI and Xcw)) and original
(X ) design spaces.

Baseline Design Design from Xcw Design from XMI Design from X

PD Hull

Cw 1.0678E-04 1.0302E-07 1.0205E-07 1.05081E-07

DTMB Hull

Cw 1.0531E-03 5.0269E-04 5.0314E-04 8.9218E-05

The above results indicate that for both PD and DTMB hulls, the optimal designs

obtained from XMI and Xcw have similar performance in terms of the wave resistance Cw.

Even with only seven sensitive parameters for the PD hull and six sensitive parameters for

the DTMB hull in XMI , a substantial improvement is made versus the baseline designs

in terms of Cw. Table 5.9 summarises Cw values of the parent and optimal designs ob-

tained from sensitive (XMI and Xcw) and original (X ) design spaces. This shows that the

biggest improvement for the PD hull is achieved when shape optimisation is performed with

sensitive parameters instead of using the entire set of 26 design space parameters. These

impaired optimisation results obtained from X can be attributed to its high dimensionality.

As X is 27-dimensional for the PD hull, optimisation exhibits slow convergence, requiring

more design evaluations, which results in a higher computational cost. Furthermore, more

than half of the improvement made to the DTMB design achieved with a full set of 27

design parameters of the DTMB hull is contributed by only six parameters sensitive to

MI4.
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5.4.9 Computational cost

The computational cost to perform SA to geometric moments is glaringly less than per-

forming SA with Xcw and XMI . On a PC with Intel(R) Xeon(R) Gold 6226 CPU with

2.70GHz and 2.69 GHz processors and 128GB of memory on average, it takes 11.552 and

9.039 seconds to evaluate the fourth-order shape-signature vector (MI4) for the PD and

DTMB hull geometries composed of triangulated meshes with 1,968,835 and 2,512,886 ver-

tices, respectively. For the PD and DTMB hulls, IGA-BEM and potential flow solvers take

approximately 86.505 and 69.297 seconds to evaluate Cw. Consequently, for the PD hull,

the overall computational cost for performing SA with respect to global MI4 and Cw is

29.0154 and 216.2701 hours, respectively. Similarly, the computational cost for performing

SA for DTMB hull with respect to Cw is also significantly high. Therefore, this proves that

performing SA via geometric moments can provide a prior estimation of the parameters’

sensitivity with extensively reduced computational cost.

5.4.10 Limitation of geometric moment invariants for sensitivity analysis

So far, in this section, we have demonstrated that SSV composed of geometric moment

invariants up to fourth-order are capable of revealing parametric sensitivities for both test

cases. However, despite their usefulness to expedite SA, moments can only be used for

physical quantities, with tight coupling with the geometry, such as Cw. In general, an

experienced designer/engineer can easily identify the dependence of a physical quantity on

geometry, thereby on moments. Therefore, one can make a technically sound judgement

on using geometric moments to preliminary drive the sensitivity of the parameters for

their problem. Our use of geometric moments is based on the fact that, like most physical

quantities, moments are sensitive to the variation of shape features, and the sensitive

parameters are those with a high effect on the shape and thus on the associated physics.

However, it is not unlikely that some parameters may have a high impact on the shape

but a negligible impact on the physics in a design problem. In that case, one may require
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SSV composed of geometric moments of higher than fourth-order. For these reasons,

moments may not be able to scale well versus other physical quantities as they did in the

present case, especially for black-box problems or problems with no strong dependence

of physical QoI on moments, such as it is the case of frictional resistance of the hull.

Thus, a good understanding of the underlying physics is necessary to perform a geometric-

moment dependent SA. In addition, moments can only be used for the SA of 2D/3D design

problems. In contrast, SA is also widely used in the context of numerical problems with

no geometrical objects/domains like [36,37].

Nevertheless, there exist a wide variety of problems [14,113,114,116–118,126] for which

performing geometric-moment dependent SA can be very beneficial to reduce the compu-

tational cost of working directly with the physics. Moreover, as discussed in §5.3, our

methodology is based on two pillars:

• The collocation BEM for Fredholm Boundary Integral Equations (BIE) of the second

type, used for formulating and solving the elliptical exterior boundary-value prob-

lem (BVP) associated with the chosen QoI. Along with the Galerkin Finite-Element

Method (FEM), collocation BEM provides a standard weak formulation for solving

various problems in continuum mechanics and is especially suitable for BVP’s defined

on infinite domains, which is exactly the case for the wave-resistance problem.

• A pair of parametric modelers (PD [1] and DTMB [12]), capable to parametrise in

robust and efficient manner complex free-form objects.

Based on the above remarks, we believe that the proposed approach can be applied to a

broader class of shape optimisation problems that can be modelled via BIE on free-form

geometries. Even if there is no strong connection of physics under consideration with geo-

metric moments, they can at least capture the sensitivity of parameters to shape variation

in a pure geometrical setting. This can be very useful at the preliminary stage design

stage of constructing a parametric model, where the decision on type and dimensionality

of parameterisation is made based on the effect a parameter can have on the original shape.
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This is related to the previously mentioned fact that designers are interested in parameter-

isation at the initial design stage, which can deliver the highest variability possible. This

is especially of interest for parametric generative design [8, 54].

Despite the limitations mentioned above, the results presented herein support the as-

sertion that at least in the field of naval architecture, ocean and marine engineering, where

these techniques are widely used, the proposed approach constitutes a valuable contribu-

tion. Furthermore, our end aim is to find a class of design problems specifically in mar-

itime and aeronautical fields, where these approaches are extensively used and ultimately,

to trigger an interest in the research community towards exploring such physics-correlated

but computationally inexpensive quantities to perform SA as a priori for identifying the

sensitivity of parameters.

5.5 Conclusion and future works

This work describes our quest to support computationally demanding physical models with

the aid of efficient geometric quantities such as geometric moments and their invariants.

Using such geometric quantities, we proposed a method to expedite Sensitivity Analysis

(SA) in the context of shape optimisation of 3D free-form shapes such as ship hulls. Our

choice of geometric moments is based on the fact that they are intrinsic properties of

solid shapes’ underlying geometry that can provide essential design indications to facili-

tate designers in CAD. The set of geometric moment invariants up to particular order can

also be used to create a shape-signature vector, which approximates the shape as order

increases. Moreover, computing geometric moments is also vital for physics-based sim-

ulations that help in improving realism in physical animations. To prove that geometric

moments can benefit designers as a prior check on the sensitivity of parameters, we utilised

wave-resistance coefficient (Cw) as a physical quantity, as it is a crucial design consideration

for a ship hull design towards improving efficiency and thus decreasing Fuel Oil Consump-

tion. The distribution of the hulls’ geometry, especially longitudinally, has a similar impact
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on geometric moments as Cw. To validate our claim, we utilised two different hull models,

PD and DTMB hulls, which are constructed, parametrised and physically evaluated with

two different approaches. Various experiments are performed with varying degrees of both

global and composite shape-signature vectors and Cw to experimentally quantify the de-

gree of similarity between the parameters sensitive to these quantities. The results from

these experiments revealed a good correlation between the sensitive parameters obtained

from the fourth-order composite shape-signature vectors (MIs) and Cw. In the case of

the PD hull, seven parameters sensitive toMI4 are also among the 8 parameters sensitive

to Cw. Interestingly, similar results are obtained for the DTMB hull, where 6 out of 7

sensitive parameters to Cw are also sensitive to MI4. Afterwards, two different design

spaces are constructed for both hull models, one with sensitive parameters obtained with

Cw and the other with MIs. Shape optimisation is performed in both spaces performed

via a meta-heuristic optimisation approach. Final optimisation results showed that the

design generated from design space constructed with sensitive parameters of Cw andMI4

for both types of hulls offer similar performance; however, interestingly, the optimal hull

designs from MI4 have sightly better performance.

In future work, our prime aim is to explore other computationally demanding engineer-

ing design problems for which geometric moments can aid parametric analysis, specifically

intra-sensitivity analysis [18]. Moreover, we are also interested in exploring other shape in-

tegral properties along with their usage to support surrogate and reduced-order modelling,

specifically in the context of physics-informed learning [21].
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Shape-supervised dimension

reduction

6.1 Introduction

Simulation-driven optimisation of free-form shapes is often obstructed by high-dimensional

design spaces stemming from the baseline/parent shape parameterisation, which leads to

the notorious curse of dimensionality [32]. A common cure involves dimensionality reduc-

tion, referred to as feature extraction/embedding or manifold learning. These approaches

aim to extract latent features/variables from the design space, which can be classified

as geometrically active or inactive depending on their importance in affecting a shape’s

geometric variability [21]. Inactive features are redundant, and their usage has no or min-

imal impact on shape variation and performance improvement during optimisation; thus,

they can be safely ignored to reduce the space’s dimensionality. The geometrically ac-

tive latent features form a new set of parameters for shape modification and construct

a basis spanning a lower-dimensional subspace for faster optimisation convergence with

fewer computationally intensive design evaluations. The widely used Design Space Di-

mensionality Reduction (DSDR) approaches include the Karhunen-Loève Decomposition

(KLD) [22] (closely related to Principal Component Analysis (PCA), the so-called proper
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orthogonal decomposition [12,16]) and their non-linear extensions, such as kernel PCA [23],

ISOMAP [24], LLE [25] to handle design space non-linearities if present. Recently, Ma-

chine Learning-based approaches, autoencoders [23, 26], Generative-Adversarial Networks

(GANs) [32], and variations [27, 28], emerging from applications in image analysis, object

recognition, speech analysis, clustering, and data visualisation etc., have gained attention

in DSDR literature.

Despite the demonstrated efficiency of the aforementioned approaches for DSDR, they

often suffer from certain drawbacks. A common deficiency is their inability to preserve a

shape’s complexity and intrinsic underlying geometric structure. Thus, the resulting sub-

space lacks the representation capacity and compactness, which, as defined in [28, 32], is

subspace’s ability to produce diverse and valid shapes, respectively, with least number of

latent variables when being explored for shape optimisation. These deficiencies can hamper

the success of the optimiser as it may spend the majority of the available computational

budget on exploring infeasible, practically invalid and similar shapes. Furthermore, the

basis of the subspace is solely formulated with geometric features and no information re-

lated to physics, against which designs are assessed, is incorporated. Therefore, it may

not be an optimisation-efficient subspace because, even if the high geometric variation is

preserved, maximum design improvements are not guaranteed; see [21, 26, 27, 33]. How-

ever, it should be noted that these techniques’ inability to extract appropriate geometric

or physics-associated features is not necessarily an intrinsic characteristic; it mainly stems

from the geometry representations used in subspace learning, which are commonly low-level

shape discretisations. Thus, extracting intrinsic latent information from such representa-

tions becomes implausible; therefore, richer representations with high-level details related

to the underlying shape’s structure and physics are imperative.

6.1.1 Objective and contribution

To simultaneously tackle the aforementioned challenges associated with DSDR, we propose

a shape-supervised approach, which, with the geometric modification function [12], uses the
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shape’s integral properties, i.e., geometric moments and their invariants [14,51], to harness

the compact geometric representation of the baseline shape and complement its physics

during DSDR. Therefore, the resulting subspace

1. has not only enhanced representation capacity and compactness to produce a valid

and diverse set of design alternatives, respectively, but

2. is also physically informed to improve the convergence rate of the shape optimiser

towards an optimal solution.

As mentioned in the previous chapter, a well-known feature of geometric moments is their

strong coupling with physics as they provide the geometric foundation for different physical

analyses and, like physics, provide important clues about the form, distribution and validity

of the design. As with physics, they depend on the design’s geometry, but their evaluation

is substantially less expensive. Therefore, we perform DSDR in a supervised setting where

geometric moments are used as QoI to induce a notion of the shape’s physical information,

thus resulting in a shape-supervised subspace whose basis is not only associated with the

shape’s geometry but also with its physics. A complete workflow of the proposed pipeline

is illustrated in Fig. 6.1. In conclusion, the selection of geometric moments in our work is

motivated by the following fundamental insights:

1. Geometric moments of a shape are the intrinsic properties of its underlying geometry

and act as a unifying medium between geometry and its physical evaluation [14,51].

2. The analysis for any physics requires such integral properties of the geometry. At

the same time, moments of a domain are sufficient to ensure accurate integration of

a large class of integrands [14,113].

3. Like physics, geometric moments also act as a compact shape signature or descriptor

facilitating various shape processing tasks [116,118].
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Geometric moments of higher order are also used in different shape processing tasks

such as object recognition [118], rigid body transformation [116], etc. Most notably, in

physical analyses, they are used for parametric sensitivity analyses [150], material field

modelling [114], governing equations of motions for flows around a body [113], and, recently,

for meshfree FEA [14, 127], in which moment-based shape representations are used to aid

the interoperability between CAD representations and physics.

6.1.2 Overview of the proposed approach

To maximise the accumulation of both geometric and physical variance in the subspace,

our approach uses a set of composite moments by disintegrating the body geometry into

several subsets of coherent shape. Afterwards, we use the divergence theorem to evaluate

moments of all subsets up to a specific order. Once moments are evaluated, they are

used, along with the shape modification function, to form a Shape Signature Vector (SSV)

function, which acts as a descriptor to represent each instance in the design space uniquely.

Karhunen-Loève Expansion (KLE) of SSV is evaluated, where the solution of a variational

problem allows for the evaluation of latent features as a linear combination of original

designs. The features provided by KLE are expressed by the eigenfunctions of a symmetric

and positive definite covariance function constructed with SSV. The KL-values associated

with each feature allow the identification of active and inactive features. The active features

reparameterise the shape and act as a new basis to span the subspace, retaining the highest

variance in geometry and physics. Moreover, different quality measures are formulated to

assess the quality of the shape-supervised subspace in producing rich and valid sets of

shapes.

Two test cases, a three-dimensional (3D) wing and a ship hull, are used to analyse

the shape-supervised subspace’s ability to produce diverse and valid designs. At the same

time, the ship hull model is also used for shape optimisation with respect to the wave

resistance coefficient (Cw). Cw is a significant component of the total ship’s resistance

and a critical design criterion whose evaluation is computationally demanding. These
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experiments validate the conservation of physical information via geometric moments and

expedite convergence to optimal solutions.

6.1.3 Related works

Recently, GANs [32] have been used for reparameterisation of the shape with latent fea-

tures, as baseline parameterisation approaches, like the ones used in free-form deformation,

produce high-dimensional design spaces [18] that do not guarantee feasible/valid shapes.

Chen et al. [32] proposed the Bézier-GAN for two-dimensional (2D) aerofoil design by

introducing a Bézier layer into GAN to maximise subspace’s representation capacity and

compactness. However, the baseline parameterisation cannot automatically guarantee valid

shapes and, as a result, these approaches require a training dataset of existing designs,

which may prevent optimisers from finding innovative designs; a drawback studied in de-

tail by Li and Zhang in [28]. Moreover, their usage can be problematic for novel problems,

as, in this case, creating training datasets can be extremely arduous.

Furthermore, although subspaces resulting from the approaches described above may

address the validity problem, physics-associated features are still not present. The Active

Subspace Method [79] and supervised KLE [33] can handle this issue, but they become com-

putationally intensive as they require direct evaluation of physics quantities and/or their

gradients. Yonekura and Suzuki [26] recently used a conditional variational auto-encoder

(CVAE) for aerofoil design. They used the lift coefficient as a condition to auto-encoder

during training so that the decoder could generate the shape with specific performance.

Chen and Ahmed [96] proposed PaDGAN to augment the design performance into the

generator to create high-quality designs with good optimisation convergence. Another

GANs-based method was proposed by Shu et al. [27], which elevates the quality of gener-

ated designs by iteratively updating the training dataset using performance-based design

filtering. All methods above, i.e., [26, 27, 33, 79, 96] are efficient but supervised and there-

fore require performance labels to be evaluated for a large shapes dataset; if not readily

available, the creation of such a dataset is computationally very demanding.
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The remainder of this chapter is organised as follows: Section 6.2 discusses the problem

formulation, evaluation of geometric moments and KLE of SSV. A detailed discussion on

the relevance of geometric moments with Cw, along with the test case description, is given

in Section 6.3. The numerical results of the proposed technique are provided in Section

6.4. Section 6.5 presents concluding remarks and opportunities for future work.

6.2 Proposed approach

This section provides an in-depth description of the proposed approach, including the

general assumptions and the mathematical formulation of SSV generation. A brief overview

of the criteria used to assess the quality of a subspace is also provided.

6.2.1 Problem formulation

Let Γ be a 3D body bounded by a closed 2D manifold G, representing a baseline/parent

design, and ϑ̄ ∈ G ⊆ Rn̄, with n̄ = 1, 2, 3, a coordinate set on this manifold. For an

automatic shape modification, G is commonly parameterised with n geometric parameters,

defining the parametric/design vector t = (t1, t2, . . . , tn) ∈ T ⊆ Rn. Here, T is the

n−dimensional design space, which is bounded by appropriately defined set constraints,

e.g., T :=
{
t : tli ≤ ti ≤ tui , ∀i ∈ {1, 2, . . . n}

}
with tl, tu ∈ Rn denoting the lower and

upper bound vector, respectively. The parametric vector t of G yields a continuous shape

modification vector G(ϑ̄, t) ∈ RnG with nG = 1, 2, 3, which for any t ∈ T modifies the

initial ϑ̄ to produce new ϑ̄′ that defines the modified G′, i.e.,

ϑ̄′ = ϑ̄+G(ϑ̄, t), ∀ϑ̄. (6.1)

Furthermore, in shape optimisation, we also assume at least one given function g : T → R

which, for each t ∈ T , evaluates the performance index ℓ = −g(t) ∈ R of the corresponding

design. Therefore, the optimisation problem can be stated as follows:
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Find t∗ ∈ Rn :− ℓ∗ = g(t∗) = min
t∗∈T

g(t). (6.2)

Obviously, the optimal design will be then defined by the corresponding set ϑ̄∗, with

ϑ̄∗ = ϑ̄+G(ϑ̄, t∗).

In a typical shape optimisation problem, we may use a set of alternative performance

indices (multi-objective optimisation), and additional functional constraints (design speci-

fications/requirements) expressed as inequalities and equalities that further limit the space

of feasible designs. Finally, an appropriate optimisation method is employed to search for

the optimum solution (t∗) within the feasible space bounded by all imposed constraints.

6.2.2 Design space dimensionality reduction

As explained in §6.1, the computational cost of shape optimisation increases exponentially

with the dimension of T . This cost grows further if evaluating the performance index ℓ is

complicated and time-consuming. Therefore, in the present work, we intend to cure the

curse of dimensionality with feature extraction techniques to create a lower-dimensional

subspace using DSDR. Typically, dimensionality reduction is achieved via extraction of

latent features/variables of T , which reduces its dimension while retaining, to the extent

possible, the geometric variability exhibited in the resulting domains G′. However, due

to the aforementioned drawbacks associated with a typical DSDR approach, we aim to

develop a subspace with latent variables that go beyond the features extracted from T .

These additional elements comprise appropriate geometric moments computed on the body

geometry. Therefore, the resulting subspace is both adequately rich and robust and efficient

when used for shape optimisation, as we will demonstrate in §3.

To construct this subspace, we consider that along with the continuous shape modi-

fication vectors, G(ϑ̄, t), there is a lumped geometric moment vector, M(ϑM , t) ∈ RnM

with nM = 1, 2, . . . , which has a null measure and corresponds to an arbitrary point, ϑM ,

where this moment vector is virtually defined. We further assume G and M as domains
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of definition for G(ϑ̄, t) and M(ϑM , t), respectively; see Fig. 6.2. Now, consider a com-

bined geometry and moment vector P (ϑ, t) ∈ RnP , nP = nG + nM , defined in the domain

P := G ∪M with ϑ = (ϑ̄,ϑM ) and

P (ϑ, t) =
(
G(ϑ̄, t),M(ϑM , t)

)
. (6.3)

P (ϑ, t) contains both the geometry and its moments and forms a unique SSV function

encompassing high-level information about the baseline design. Also consider that P (ϑ, t)

belongs to a disjoint Hilbert space L2
f (P) as shown in Fig. 6.2, which is defined by the

generalised inner product:

(a,b)f =

∫
P
f(ϑ)a(ϑ) · b(ϑ)dϑ

=

∫
G
f(ϑ̄)a(ϑ̄) · b(ϑ̄)dϑ̄+ f(ϑM )a(ϑM ) · b(ϑM ),

(6.4)

with the associated norm ∥a∥ = (a,a)
1
2
f , where f(ϑ̄), f(ϑM ) ∈ R are appropriate positive

weight functions used to focus analysis on certain regions of G.

𝐺!

𝐺"

𝐺#

𝑀!

𝑀"
𝑀# 𝝑$

𝒫: Disjoint Hilbert Space

𝓖 𝓜

Lumped moment vectorShape Modification vector

Figure 6.2: Domains for shape modification vector and lumped geometric moment vector
in a disjoint Hilbert space.
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The identification of optimal design through this process may suffer from epistemic

uncertainties [22]. Therefore, one can consider t as an element of a stochastic space T

with an associated Probability Density Function (PDF) ρ(t), which represents the prior

probability of finding optimal design in a given T . An appropriate definition of ρ(t) is

nontrivial; therefore, the prior is usually defined as a uniform distribution function, i.e.,

any realisation of t has the same probability of being t∗. Once ρ(t) is defined, the mean

and the variance of SSV can be evaluated as

⟨P ⟩ =

∫
T
f(ϑ)P (ϑ, t)ρ(t)dt, (6.5)

σ2 = ⟨∥P ∥2⟩ =

∫
T

∫
P
f(ϑ)P (ϑ, t) · P (ϑ, t)ρ(t)dϑdt, (6.6)

where P is the deviation from the mean of SSV (i.e., P = P −⟨P ⟩) and ⟨·⟩ is the ensemble

average over t. The aim for dimensionality reduction is to find the lower-dimensional repre-

sentation of P (ϑ, t), namely, P (ϑ,v), which, instead of t depends on a Geometrically- and

Functionally-Active Latent Variable (GFALV) vector, v = {v1, v2, v3, . . . , vm} ∈ V ⊆ Rm.

GFALV is constructed using an appropriate combination of features from T and SSV which

will constitute the coordinates in a newm-dimensional subspace, V :=
{
v : vli ≤ vi ≤ vui , ∀i ∈ {1, 2, . . .m}

}
,

with m < n, i.e., V is a low-dimensional space when compared with the original design

space, T . This new vector space can be employed to expedite shape optimisation. Fig.

6.3 graphically illustrates the notions of shape modification via the original and proposed

approaches.

In the construction of SSV, introduced in Eq. (6.3), we use a finite number of moments

of Γ, which are defined as in Eq. (5.2) and evaluated as described previously in §5.2.2.

6.2.3 Karhunen-Loève expansion of SSV

After the initial construction of SSV with the invariant geometric moments, we employ

KLE, which aims to find an optimal basis of orthonormal functions for the linear repre-
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P

G

Figure 6.3: Representation of the scheme and notation used for the current formulation of
shape modification.

sentation of SSV so that:

P (ϑ, t) ≈
m∑
i=1

viωi(ϑ), (6.7)

where
{
ωi(ϑ)

}m
i=1

are orthonormal functions forming the basis of the subspace V which

will retain, to the extent possible, the variance in shapes and moments exhibited in P.

These functions are used to form the GFALV vector, v ∈ V, whose ith element can be

represented as

vi =
(
P ,ωi

)
f

=

∫
P
f(ϑ)P (ϑ, t) · ωi(ϑ)dϑ, (6.8)

which, as explained earlier, will be used for shape modification during optimisation. The

optimal condition for KLE is to construct basis functions retaining maximum geometric

variance (σ2) via Eq. (6.7). Therefore, combining Eq. (6.6), (6.7) and (6.8) we find:
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σ2 =

∞∑
i=1

∞∑
j=1

⟨vivj⟩(ωi(ϑ),ωi(ϑ))f

=
∞∑
j=1

〈
v2j

〉
=

∞∑
j=1

〈(
P ,ωi(ϑ)

)2
f

〉
.

(6.9)

The basis retaining the maximum variance is provided by the solution of the following

variational problem [22]:

min
ω∈L2

f (P)
J
(
ω(ϑ)

)
=

〈(
P ,ω(ϑ)

)2
f

〉
subject to

(
ω(ϑ),ω(ϑ)

)2
f

= 1,

(6.10)

which, as proven in [22], yields

Lω(ϑ) =

∫
P
f(θ)

〈
P (ϑ, t)⊗ P (θ, t)

〉
ω(θ)dθ = λω(ϑ), (6.11)

where ⊗ is the outer product, θ,ϑ ∈ G, and L is the self-adjoint integral operator whose

eigensolutions form the basis function for the linear representation of P (θ, t) given in Eq.

(6.7). The resulting eigenvectors, or KL-modes
{
ωi(ϑ)

}∞
i=1

, are orthogonal and consti-

tute a complete basis for L2
f (G ∪M). Additionally, the eigenvalues or KL-values {λi}∞i=1

represent the variance,

σ2 =
∞∑
i=1

λi, (6.12)

retained by the associated basis. The first m eigenvectors, i.e.,
{
ωi(ϑ)

}m
i=1

constitute the

optimal basis for the approximation in Eq. (6.7). Moreover, considering ε as the desired

level of confidence for capturing the variance, m in Eq. (6.7) can be selected to satisfy

m∑
i=1

λi ≥ ε
∞∑
i=1

λi = εσ2 (6.13)

with 0 < ε ≤ 1 and λi ≥ λi+1.
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The numerical implementation of Eq. (6.11) – or its generalised form; see Eq. (6.4) –

is performed using the approach of Diez et al. in [22]. Specifically, the steps that need to

be followed are presented below:

1. Define an orthonormal basis of RnP , {ek}nP
k=1;

2. Express the deviation from SSV mean, P , and KL-modes ω in term of the basis, i.e.,

P (ϑ, t) =

nP∑
k=1

P k(ϑ, t) ek; ω(ϑ) =

nP∑
k=1

ωk(ϑ) ek, (6.14)

where P k = P · ek, ωk = ω · ek and nP = nG + nM . Note that P in Eq. (6.14)

represents a realisation of SSV, associated to t before dimension reduction is applied.

Regardless of the shape modification function, ω in Eq. (6.14) is the solution used

to form the reduced-dimensional basis for shape optimisation;

3. Compute the integral in Eq. (6.4) by discretising the domain of integration, ϑ̄ ∈

G, into E quadrilateral mesh elements with measure equal to ∆Gi and centroid at{
ϑ̄i, i = 1, 2, . . . , E

}
;

4. Use the spatial discretisation d(t) and W of P (ϑ, t) and ω(ϑ), respectively;

5. Finally, recast the problem as an eigenproblem of a matrix (A):

AW = WΛ, (6.15)

where, W =
{
wi, i = 1, 2, . . . , nGE + nM

}
is a square matrix whose ith column, wi, is the

corresponding eigenvector or KL-mode. The KL-values, Λ = {λi, i = 1, 2, . . . , nGE + nM},

represent the variance retained by the associated KL-mode. For example, at nP = 4 (with

nG = 3 and nM = 1), A can be represented as
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A =


C11 C12 C13 C14

C12 C22 C23 C24

C13 C32 C33 C34

C14 C24 C34 C44




Q 0 0 0

0 Q 0 0

0 0 Q 0

0 0 0 Q


, (6.16)

where Clk =
〈

dl(t)
[
dk(t)

]T〉
, ∀ l, k = 1, 2, . . . , nP and Q is the weighted matrix to

normalise Clk, so all of its components have same influence while computing A. For

dimensionality reduction we first rearrange KL-values in Λ in descending order, i.e., λi ≥

λi+1. Afterwards, we select the first m KL-values {λi}mi=1 via Eq. (6.13) along with their

associated KL-modes
{
wi
}m
i=1

, which correspond to features with the greatest impact on

geometry changes. The spatial discretisation of P (ϑ, t) and ω(ϑ) (namely d(t) and W)

can now be approximated and defined as

d(t) =



P 1(ϑ̄1, t)
...

P 1(ϑ̄E , t)

P 2(ϑ̄1, t)
...

P 2(ϑ̄E , t)

P 3(ϑ̄1, t)
...

P 3(ϑ̄E , t)

P 1(ϑM , t)



≈
m∑
i=1

viw
i; wi =



ω1(ϑ̄1)
...

ω1(ϑ̄E)

ω2(ϑ̄1)
...

ω2(ϑ̄E)

ω3(ϑ̄1)
...

ω3(ϑ̄E)

ω1(ϑM )



. (6.17)

The latent variables v ∈ Rm formulated in Eq. (6.8) can be finally obtained in a discretised

form as
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vi = d(t)T


Q 0 0 0

0 Q 0 0

0 0 Q 0

0 0 0 Q


wi. (6.18)

It should be noted that the KL-modes are formulated while taking into account both geom-

etry and geometric moments to preserve the underlying structure of G and to accumulate

the functional information of designs in T . Therefore, by using only the first nGE elements

of column vector wi in Eq. (6.18), one could form the latent variable vector which is used

for the shape modification of G during the shape optimisation performed in the subspace

V :=
{
v : vli ≤ vi ≤ vui ,∀i ∈ {1, 2, . . .m}

}
.

6.2.4 Additional design space considerations

Apart from the dimension of the design space, the use of meaningful parameter bounds,

[tl, tu], is also crucial since they define the allowable/feasible domain for exploration and

identification of any optimum regions or points. Generally, exploration of a large space is

favoured, though it considerably increases the chances of encountering invalid and impracti-

cal designs. Although such designs can be avoided by adding more design constraints, this

will inevitably make the optimisation problem in Eq. (6.2) more challenging and time-

consuming. On the other hand, a narrow design space weakens the need for additional

constraints but, at the same time, may eliminate large regions where highly-improved or

optimum designs lie. Therefore, designers tend to use their field experience to define a

design space that balances robustness and allows diversity in G.

Bounds on subspaces

Setting the subspace’s parameter bounds, (vl,vu), can be even more challenging as design-

ers have to work with latent variables, v, instead of the original design variables t. Com-

monly, design variables t have physical meaning, i.e., lengths, radii, angles, etc., whereas
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any components generally expect no physical interpretation of v. We need to be very cau-

tious when setting the bounds of V since we have to ensure that any design produced in

V should also be a member of the appropriately bounded T , i.e., conforming to all design

constraints and requirements. To overcome this problem, one may project the bounds of

the original design space on the subspace, as illustrated in Fig. 6.4. In this setting, the

range of the i-th latent parameter vi can be evaluated as

Figure 6.4: Illustration of setting the bounding limits of subspace using Eq. (6.19).

vi ∈

min
tψ∈X

d(tψ)T


Q 0 0

0 Q 0

0 0 Q

wi

 , max
tψ∈X

d(tψ)T


Q 0 0

0 Q 0

0 0 Q

wi


 ,

ψ = 1, 2, 3, . . . ,Ψ,

(6.19)

where Ψ is the number of points densely sampled from T . Another common approach

employs the standard deviation from the mean shape lying at the centroid of the design

space. In this approach, the bounds for the i-th variable are set as
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vi ∈
[
−
√
κλi,

√
κλi

]
, κ ∈ {1, 2, 3}. (6.20)

The latter approach is computationally efficient, and our experiments have shown that

it can provide a good balance between the number of invalid shapes and the allowed

diversity. Both methods are analysed experimentally, and quality criteria are proposed in

the subsequent section.

Design space quality

We introduce relevant measures to quantify the quality of a subspace with respect to

its ability to produce a wide range of diverse and valid shapes. The diversity mea-

sure is based on the Hausdorff distance [3], which is widely used to measure how far

two subsets of a metric space are from each other. Therefore, it can also be used to

measure the similarity/diversity between two free-form shapes. Consider now an in-

stance of v that modifies the parent design G to G′. Both G and G′ can be then dis-

cretised by an appropriately dense point set, O = {oi, i ∈ {1, 2, . . . , no}} ∈ G ⊆ R3 and

O′ = {o′j , j ∈ {1, 2, . . . , n′o}} ∈ G′ ⊆ R3 containing a total no and n′o points, respectively.

The Hausdorff distance, H, between O and O′ can be then evaluated as

H
(
O,O′) = max

{
sup
o∈O

d(o,O), sup
o′∈O′

d(O,o′)

}
, (6.21)

where d(o,O′) = info′∈O′ d(o,o′) quantifies the distance from a point o ∈ O to the set O′.

Note that both O and O′ need to be subsets of the same metric space. In our case, we use

the Euclidean distance for d(o,o′) (and d(o′,o)), and we further assume that the Hausdorff

distance between G and G′ is quantified by H
(
O,O′), i.e., H

(
G,G′

)
:= H

(
O,O′). Hence,

we define the diversity measure to be the average of the Hausdorff distance between the

parent design and a dense set of designs sampled from the subspace V; as illustrated in

Fig. 6.5. Therefore, the higher the value of the diversity measure, the richer the subspace.

However, as mentioned before, a more diverse design space may also have a high possibility
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of producing invalid geometries. A typical example of invalid free-form geometries is that of

self-intersecting surfaces. An ideal subspace will have the highest diversity and few invalid

geometries. Therefore, we define the validity measure as the ratio of invalid over valid

designs for a dense sampling of V. Obviously, subspaces with a validity measure equal to

or close to 0 are preferred.

Subsapace

Evaluating Hausdorff distance for diversity check

Figure 6.5: Illustration of evaluation of Hausdorff distance for diversity between the parent
design and the designs samples from the subspace. The right image’s red points indicate
where the maximum Hausdorff distance accrues between the parent and sampled design.

Algorithm 3 briefly summarises the step-wise procedure of the proposed approach from

dimension reduction to design space formulation and shape optimisation.

6.3 Test Cases

We used two different 3D modelling cases, a wing model based on the NACA 2410 aerofoil1

(see Fig. 6.6) and a US Navy Combatant DTMB 5415 hull model2 (see Fig. 5.2 (b)), to

analyse and validate the proposed approach. We use the wing model to demonstrate the

capability of the proposed approach to generate subspaces with high representation capac-

ity and compactness. The hull model case goes one step further to demonstrate that the

proposed approach produces subspaces with high representation capacity and compact-

1see, for example, http://airfoiltools.com/airfoil/details?airfoil=naca2410-il for more infor-
mation on NACA 2410 profile.

2see, for example, http://www.simman2008.dk/5415/combatant.html for more details on DTMB 5415.
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Algorithm 3 Step-wise procedure for implementing the proposed approach.

1: Create an initial model G composed of coordinate set ϑ̄ ∈ G ⊆ Rn̄ and parametrise it
with n design parameters (t1, t2, . . . , tn).

2: Define the design space T with lower and upper bounds of n parameters, T := {tli ≤
ti ≤ tui , ∀i ∈ {1, 2, . . . n}}.

3: Define a shape modification vector G(ϑ̄, t) ∈ RnG to modify G for any realisation
t ∈ T .

4: Evaluate geometric moment invariant vector MIs ∈ RnM of order s containing nM =
(s+ 1)(s+ 2)/2 components using Eq. (5.2).

5: Defined combined geometry and moment shape signature vector P (ϑ, t) ∈ RnP , nP =
nG + nM , in the domain P := G ∪M with ϑ = (ϑ̄,ϑM ); see Eq. (6.3).

6: Find the mean and variance of SSV using Eq. (6.5) and (6.6), respectively.
7: Employ the KLE to find an optimal linear representation of SSV in Eq. (6.7) while

recasting the problem in Eq. (6.11) as an eigenproblem resulting AW = WΛ.
8: Rearrange columns of W, which represents KL-modes/eigenvectors, based on their

associated KL-values/eigenvalues, such that λi ≥ λi+1.
9: Identify first m KL-modes capturing minimum 95% of the variance based on Eq. (6.13).

10: Form geometrically- and functionally-active latent variable vector v = {vi, i =
1, 2, . . . ,m} as in Eq. (6.18), where m < n.

11: With v create a subspace V ⊂ Rm as, V := {v : vli ≤ vi ≤ vui , ∀i ∈ {1, 2, . . .m}}, where
vli and vui are the lower and upper bounds set using either Eq. (6.19) or (6.20).

12: Solve Eq. (6.2) to find an optimal design v∗ in V.
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ness and is also physics-informed, as the physical QoI is dependent on geometric moments.

Therefore, we can significantly expedite the shape optimisation process. The particulars,

parameters and solvers used for the DTMB are the same as described in §5.3.2 and 5.3.3,

whereas the 3D wing model is based on NACA 2410 aerofoil sections, parameterised via the

approach described in [151]; see also Fig. 6.6(a). This parameterisation uses 12 parameters

to define a foil profile. The construction of the aerofoil commences with the definition of

four simple cubic Bézier curves employed to create the final cubic B-spline curve. The

foil’s chord length (L) is the only dimensional parameter, and all remaining length pa-

rameters are non-dimensionalised by it and vary between [0, 1] while always guaranteeing

a valid aerofoil shape instance. Readers are advised to refer to [151] for details on the

construction and the parametric definition of the aerofoil. The wing, shown in Fig. 6.6(b),

is constructed using three independent aerofoil sections placed at the root, mid-span, and

tip of the wing, which follow an appropriate chord-length distribution along the span-wise

direction. A fixed sweep angle is used, and the final NURBS surface, representing the wing

shape, is generated by a cubic lofting operation. The principal dimensions of the wing, i.e.,

span length and swept angle, are kept fixed and set to 1.2 meters and 4.29◦, respectively.

The chord length L at the root and tip is equal to 0.15 and 0.06 meters, respectively. The

remaining shape parameters, n = 3 × 11, are defined to reconstruct NACA 2410 profiles

for the parent design and are considered free parameters for the design space. Finally,

to initiate the DR, the entire surface is discretised with E = 90 × 25 nodes by directly

evaluating them on the NURBS surface of the wing.

6.4 Results and discussion

This section discusses the results of extensive experimentation with the proposed approach

to analyse its performance and prove its capability for efficient dimensionality reduction

compared to other existing methods.
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(a) (b)

Figure 6.6: (a) Parametric representation of the aerofoil defined with 12 different parame-
ters (highlighted in red). (b) 3D wing model constructed with three aerofoils, resulting in
n = 33 design parameters, is used as a test case for validating the proposed approach.

6.4.1 Evaluation of geometric moment invariants

Geometric moments and their invariants of any order can be calculated for geometries

satisfying the conditions indicated in Section 5.2.2. However, high-order geometric mo-

ments can be sensitive to noise [118] while, at the same time, numerical inaccuracies are

ever-present when evaluating high-order terms [116]. Furthermore, a literature review in

various application areas, ranging from kinetic equations [113] to shape retrieval [132],

reveals that moments of an order higher than four are rarely helpful. In this connection,

we limited the order of geometric moments invariants appearing in SSV up to s = 4. The

0th−, 1st, 2nd−, 3rd− and 4th−order geometric moments have nM equal to 1, 3, 6, 10

and 15 components, respectively. The moment invariants for the wing and the submerged

part of the hull are presented in Tables 6.1 and 6.2, respectively. Due to symmetries in

shape, any vanishing geometric moment invariants are not added to SSV.

6.4.2 Dimension reduction

The proposed DSDR approach commences with the definition of bounding limits for pa-

rameters in T , which for the wing and hull models are assigned to 0 ≤ t ≤ 1 and

−1.02 ≤ t ≤ 1.02, respectively. According to [12, 151], these values provide sufficient

variation with a relatively large number of valid shapes. During dimension reduction, the
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Table 6.1: Geometric moment invariants up to 4th−order evaluated for the baseline wing
shape.

MI0,0,0 MI1,0,0 MI0,1,0 MI0,0,1 MI2,0,0

1 0 0 0 9.927E-02

MI0,2,0 MI0,0,2 MI1,1,0 MI0,1,1 MI1,0,1

8.922E-04 10.268 -3.222E-04 -1.213E-02 4.482E-01

MI0,0,3 MI0,1,2 MI0,2,1 MI0,3,0 MI1,0,2

18.353 -2.170E-02 -1.004E-03 7.692E-06 8.018E-01

MI1,1,1 MI1,2,0 MI2,0,1 MI2,1,0 MI3,0,0

-1.191E-03 -1.012E-04 -5.843E-02 -4.146E-04 -4.479E-03

MI0,0,4 MI0,1,3 MI0,2,2 MI0,3,1 MI0,4,0

2.415E+02 -2.855E-01 7.848E-03 -3.353E-05 1.925E-06

MI1,0,3 MI1,1,2 MI1,2,1 MI1,3,0 MI2,0,2

10.553 -1.070E-02 4.311E-04 -8.069E-07 1.143

MI2,1,1 MI2,2,0 MI3,0,1 MI3,1,0 MI4,0,0

-4.585E-04 7.540E-05 9.955E-02 -3.682E-05 2.257E-02
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Table 6.2: Geometric moment invariants up to 4th−order evaluated for the baseline hull
shape.

MI0,0,0 MI1,0,0 MI0,1,0 MI0,0,1 MI2,0,0

1 0 0 0 2.315

MI0,2,0 MI0,0,2 MI1,1,0 MI0,1,1 MI1,0,1

4.197E-02 6.984E-03 0 0 -2.378E-02

MI0,0,3 MI0,1,2 MI0,2,1 MI0,3,0 MI1,0,2

-3.303E-04 0 1.076E-03 0 2.786E-03

MI1,1,1 MI1,2,0 MI2,0,1 MI2,1,0 MI3,0,0

0 -9.078E-03 2.452E-03 0 4.404E-01

MI0,0,4 MI0,1,3 MI0,2,2 MI0,3,1 MI0,4,0

1.333E-04 0 2.258E-04 0 3.997E-03

MI1,0,3 MI1,1,2 MI1,2,1 MI1,3,0 MI2,0,2

-8.841E-04 0 -5.538E-04 0 2.298E-02

MI2,1,1 MI2,2,0 MI3,0,1 MI3,1,0 MI4,0,0

0 6.045E-02 -2.238E-01 0 12.370
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ensemble averages, ⟨·⟩ (in Eq. (6.5)), over T is evaluated using Monte Carlo sampling, with

statistically converged number of samples Ψ = 9000, {tψ}Ψψ=1 ∼ ρ(t). ρ(t) is selected to be

a uniform distribution. Thus each shape in T has the same possibility of being optimal.

The lth component of {P l(ϑ, tψ)}, namely dl(tψ), which is discretised deviation from the

mean SSV, is evaluated as

dl(tj) = {Pl(ϑ, tψ} −
1

Ψ

Ψ∑
ψ=1

{Pl(ϑ, tψ}, (6.22)

which for all the samples gives a matrix Dl =
[
dl(tψ), ∀j = 1, 2, 3 . . .Ψ

]
. Using this, the

sub-matrix in Eq. (6.16) can be evaluated as

Clk =
1

Ψ
DlD

T
k . (6.23)

Similarly, all the components of Clk, l, k = 1, . . . , nP are evaluated to compute A. Now, in

the discrete form, the quality of lower-dimensional representation P (ϑ,v) can be assessed

via the reconstruction error, measured by the Normalised Mean Squared Error (NMSE) as

NMSE =

∑Ψ
ψ=1

∥∥d(tψ)− d(vψ)
∥∥2∑Ψ

ψ=1

∥∥d(tψ)
∥∥2 . (6.24)

Different subspaces with varying SSVs are constructed to test and analyse the pro-

posed approach’s performance. The employed SSVs contain either a single high order

vector, i.e., MIs ∈ RnM with s = 2/3/4 and nM = 6/10/15, respectively, and their combi-

nations specifically for the hull model. In other words, the tested SSVs are the following:(
G(ϑ, t),MI2

)
,
(
G(ϑ, t),MI3

)
,
(
G(ϑ, t),MI4

)
,
(
G(ϑ, t),MI2,MI3

)
,
(
G(ϑ, t),MI2,MI4

)
,(

G(ϑ, t),MI3,MI4
)

and
(
G(ϑ, t),MI2,MI3,MI4

)
, which form the shape-supervised

subspaces VG,MI2 , VG,MI3 , VG,MI4 , VG,MI2,3 , VG,MI2,4 , VG,MI3,4 and VG,MI2,3,4 , respec-

tively. For the wing model only VG,MI2 , VG,MI3 and VG,MI4 are tested. The comparison

of these subspaces, in terms of their diversity/richness and validity/robustness, along with

their capacity to generate optimal designs, will help us analyse the correlation of each
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moment (and moment combinations) with shapes’ performance. The performance of these

shape-supervised subspaces is also compared with VG that does not employ any moment-

based information. As explained in §5.3.1, the hull’s wave-making resistance coefficient,

Cw, strongly depends on geometric moments. Therefore, in this case, the performance of

the subspaces mentioned above is also compared with VG,Cw , which augments geometry,

G(ϑ, t), with the calculated value of Cw.

As previously mentioned, the employed grid for the baseline wing and the hull is com-

posed of E = 25× 90 nodes, which, along with nG = 3 and the moments, when provided,

will produce the matrices, A, in Eq. (6.15). Specifically, the construction of VG, VG,Cw ,

VG,MI2 , VG,MI3 , VG,MI4 , VG,MI2,3 , VG,MI2,4 , VG,MI3,4 and VG,MI2,3,4 is performed on

the basis of an A matrix with 2250×2250, 2251×2251, 2256×2256, 2260×2260, 2265×2265,

2266×2266, 2271×2271, 2275×2275 and 2281×2281 elements3, respectively. For the hull

model, the weighting function f(ϑ) is defined in a way that only counts nodes belonging to

the submerged part of the hull and nodes above the waterline assume a zero weight since

they do not play any role in the resistance components considered in our problem. On the

contrary, for the wing model, f(ϑ) is set to take into account the entire shape during the

implementation of the proposed approach. It should also be noted that vector spaces are

normalised for both test cases to exhibit the same variance associated with geometry and

moment invariants. The selection of active KL-modes (eigenvectors) for the construction

of subspaces is performed in a way that guarantees that every subspace retains at least

95% of the variance associated with T . In other words, the number is determined by the

sum of KL-values (eigenvalues) that reach this threshold; see Eq. (6.12).

Figures 6.7 and 6.8 depict the percentage of variance retained for the wing and hull

models with respect to the dimension of each subspace and the dimension required for

each subspace to reach that level. One may easily observe in these figures that all consid-

ered augmented subspaces perform much better than the purely geometry-based subspace

VG when assessing variance retention. Successful DSDR requires a subspace retaining

3Assuming usage of all moment’s components.
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Figure 6.7: Percentage of variance retained by each of the wing model’s subspace versus
its dimension

. The horizontal red line indicates the 95% threshold.
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Figure 6.8: Percentage of variance retained by each hull model’s subspace versus its di-
mension. The horizontal red line indicates the 95% threshold.
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the highest possible variance with the fewest latent variables. In this aspect, all shape-

supervised subspaces reach the threshold variance (95%) with half or fewer dimensions

when compared to VG, even if a single component is added to SSV. For the wing model

case, shape-supervised subspaces, VG,MI2 , VG,MI3 and VG,MI4 have similar performance;

requiring m = 11 dimensions to capture 95% of variance; thus, resulting in a 67% dimen-

sional reduction, i.e., from n = 33 to m = 11. More importantly, these subspaces capture

higher geometric variance with fewer latent variables compared to solely geometry-based

subspace VG, which requires m = 14 dimensions for 95% of variance. A more detailed anal-

ysis, employing shape-supervised subspaces with moment combinations, is performed for

the hull model. In this case, the inclusion of a single geometric moment, i.e., MI2, MI3 or

MI4, performs almost identically to Cw’s inclusion, which, as stated earlier, confirms the

close relation of these moments with Cw. With regards to dimensionality reduction, VG
requires a minimum of m = 15 dimensions to capture 95% of variance, which corresponds

to a 44% reduction when compared to the original space, T ⊆ R27(n = 27). On the other

hand, VG,Cw , VG,MI2 , VG,MI3 and VG,MI4 need m = 8, which corresponds to a reduc-

tion of 70%, while the spaces using moment combinations exhibit the best performance,

i.e., VG,MI2,3 , VG,MI2,4 , and VG,MI3,4 require m = 6 parameters achieving a reduction

of 78% and finally VG,MI2,3,4 needs only m = 5, resulting in the reduction of 81%. This

demonstrates the effectiveness of the approach in significantly reducing dimensionality. Fi-

nally, we need to note that VG,MI2 , VG,MI3 and VG,MI4 achieve the same reduction as

VG,Cw which is created in a physics-supervised setting with the inclusion of Cw [33]. More-

over, the construction of VG,Cw is time-consuming as Cw evaluation is computationally

expensive, whereas geometric moments have minimal cost. This supports our claim that

geometric moments are adequate in capturing the physics involved in our problem, and

costly computational approaches can be avoided.

Figures 6.9 and 6.10 show the first three KL-modes, w1, w2 and w3 for all employed

subspaces projected on the wing and hull grids, respectively. This projection is of great

practical value as it highlights the type and order of variance corresponding to each KL-
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Figure 6.9: Shape deformation of the wing model corresponding to the first three eigen-
vectors of all employed subspaces: (a) VG (b) VG,MI2 , (c) VG,MI3 and (d) VG,MI4 . The
magnitude of surface displacement is colour coded [small:blue to large:yellow].
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Figure 6.10: Shape deformation of hull model corresponding to the three first eigenvectors
of all employed subspaces: (a) VG (b) VG,Cw , (c) VG,MI2 , (d) VG,MI3 , (e) VG,MI4 , (f)
VG,MI2,3 , (g) VG,MI2,4 , (h) VG,MI3,4 and (i) VG,MI2,3,4 . The magnitude of surface dis-
placement is colour coded [small:blue to large:yellow].
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mode. There are some interesting remarks drawn from these figures. From Fig. 6.9, it can

be seen that the first (w1) and third (w3) KL-modes of VG show high deviation at the lower

surface (pressure side) of the wing, with (w1) affecting the leading edge and (w3) affecting

the leading edge area near the root. On the contrary, w2 affects mainly the upper surface.

The sets of KL-modes of VG,MI2 , VG,MI3 and VG,MI4 , are very similar to each other.

Specifically, w1, in all cases, relates to both upper and lower surfaces, whereas, interestingly,

w2 and w3 are similar to the w1 and w2 of VG. For the hull model, apart from Fig. 6.10(b),

variation is exhibited only below the waterline as the proposed method assigns zero weight

to nodes above the waterline. The first KL-mode (w1) of VG,Cw is highly affected by the

inclusion of physics, i.e., Cw, whereas the remaining two (w2 and w3) are identical to w1

and w2 of VG. This pattern persists for the remaining higher modes, not depicted in the

figure. In the case of shape-supervised subspaces for the hull model, results can be grouped

in two sets, {VG,MI2 ,VG,MI4 ,VG,MI2,4} and {VG,MI3 ,VG,MI2,3 ,VG,MI3,4 ,VG,MI2,3,4} as

their respective KL-modes bare noticeable similarities. Although both sets exhibit different

first and second modes when compared with VG, the third mode, i.e., w3, is very similar

along all cases but VG,Cw which pushed down that mode to become w4. However, w1 of

the second set bears some resemblance to w1 of VG while the first set seems to more closely

follow the w2 of VG. Fig. 6.12 and 6.11 depict NMSE (see Eq. (6.24)) versus subspace

dimensionality for the wing and hull models, respectively. NMSE reduces for all subspaces

as their dimension m increases. Except for VG,Cw in the case of the hull model, there is no

significant difference between the NMSE of the initial subspace V(G) and the remaining

shape-supervised subspaces.

6.4.3 Shape-supervised DSDR with composite-SSV for the hull model

For feature-rich and complex geometries like the hull model, geometric moments of higher

order (above four) may be needed to capture local features that do affect wave-making

resistance if they reside, for example, in the bulbous bow. However, as mentioned earlier,

incorporating higher-order moments comes with problems related to noise and numerical
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Figure 6.11: Reconstruction accuracy of wing model’s subspaces measured via NMSE with
respect to their dimensionality (m).
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Figure 6.12: Reconstruction accuracy of hull model’s subspaces measured via NMSE with
respect to their dimensionality (m).
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issues. Therefore, instead of evaluating higher-order geometric moments, one may decom-

pose the geometry into sufficiently simple parts so that lower-order moments can efficiently

describe them. This decomposition results in a composite moment vector containing up to

sth−order moment invariants for each part. The corresponding SSV will incorporate the

moment composite vector in such cases. Henceforth, in this connection, we shall refer to

composite-SSV versus the global-SSV used in the previous section.

Figure 6.13: Decomposition of hull model for DSDR with composite-SSV.

The hull decomposition we have used is shown in Fig. 6.13. We split the hull model

into four parts: sonar dome, for-part, mid-body, and aft-part. After the segmentation,

composite-SSV is composed of all sth order moment invariants, MIs ∈ R4nM , nM =

(s+ 1)(s+ 2)/2, obtained for each of the four segments and the shape modification vector

function (G), which is evaluated for the entire shape to ensure smooth deformation over

the segments. KLE is then similarly performed on the composite-SSV to global MIs

to obtain a single subspace used for shape optimisation. Fig. 6.14 corresponds to the

previously discussed Fig. 6.8. We should also note here that the segmented shape is only

used with the shape-supervised subspaces, and therefore the results for VG and VG,Cw

remain unchanged.

Fig. 6.14 depicts a similar pattern, in terms of variance, of the shape-supervised sub-

spaces constructed with composite-SSV to the ones constructed previously with the global-

SSV. However, in this case, the variance retained by the first few latent variables is com-

parably less. For example, at m = 1, VG,MI2,4 exhibits a variance of approximately 63%,

whereas the same space recorded the largest variance (around 82%) in the global case. In
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Figure 6.14: Percentage of variance retained by each hull model’s subspace versus its
dimension. The horizontal red line indicates the 95% threshold.

the composite case, the largest variance is retained by VG,MI3 , followed VG,MI4 , VG,MI2,4

at m = 1. It is also interesting to note that the variance retained by VG,Cw , overall plot-

ted dimensions, closely matches the variance retained by VG,MI3 in this case. This again

demonstrates how moments, especially composite MI3, can capture the behaviour of Cw

in the proposed approach for dimensionality reduction.

Fig. 6.15 shows the final dimensionality of all subspaces. In the case of composite-SSV,

the dimensionality of the shape-supervised subspaces is higher than what was achieved

with global-SSVs. The dimensions of VG,MI2 , VG,MI3 and VG,MI4 increased from 8 to 10

(and 9 VG,MI3) and now exhibit a dimensionality reduction of approximately 63%, 67%

and 63%, respectively. A significant increase is observed in the case of VG,MI2,3,4 , whose

dimensionality increased from 5 to 7, which now matches the dimensionality of VG,MI2,4 .

Finally, NMSE values for the composite case resemble the results presented in Fig. 6.12;

therefore, no separate figure is included here.
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Figure 6.15: Dimension required by each hull model’s subspace to reach 95% of the variance
threshold.

6.4.4 Subspace quality analysis (SQA)

Once the new basis and the corresponding subspaces are formed for both test cases, their

quality for representation capacity and compactness against the criteria defined in §6.2.4

is analysed. The analysis assesses the suitability of the subspace for shape optimisation,

i.e., we assess whether the subspace V resulting from new parametrisation of shapes with

latent variables v can capture the underlying shape structure adequately and whether it

produces valid and diverse geometries. To commence these analyses, we use five random

Monte Carlo samplings of Ψ = 5, 000, 000 parameter vectors from each subspace and com-

pute the average number of invalid shapes (i.e., shapes with self-intersecting geometries)

appearing in each subspace. We first briefly analyse the quality of shape-supervised sub-

spaces, VG,MI2 , VG,MI3 and VG,MI4 constructed for the wing model and compare them

with VG. Afterwards, we perform a detailed Subspace Quality Analysis (SQA) for the hull

model’s subspaces constructed with global- and composite-SSVs.

SQA for the wing model

Figure 6.16 shows the average number of invalid wing designs and the average diversity of

designs present in subspaces VG, VG,MI2 , VG,MI3 and VG,MI4 bounded with Eq. (6.19).
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From Fig. 6.16(a), it can be seen that the VG subspace, constructed using only geometry,

as in [22], produces a significantly larger number of invalid shapes when compared to

the proposed shape-supervised subspaces, i.e., VG,MI2 , VG,MI3 and VG,MI4 . The average

diversity measure, calculated using Eq. (6.21), for the wing case and all subspaces is shown

in Fig. 6.16(b). Note that the diversity of designs in VG is only slightly higher to the ones in

VG,MI2 , VG,MI3 and VG,MI4 , which is practically negligible. These results show that even

if there is no prior information on physics or its dependence on geometric moments, the

shape-supervised subspaces are significantly more robust in terms of providing valid shapes

while maintaining similar levels of design diversity. These capabilities of subspaces are

beneficial for accelerating the convergence of shape optimisation towards optimal solution

[13].
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Figure 6.16: (a) Average percent of invalid wing designs and (b) average diversity measure
for wing designs in subspaces VG, VG,MI2 , VG,MI3 and VG,MI4 .

SQA for the hull model

For the hull model, apart from comparing subspaces formed with global- and composite-

SSVs, we also assess the effect of the approach employed in setting parameter bounds
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(see Eqs. (6.19) and (6.20)) on their quality. We henceforth denote with SL1 and SL2

the results following the approach in Eq. (6.19) and (6.20), respectively. The resulting

percentages of invalid geometries using SL1 and SL2 are shown in Fig. 6.17.

Global-SSV (SL1)

Global-SSV (SL2)

Composite
-SSV (SL1)

Composite
-SSV (SL2)

0

10

20

30

40

50
A

ve
ra

ge
n
u

m
b

er
of

in
va

li
d

d
es

ig
n

s
[%

] VG
VG;Cw

VG;MI2

VG;MI3

VG;MI4

VG;MI2;3

VG;MI2;4

VG;MI3;4

VG;MI2;3;4

Figure 6.17: Average percent of invalid hull designs in VG, VG,Cw and shape-supervised
subspaces sampling with global- and composite-SSVs when bounded by SL1 and SL2

approaches.

The following remarks can be drawn by observing the results in Fig. 6.17: i) SL1

leads to more invalid geometries for all subspaces; ii) shape-supervised subspaces with

composite-SSV have a lower percentage of invalid geometries to global-SSV, even when SL1

is used; iii) the number of invalid geometries in VG are substantially higher than any other

subspace regardless of the bounding approach; finally iv) in all cases, shape-supervised

subspaces tend to produce a similar or even lower number of invalid shapes when compared

to VG,Cw . These results confirm the ability of shape-supervised subspaces to generate a

large number of valid geometries, thereby promoting fast convergence in optimisation and,

more importantly, manifesting the ability of geometric moments to attain the performance
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of the physics-informed DSDR with Cw without the computational penalty induced by it.
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Figure 6.18: Percentage of invalid hull designs as a function of dimensionality of subspace
formed with SL1 bounding approach.

Fig. 6.18 depicts the relation of invalid shapes percentage to dimensionality m when

subspaces are formed with SL1. The first obvious observation is that there are either no

or only a few invalid geometries for the first few dimensions, but these increase rapidly

after the 4th or 5th dimension. This trend is more prominent for VG: while m = 2 shows

no invalid geometries, m = 3 records an increase to 3.5%, and at m = 4 this abruptly

goes up to 23% and stabilises to around 30% till m = 10 before increasing further. A

downward shift can be observed for shape-supervised subspaces with composite-SSV, but,

in this case, the relation with dimensionality is also affected. The selection of the SL2

bounding approach does not affect this relationship.

Finally, we also analysed the diversity of subspaces as described in §6.2.4. The results

of the analysis are collectively presented in Fig. 6.19. Similar to the validity analysis,

these results are obtained by averaging over 5 Monte-Carlo samplings with a size of Ψ =

5, 000, 000 and diversity is only measured for valid geometries. Most subspaces bounded

by SL1 have a higher diversity index than when bounded by SL2. Note that despite their
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Figure 6.19: Average diversity measure for hull designs in VG, VG,Cw and shape-supervised
subspaces created with global- and composite-SSV bounded by SL1 and SL2 techniques.
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lower dimensionality, shape-supervised subspaces have similar diversity to VG, which is

especially true when subspaces, formed with either global- or composite-SSV, are bounded

by SL2. More importantly, VG, VG,Cw and VG,MI3 have similar diversity performance

although VG,Cw and VG,MI3 have lower dimensionality and less than half of the invalid

shapes when compared to VG. Fig. 6.20 draws a more detailed picture of these results as

it depicts diversity performance buildup with subspace dimensionality. Diversity increases

monotonically with dimensionality; however, it slowly tends to its maximum value after

including a sufficient number of dimensions for each subspace. This observation is in line

with our previous analysis in which we indicated that the first few KL-modes (5 to 8)

forming the basis of these subspaces capture most of the variance.
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Figure 6.20: Plot showing the diversity measure of hull designs as a function of dimension-
ality of subspace formed with SL2 bounding approach.

6.4.5 Shape optimisation of the hull model

When comparing SL1 with SL2, we can see that the number of invalid geometries generated

by SL1 is twice as large as SL2; however, there is no significant difference between the two

approaches in terms of diversity. We, therefore, employ SL2 to set the bounding limits
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of the subspace used for shape optimisation. Finally, after performing the dimensionality

reduction, the optimisation problem is redefined as follows:

Find v∗ ∈ Rm such that

Cw(v∗) = min
v∈V

Cw(v)

subject to 0.95V0 ≤ V (v) ≤ 1.05V0,

0.95BWL0 ≤ BWL(v) ≤ 1.05BWL0 ,

LWL(v) = LWL0 and T (v) = T0,

(6.25)

where V,BWL, LWL, T correspond to volume, length and beam at the waterline, and draft,

respectively. The sub-index (0) indicates the quantity values for the parent hull. The

optimisation problem above is solved using Jaya Algorithm (JA), a simple yet efficient

optimiser; see more details in [109]. Furthermore, as JA employs a stochastic approach,

results may differ in each run; therefore, three different optimisation runs are performed,

and the results are averaged in this work. In each run, 150 iterations are considered, and

Fig. 6.21 displays the convergence graph over the first 50 iterations. Optimum designs

obtained for each case are depicted in Fig. 6.22(a). The contours shown in Fig. 6.22(a)

constitute the so-called hulls’ body-plan. It consists of the halves of cross-sections resulting

from intersecting the hull with planes located perpendicularly to its longitudinal symmetry

plane. Cross-sections from amidships to the forward part of the hull are drawn on the

righthand side of the figure, while the remaining sections, amidships to the stern, are

drawn on the left-hand side. An example of the construction of such cross-sections is

shown in Fig. 6.22 (b). Cross-sections highlighted in blue correspond to optimised designs,

while the ones highlighted in grey are the baseline design. Plotting baselines and optimised

designs’ cross-sections on the same image facilitates the comparison of their geometrical

features. Such a comparison is widely used in naval architecture. The QoI value, i.e., the

wave resistance of the hull, is the criterion for deciding which of the two is the best hull.

The convergence graph in Fig. 6.21 demonstrates the competitive performance of the
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Figure 6.21: Cw optimisation history for VG, VG,Cw , and the shape-supervised subspaces
with global- and composite-SSV.
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Figure 6.22: (a) Comparison between the baseline and optimised hull shapes, in terms of
cross-sections (or body-plan), obtained at the end of the optimisation process. (b) Example
of construction of hull’s cross-sections.
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proposed approach. Shape optimisation performed with shape-supervised subspaces (both

global- and composite-SSV) converge substantially faster than VG and, more importantly,

exhibits a similar convergence performance with VG,Cw . One of the reasons for the slower

convergence of VG is the existence of many invalid shapes, whereas the remaining subspaces

perform better from the very beginning. All shape-supervised spaces tend to approach

the performance of VG,Cw and especially, VG,MI3 that even surpasses it when built with

composite-SSV.

Table 6.3: Average Cw values over three optimisation runs after 150 iterations.

Design Spaces Cw

Global-SSV Local-SSV

VG 6.6772E-04
VG,Cw 6.5408E-04
VG,MI2 6.7591E-04 6.6582E-04
VG,MI3 6.6895E-04 6.1056E-04
VG,MI4 6.8511E-04 6.7065E-04
VG,MI2,3 7.0910E-04 6.9833E-04
VG,MI2,4 6.9694E-04 6.8407E-04
VG,MI3,4 7.0599E-04 6.9029E-04
VG,MI2,3,4 6.9875E-04 6.8052E-04

Table 6.3 provides the average Cw values obtained at the final iteration over three runs

for all cases. It can be seen that all cases show a substantial improvement when compared

to the parent design whose Cw value is 1.025 × 10−3. However, there is no significant

difference between optimum designs generated from VG, VG,Cw and the shape-supervised

subspaces. When comparing global- to composite-SSVs, the latter perform consistently

better. However, slightly, and the overall best is achieved by VG,MI3 using a composite-

SSV, which might be a rather unexpected result since it surpasses the performance attained

by VG,Cw .
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6.4.6 Computational cost

The computational cost of constructing shape-supervised subspaces is higher than that

of a purely grid-based geometric subspace. However, using moments is glaringly cheaper

than performing physics simulations, in our case, Cw. On a PC with a dual 24-core 2.7GHz

Intel® Xeon® Gold 6226 CPU and 128GB of memory, it takes approximately 9.04 seconds

to evaluate all moment invariants {MIs, s = 1, 2, 3, 4} for a hull meshed with 2,512,886

vertices. On the other hand, the employed potential flow solver requires approximately

69.30 seconds for a single evaluation of Cw for a hull meshed with 2, 250 vertices. Therefore,

performing dimension reduction with shape-supervised approaches provides the same (or

better) quality with a significantly lower computational cost when compared to the other

supervised techniques in this work.

6.5 Conclusion and future work

Despite the success of design space dimensionality reduction for accelerating computa-

tionally demanding shape optimisation processes, the existing approaches suffer from two

critical drawbacks: i) low-levels of robustness, i.e., a non-negligible percentage of designs

in the reduced dimensionality subspace corresponds to invalid/infeasible instances, and ii)

inability to capture high-level structure information, i.e., high-level features, associated

to physics, which would considerably improve performance, are not captured. Therefore,

in this work, we propose a shape-supervised approach for reducing the dimension of the

initial design space. Our approach uses geometric moment invariants of both global and

composite nature to construct a shape-signature vector (SSV) that describes important

underlying intrinsic structures of the shape, which can, to some extent, substitute physics

information. The subspaces produced in this work retain the required reconstruction capa-

bilities, offer diversity and robustness, and, more importantly, are physics informed. The

representation capacity and compactness of the produced subspaces are accessed, and the

former is equivalent to the original spaces. In contrast, the latter is significantly better,
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i.e., fewer invalid designs are generated.

Furthermore, the applicability of the proposed method is tested against the challenging

problems of wing design and ship-hull shape optimisation. The wing and hull models

are parameterised with 33 and 27 design variables parameters, respectively. The shape

optimisation performed for the hull model aims at its wave resistance coefficient (Cw)

minimisation. The results confirm our claims and demonstrate the higher convergence

capability of the shape-supervised approach. One may easily apply the same approach to

shape optimisation of other free-form shapes in computational mechanics.

In the future, we would also like to explore the possibility of SSV’s integration into

a generative adversarial network and perform physics-augmented training. At the same

time, an extension of our work in an Iso-Geometric Analysis setting, where Non-uniform

Rational B-splines representations (NURBS) of the shape for DSDR, analysis and shape

optimisation would be directly used, is also in our plans.
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Physics-informed

feature-to-feature learning

7.1 Introduction

As has been discussed so far in this thesis, data-driven meta-modelling is used to release

the computational burden of SDD, and dimensionality reduction, [152] and dimensional-

ity reduction [22] techniques have been widely used in the different fields of science and

engineering. Meta-modelling methods build surrogate models of physical simulations and

dimensionality reduction techniques, also referred to as a feature or manifold learning [6],

creating a lower-dimensional latent representation of the original space. In a design con-

text, these techniques are structured on the assumption that the geometric variability

in design space is not the same in all directions. Only a few inherent feature directions

materialise most improvement in the design. These inherent features can form the basis

of a new lower-dimensional latent subspace [153]. Once a lower-dimensional subspace is

identified, it then serves three major advantages: (1) it facilitates the high-dimensional

design visualisation during the interactive process [54]; (2) it prevents the optimiser from

the exhaustive exploration of high-dimensional design spaces, thereby reducing the num-

ber of QoI evaluations and allowing faster convergence towards global optimum; and (3) it
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allows the construction of a low-dimensional surrogate model, which learns the nonlinear

and globally coupled relationship between design parameters and QoI.

However, a subspace containing only geometric variability may not be the most efficient

for creating the surrogate model and running the optimisation. This is because the impact

of geometric variability on the design’s physics might be different [154, 155]. Therefore, it

is essential, especially in the context of surrogate modelling, that the information about

QoI should be present during the feature extraction. Hence, the latent space includes both

geometric and functional variability. As discussed earlier, to tackle this problem, the Active

Subspace Method (ASM) was proposed by Lukaczyk et al. [20] and Constantine [79], which

learns a lower-dimensional subspace while capturing maximum variance in QoI.

However, extraction of such features requires the knowledge of the gradients, which for

complex engineering problems are difficult, if possible, to calculate accurately. These gra-

dients can be locally approximated using different techniques, such as the finite difference

method or by approximating QoI with multivariate polynomial, radial basis or Gaussian

process models, but the approximation accuracy is not guaranteed, especially for high-

dimensional problems. Moreover, the subspace created with ASM is solely formulated

with gradients of QoI. Hence, capturing the geometric variability of the original design

space may take time. As the design’s geometric variance and its corresponding variabil-

ity in QoI is interdependent, one could first extract the geometric features and then the

functional features.

The technique proposed in this chapter is formulated around a dimension-reduction

pipeline that extracts the important features of a given design space first in terms of the

geometric variability of designs and then in terms of the variability of QoI. We refer to

such extraction as two-step physics-informed feature-to-feature learning for the generation

of lower-dimensional latent space, which alleviates the computational burden for design ex-

ploration and allows the construction of the surrogate model with reduced computational

cost while maintaining significant accuracy. In our approach, the first step of feature extrac-

tion captures the latent directions with the highest geometric variations while ignoring the
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directions with low geometric variability; this extraction is equivalent to PCA. The direc-

tions with higher geometric variability then compose the basis of a subspace as a function

of design parameters, which we call Geometrically-Active Subspace (GAS). Afterwards, an-

other feature extraction is performed on this subspace based on ASM, which identifies the

functional features based on the gradients of QoI as a function of previously explored geo-

metric features. These functional features span the basis vectors of a Functionally-Active

Subspace (FAS). As this subspace accumulates both geometric and functional features,

therefore, can be exploited for optimisation to explore diverse designs and used for com-

putationally efficient surrogate model training. We tested our approach on DTMB 5415

naval ship model, and experiments performed in this study reveal that feature-to-feature

extraction improves design space’s dimensionality reduction and outperforms single set-step

functional feature extraction in terms of accuracy surrogate modelling and optimisation

results. The sequential layout of the proposed approach is illustrated in Fig. 7.1. The code

of this pipeline is available at https://github.com/shahrozkhan66/PIFFL.git.

The remainder of this chapter is organised as follows: Section 7.2 gives comprehensive

details on the formulation of the proposed approach. The numerical results to prove

the working and feasibility of the proposed technique are presented in Section 7.3. The

concluding remarks and opportunities for future work are included in Section Section 7.4.

7.2 Proposed methodology

This section gives basic details of mathematical formulation and general assumptions set

for the proposed approach.

7.2.1 General definitions and assumptions

Let a geometric domain G representing a baseline design and a set of coordinates ζ ∈

G ⊂ Rm with m = 1, 2, 3. Now also assume a design parameter vector x = {xk, k =

1, 2, . . . ,M} ∈ X ⊂ RM , where X is subset of RM and is bounded with lower (xl) and upper
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(xu) geometric bounds creating a viable M−dimensional design space. The associated

parametrisation of G defines a geometric modification vector δ(ζ,x) ∈ Rn, with n = 1, 2, 3,

which for x ∈ X modifies each ζ ∈ G of the baseline shape to new geometry ζ′ ∈ G′ as:

ζ′ = ζ + δ(ζ,x), (7.1)

where G′ is the modified representation of G.

The objective here is to extract the geometric and functional features for the formula-

tion of a reduced-dimensional representation of δ(ζ,x) first in term of its geometric vari-

ability, δ̂(ζ,v), and then take this representation to find another reduced representation,

δ̂(ζ,u), in terms of functional variability of G with respect to QoI such as drag, resistance,

stability, etc. Here, v = {vi, i = 1, 2, . . . , N} ∈ V ⊂ RN is a Geometrically-Active Latent

Variable (GALV) vector, which is composed as a linear combination of geometrically-active

features of X with the shape modification vector and serves as the new dimensional coor-

dinates for the N -dimensional GAS (V). Whereas u = {ui, i = 1, 2, . . . , P} ∈ U ⊂ RP is

formed as the linear combination of functionally-active features of V with v and define as

a Functionally-Active Latent Variable (FALV) creating a P -dimensional FAS (U), where

P < N < M . Fig. 7.2 graphically illustrators shows the notation set for the formulation

of the proposed approach at m = 3, n = 3, M = 13 and N = 7.

The objective is to minimise an objective/cost function defining the reconstruction error

between the original variables and their lower-dimensional representation. In the present

case, this error measures the accuracy of δ̂(ζ,v) and δ̂(ζ,u) in term of Mean Squared Error

(MSE) normalised to total geometric (σ2g) and functional (σ2f ) variance as in Eq. (7.2) and

(7.3), respectively.

NMSEg =
MSEg
σ2g

=

∫∫
X×V,G ||δ(ζ,x)− δ̂(ζ,v)||2ρ(x,v)dζdxdv∫∫

X ,G ||δ(ζ,x)||2ρ(x)dζdx
(7.2)
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Figure 7.2: Representation of the scheme and notation used for the current formulation.

NMSEf =
MSEf
σ2f

=

∫∫
V×U ,G ||δ̂(ζ,v)− δ̂(ζ,u)||2ρ(v,u)dζdvdu∫∫

V,G ||δ(ζ,v)||2ρ(v)dζdv
(7.3)

Here, ρ(x,v) and ρ(v,u) is a probability distribution over the product space X × V

and V × U , respectively.

7.2.2 Eigendecomposition

As mentioned before learning GAS and FAS is similar to the PCA and ASM, respec-

tively, which extract features by performing the eigendecomposition of a covariance ma-

trix, C ∈ {Cg, Cf}, where Cg and Cf are the covariance matrix for geometric and functional

feature extraction, respectively. Once C is constructed its eigendecomposition follows the

same procedure for both geometric and functional feature extraction. Therefore, in the

subsequent sections, we explain the eigendecomposition and then describe the formulation

of Cg and Cf .

C is a symmetric and positive definite matrix and constitutes of elements of ambient

or auxiliary space, Z ∈ {X ,V} ⊂ RM . For learning geometric features, these elements are

the associated shape parameters. For functional features, these elements are the gradients
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of QoI with respect to the dimensional coordinates, z, of Z. The eigendecomposition of C

for Z gives:

C = WΛWT . (7.4)

Herein, W is the [M × M ] feature matrix whose columns are orthogonal eigenvectors

W = {wk, k = 1, 2, . . . ,M} with (wT
kwk = 1). This spans the basis of an eigenspace,

which creates rotation of RM . Λ = diag(λi, k = 1, 2, . . . ,M) are the eigenvalues sorted in

descending order λ1 ≥ λ2 ≥, . . . , λM . To form a reduced order basis, the sorted W and Λ

are partitioned into two sets, containing active and inactive directions,

Λ =

Λ1

Λ2

 , W =

[
W1 W2

]
. (7.5)

The columns of W1 = {wi, i = 1, 2, . . . , N} and W2 = {wj , j = 1, 2, . . . ,M − N}

span the dominant and non-dominant features of Z, which defines the active and inactive

subspaces, receptively, and Λ1 = {λi, i = 1, 2, . . . N} and Λ2 = {λj , j = 1, 2, . . .M−N} are

their corresponding eigenvalues. The separation between W1 and W2 is done based on the

eigenvalues. However, they are of different natures, GAS and FAS. Therefore, the decision

on a number of active and inactive features for GAS and FAS is made following different

theories, which will be discussed in the following sections. Here, W1 contains first N

columns of W corresponding to the first largest N eigenvalues, Λ1 = {λi, i = 1, 2, . . . N}.

Afterwards, z can be project on these subspaces using Eq. (7.6) to find its active a1 =

{a1i , i = 1, 2, . . . , N} and inactive a2 = {a2j , j = 1, 2, . . . ,M −N} latent parameters.

a1 = WT
1 z ∈ RN , a2 = WT

2 z ∈ RM−N . (7.6)

Among a1 and a2, we are only interested in a1 as its basis W1 covers the largest

variability of either geometry or QoI, which is negligibly influenced by a2. Here, ith (jth)
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active (inactive) variable is the linear combination of elements of ith (jth) column wi (wj)

of W1 (W2) and coordinates of original design space, a1i = w1,iz1 +w2,iz2 + · · ·+wM,izM

(a2j = w1,jz1 + w2,jz2 + · · ·+ wM,jzM ).

For most practical problems, evaluation of C requires solving high-order integrals,

which, if the dimensionality of the design space is sufficiently small, can be solved with tech-

niques like tensor product Gauss-Legendre quadrature. Therefore, for complex engineering

problems like the one studied in the present work, the estimation of C, Ĉ, is evaluated us-

ing pseudo-random sampling techniques such as Monte Carlo or Latin hypercube sampling.

Now the eigendecomposition of Ĉ gives estimated eigenpairs, Ŵ and Λ̂:

C ≈ Ĉ = ŴΛ̂ŴT . (7.7)

The accuracy of Ĉ depends on the number of samples S, which is selected to have estimated

eigenvalues Λ̂ close to true eigenvalues Λ and it is measured as:

ω = dist(ran(W1), ran(Ŵ1)) =

∣∣∣∣∣∣∣W1W
T
1 − Ŵ1Ŵ

T
1

∣∣∣∣∣∣∣ . (7.8)

7.2.3 Geometrically-active subspace

To create GAS, we assume data is distributed around a linear subspace of the original

variables to learn the eigenvectors spanning this subspace. These eigenvectors are con-

structed from the eigendecomposition of the covariance matrix, Cg. For GAS, this matrix

is constructed numerically by discretising G into E elements of equal measure ∆G, which,

for n = 3, gives spatial discretisation of δ(ζ,x) as:
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d(x) =


d1(x)

d2(x)

d3(x)

 =



d1,1(x)
...

d1,E(x)

d2,1(x)
...

d2,E(x)
...

d3,1(x)
...

d3,E(x)



, (7.9)

where d(x) is a column matrix of size [L × 1] and L = nE. Using this discritisation, Cg

can be obtained as:

Cg =

∫
X
d(x)d(x)Tρ(x)dx. (7.10)

As explained earlier, the analytical solution of Cg requires solving high-dimensional

integral. Therefore, its approximation is obtained as in Eq. (7.11) while sampling X with

a statistically convergent number of Monte Carlo realisations, Sg, which creates dataset

X = {xr, r = 1, 2, . . . , Sg} ∼ ρ(x).

Cg = Ĉg =
1

Sg

Sg∑
r=1

d(xr)d(xr)
T = ŴgΛ̂g

(
Ŵg

)T
≈WgΛgWgT . (7.11)

Here, Wg is [L×L] matrix whose columns are the eigenvectors. The eigenvalues Λ obtained

from the eigendecomposition of C represent the variance resolved along the associate eigen-

vectors. The partition of Wg into geometrically-active (Wg
1) and inactive (Wg

2) feature

matrices is done by looking for eigenvectors which retain minimum 95% of the geometric

variance, and this variance (σ2) is measured as:
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σ2 =

∑N
i=1 λi∑M
i=1 λi

, (7.12)

and Wg
1 is a [L × N ] matrix containing the first N components of Wg. Its linear com-

bination with d(x) creates the latent variable v, which spans the basis of GAS, V, of N

dimensionality and is obtained as follows:

v = Wg
1
T
d(x) ∈ V ⊂ RN . (7.13)

The reduced order representation of d(x) is created with the active variable v and repre-

sented as d̂(v) = Wg
1v. Now the reconstruction accuracy in Eq. (7.2) can also be expressed

in discrete form as:

MSEg =
1

Sg

Sg∑
r=1

∣∣∣∣∣∣∣d̂(vr)− d(xr)
∣∣∣∣∣∣∣2 , (7.14)

where

σ2g =
1

Sg

Sg∑
r=1

∣∣∣∣∣d(xr)
∣∣∣∣∣2 . (7.15)

Combining equation Eq. (7.14) and Eq. (7.15) gives NMSE as:

NMSEg =

∑Sg

r=1

∣∣∣∣∣∣∣d̂(vr)− d(xr)
∣∣∣∣∣∣∣2∑Sg

r=1

∣∣∣∣∣d(xr)
∣∣∣∣∣2 . (7.16)

Physics-informed geometrically-active subspace

Based on [155], the geometric features can also be extracted containing variability of both

geometry and physics. We refer to a subspace formed with these features as Physics-

Informed Geometrically-Active Subspace (PI-GAS). To construct this subspace, consider

that along with the shape modification vector, δ ∈ Rn, there is a lumped (or global)

physical parameter vector, ε ∈ Rn∗
with n∗ = 1, . . . ,∞, representing, e.g., drag, resistance,
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stability, etc. The domain of ε is defined with P, which has a null measure and corresponds

to an arbitrary point, ζθ, where the global physical parameter is virtually defined. Also,

note that generally Q := G ∪ P is not simply connected. Consider a combined vector

γ(ζ,x) ∈ Rn with n = max{n, n∗} as:

γ(ζ,x) =


δ(ζ,x) if ζ ∈ G

ε(ζ,x) if ζ ∈ P
(7.17)

Similar to GAS, here, the dimensionality reduction aims to identify a reduced-dimensionality

representation γ̂(ζ,v∗). Here, Wg
1
∗

is a physics-informed geometric feature set of X , which

is obtained with eigendecomposition of covariance matrix Cg∗ given in Eq. (7.18). The linear

combination of Wg
1
∗

with the discretisation of γ(ζ,x), d(x∗), creates a Physics-Informed

Geometrically-Active Latent Variable (PI-GALV) vector v∗, which spans the PI-GAS (V∗)

of N∗ dimensionality (see Eq. (7.19)).

Cg∗ =

∫
G
d(x∗)d(x∗)Tρ(x)dx, (7.18)

v∗ = Wg
1
∗T

d(x∗) ∈ V∗ ⊂ RN
∗
. (7.19)

7.2.4 Functionally-active subspace

The functionally-active subspace of V or V∗ is developed with the ASM strategy. In this

section, functional feature extraction of V is presented, and it follows a similar procedure

for V∗. Assume that QoI is a multivariate function, physics simulation or model f and

∇vf are the gradients of f with respect to v. That is,

f = f(v), ∇vf = ∇vf(v) =


∂f
∂v1

(v)
...

∂f
∂vN

(v)

 , for all v ∈ V. (7.20)
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The objective is to find a P−dimensional functionally-active representation of geometrically-

active subspace, where P < N . For this, the first step is to compute a covariance matrix

Cf (given in Eq. (7.21)), which is defined as an average of the outer product of ∇vf with

itself:

Cf =

∫
V

(∇vf)(∇vf)Tρ(v)dv. (7.21)

Herein, f is assumed to be a square-integrable function with continuous partial derivatives

with respect to v. As mentioned before, the active directions are identified based on the

eigendecomposition of the approximated covariance matrix in Eq. (7.21), which is obtained

using the following scheme:

Cf ≈ Ĉf =
1

Sf

Sf∑
r=1

∇vf(vr) ∇vf(vr)
T = Ŵf Λ̂fŴf T ≈WfΛfWf T , (7.22)

where Sf is the number of designs points sampled from V and the accuracy of Ĉf depends

on the distribution of Sf designs over V.

Wf is a [N ×N ] feature matrix, whose partition into the functionally active (Wf
1 ) and

inactive (Wf
2 ) feature is done by looking for gaps in the elements of Λ. The separation

of this kind is consistent with standard perturbation theory for eigenvector computations

but is contrary to the heuristic used for the partition of geometrically-active and inactive

features. For instance, if there is a larger gap between the λP and λP+1 than between the

λP−1 and λP , then the functionally-active estimation of V is more accurate with first P

elements of Wf than its estimation with first P − 1 elements of Wf . This also implies

that if Λf
2 ≈ 0 (i.e., {λP+1, λP+2, . . . , λM} ≈ 0) then the mean-squared change in f along

directions defined by the eigenvectors of Wf
2 is negligible. As f is continuous so the

directional derivative ∇vf
TWf

2 ≈ 0 everywhere in V. In other words, f is constant/flat

along the directions defined by the Wf
2 , which can be ignored for dimensionality reduction.
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Now, Wf
1 defines the functional feature set Wf

1 , whose linear combination with v creates

the FALV vector, u, which spans the basis of the FAS, U , as:

u = Wf
1

T
v = Wf

1

T
(
Wg

1
T
d(x)

)
∈ U ⊂ RP . (7.23)

The reconstruction of the original GALV, v̂, can be obtained as

v̂ = Wf
1u = Wf

1W
f
1

T
v, (7.24)

where variable u defines the reduced dimensionality representation δ̂(ζ,u) of shape mod-

ification vector δ̂(ζ,v) in functionally-active subspace, which is the reduced dimensional

geometrically-active representation of shape modification vector δ(ζ,x) in original design

space X . The reconstruction accuracy of this shape modification vector in functionally-

active subspace is measured again with its discrete form, d̂(u) = Wg
1W

f
1u, as

NMSEf =

∑Sf

r=1

∣∣∣∣∣∣∣d̂(ur)− d(xr)
∣∣∣∣∣∣∣2∑Sf

r=1

∣∣∣∣∣d(xr)
∣∣∣∣∣2 . (7.25)

Similarly, the FAS, U∗, of V∗ is obtained after replacing v with v∗ in Eq. (7.22). The basis

of U∗ is defined by a latent variable u∗, which is again composed as a linear combination

of v∗ with physics-informed functional features Wf
1

∗
.

7.2.5 Surrogate modelling in functionally-active subspace

The motivation for learning U is to expedite the surrogate modelling for high-dimensionality

design problems. These models suffer from the curse of dimensionality [20]. Therefore, by

reducing the input space dimensional, we can accept a small penalty in the accuracy of the

f in exchange for the opportunity to tackle high-dimensionality. Therefore, after evaluating

u, f can be approximated in U as

206



Chapter 7. Physics-informed feature-to-feature learning

f(v) ≈ g(Wf
1

T
v) = g(u) (7.26)

Afterwards, the surrogate model in U can be built as:

g(u) ≈ g∗(u) ≡ R(u; g1, g2, . . . , gSr). (7.27)

where g∗(u) is the surrogate model in U and R is the chosen response surface method

trained on sample points g1, g2, . . . , gSr . The domain of g is

U = {u = Wf
1

T
v, v ∈ V} ⊂ RP . (7.28)

This work uses different surrogate modelling techniques, including Gaussian Process

Regression (GPR), for training and testing the surrogate models in the FAS. All these

models have been widely utilised in the literature and will be discussed in Section 7.3.3.

We have seen better results in training the surrogate model with GPR. Thus, leaving the

comprehensive details to [156, 157], the below section gives brief deception of the critical

concepts and construction of the GPR-based surrogate model.

Gaussian process regression

GPR is a non-parametric Bayesian approach [156], which has been used in different de-

sign applications [158]. It maps the nonlinear and globally coupled relationship between

inputs and outputs sampled from a theoretically infinite-dimensional normal distribution

and any finite number of samples in the input space, which follow a corresponding joint

(multivariate) Gaussian distribution. The main advantages of GPR over other modelling

techniques are it can: (1) map the relationship between inputs and outputs with small

data size, (2) easily handle noise in the data, thus, avoiding over-fitting, and (3) opti-

mise hyper-parameters from training data to increase the fit accuracy. For training, GPR

assumes that the output y of g at input u can be written as:
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y = g(u) + ϵ, with ϵ ∼ N (0, σ2ϵ ). (7.29)

Above is similar to Multiple Linear Regression (MLR) and assumes that an observation

consists of an independent signal term g(u) and a noise term ϵ. However, GPR assumes

that g(u) is a random variable and follows a particular distribution, which reflects our

uncertainty regarding the function [157]. The uncertainty in g(u) can be observed based

on its output at different u samples. The term ϵ represents the inherent randomness in the

observations and is independent of the number of observations. In GPR, g(u) assumes to

be distributed as a Gaussian Process (GP):

g(u) ∼ GP (µ(u), k(u,u′)). (7.30)

A GP is any distribution over functions such that any finite set of function values g(u1), g(u2), . . . , g(uSr)

have a joint Gaussian distribution and is defined by a mean µ(u). A covariance k(u,u′)

function [157]. The µ(u) defines the expected function value at input u,

µ(u) = E[g(u)], (7.31)

Here, we set µ(u) = 0 to avoid any posterior computation, which is achieved by subtracting

the mean from all observations. The term k(u,u′) in Eq. (7.30) defines dependence between

the g(u) and g(u′) as:

k(u,u′) = Cov
[
g(u), g(u′)

]
= E

[
{g(u)− µ(u)}{g(u′)− µ(u′)}

]
. (7.32)

Once µ(x) and k(u,u′) are chosen, we can use GP to draw prior and posterior function

values upon previous observations. For that, we sample U to obtain training dataset (Dt)

consisting of Sr samples;

Dt = {Ut,gt}, (7.33)
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where

Ut =


ut1

ut1
...

utSr


=


ut1,1 ut1,2 . . . ut1,N

ut2,1 ut2,2 . . . ut2,N
...

...
. . .

...

utSr,1
utSr,2

. . . utSr,N


, gt =


g(ut1)

g(ut2)
...

g(utSr
)


. (7.34)

Now, we want to make predictions for new inputs U∗ by sampling g∗ for the posterior

distribution ρ(g|Dt). Moreover, by definition, gt and g∗ follow a joint multivariate normal

distribution, which can be written as follows:

gt
g′

 ∼ N
0,

K(Ut,Ut) + σ2ϵ I K(Ut,U′)

K(U′,Ut) K(U′,U′)


 . (7.35)

Here, K(Ut,Ut) is the covariance matrix,

K(Ut,Ut) =


k(ut1,u

t
1) k(ut1,u

t
2) . . . k(ut1,u

t
Sr

)

k(ut2,u
t
1) k(ut2,u

t
2) . . . k(ut2,u

t
Sr

)
...

...
. . .

...

k(utSr
,ut1) k(utSr

,ut2) . . . k(utSr
,utSr

)


, (7.36)

between all observed points, and K(U′,U′) is the covariance matrix between new points.

K(Ut,U′) is the covariance matrix between the observed points and the new input points

and K(U′,Ut) is vice versa. Where, in Eq. (7.35), parameters I and σ2ϵ are the identity

matrix and noise level of observations, respectively. Following [157], the conditional distri-

bution ρ(g′|Ut,yt,Ut) is then a multivariate normal distribution with mean (Eq. (7.37))

and covariance matrix (Eq. (7.38)).

µt(u) = K(u,Ut)
[
K(Ut,Ut) + σ2ϵ I

]−1
gt, (7.37)
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kt(u,u
′) = k(u,u′)−K(u,Ut)

[
K(Ut,Ut) + σ2ϵ I

]−1
K(Ut,u′). (7.38)

In GPR, k is known as the kernel function [156], and a suitable choice of this function

is based on assumptions such as smoothness and likely patterns to be expected in the

training data [157]. For GPR, different types of kernels have been developed and used.

However, most common is the exponential kernel function,

k(u,u′) = σ2sexp

(
−||u− u′||2

2σ2l

)
, (7.39)

where σ2l and σ2s define the length-scale and signal variance, respectively, which can be

altered to increase or reduce the prior correlation between points and the variability of

the resulting function. k(u,u′) is often represented as k(u,u′|θ) to explicitly indicate its

dependence on hyper-parameters, where θ is set containing all the hyper-parameters, σ2ϵ , σ
2
s

and σ2l (e.g., θ = (σ2ϵ , σ
2
s , σ

2
l )). These parameters are tuned for a specific dataset D either

with maximum likelihood approach [156], or Bayesian techniques [159], which measures

how well a given θ describes D. This work tested GPR with different kernel functions, and

hyper-parameters were optimised with the Bayesian technique [159].

7.2.6 Optimisation

An optimisation process is carried out to explore U for optimal design, during which designs

are evaluated with the surrogate model. To initiate the optimisation, we first need to define

the bounding limits as ul ≤ u ≤ uu, where ul and uu are vectors containing the lower and

upper limits for u and form a viable search space, which is evaluated based on heuristic

presented in [20] and is given in Eq. (7.40).

ul = xl × diag(sign(Wf
1 )TWf

1 ),

uu = xu × diag(sign(Wf
1 )TWf

1 ),
(7.40)

where sign(Wf
1 ) returns a matrix with sign of the components. Afterwards, to generate
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an optimal design, one can solve the following optimisation problem:

given u ∈ RP

min
u

g(u)

subject to u ∈ U

yield uoptimal,

(7.41)

where, g is a surrogate model constructed from the initial Sr training samples, sampled

from U . The constraint u ∈ U is a placeholder to ensure that uoptimal within the predefined

boundary of the functionally-active subspace.

Further experimentation, visualisation, or fabrication analyses of uoptimal might require

evaluation of its full-scale representation (xoptimal) in the original design space X . There-

fore, it is necessary to ensure that there lies a full-scale repression of every u ∈ U , for

which we solve a secondary optimisation problem at each evaluation of u, which is defined

as follows:

given u = uoptimal

d̂(u) = Wg
1W

f
1u, Wg

1 ∈ RL×N , Wf
1 ∈ RN×P

d(xr) of δ(ζ,xr) for rth design

min
x

τ1 × g(Wf
1

T
(Wg

1
T
d(x))) + τ2 × ||d̂(u)− d(x)||2

subject to g(Wf
1

T
(Wg

1
T
d(x))) ≤ g(u)

xl ≤ x ≤ xu

yield xoptimal

(7.42)

The term ||.|| is an euclidean norm, which facilitates exploration of xoptimal in close prox-

imity of uselect. Although uoptimal has already been found from optimisation in Eq. (7.41),

we have added g(.) in the objective function of Eq. (7.42) to find if there is any further im-

provement that can be achieved during the exploration of X for xoptimal. τ1 and τ2 adjust

211



Chapter 7. Physics-informed feature-to-feature learning

the weight of g(.) and ||.|| during optimisation and τ1, τ2 ∈ [0, 1]. As the main objective

for this optimisation is to find xoptimal, therefore, higher priority should be given to ||.||

by setting τ2 > τ1. The constraint g(Wf
1

T
(Wg

1
T
d(x))) ≤ g(u) in Eq. (7.42) ensures that

xoptimal has either the same or higher performance than uoptimal. Algorithm 4 gives the

stepwise procedure for implementing the proposed approach.

7.3 Results and discussion

To validate feature-to-feature learning, we tested three different SDO pipelines on the

DTMB Naval Ship hull shown in Fig, 5.2 (b) under the same setting as described in §5.3.2

and 5.3.3. The sequential workflow of these pipelines is shown in Fig. 7.3. The first pipeline

is the conventional ASM, which learns the lower dimensional FAS, U1, from gradients of

cw (∆xcw) evaluated with respect to design parameters. The second pipeline is based

on the proposed two-step feature-to-feature learning. First, a GAS representation of the

original design space is learned in this pipeline. Then, functional features of this subspace

are extracted with eigendecomposition of the covariance matrix composed of gradients

(∆vcw), which are learned as a function of geometric features. This decomposition creates

a new FAS, U2. Finally, in the third pipeline, the PI-GAS is created first, containing the

variability of geometry and cw. Afterwards, functionally-active representation (U3) of this

subspace is extracted to further reduced its dimensionality.

Once U1, U2 and U3 are created, then, respectively, we build three surrogate models

g1, g2 and g3, which are connected with the optimiser to find an optimal design for the

test case. The efficiency of these pipelines is evaluated in terms of the final dimensionality

of the respective subspace, the accuracy of the surrogate model, and the ability of the

optimiser to find an optimal solution with the least computational cost.

In the subsequent sections, we first provide numerical results on the extraction of

the geometric and physics-informed geometric features of the original design space, which

creates latent variables for the construction of GAS and PI-GAS. Afterwards, followed by
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Algorithm 4 Step wise procedure of the proposed feature-to-feature learning approach.

1: Create an initial model G composed of coordinate set ζ ∈ G ⊂ Rm and parameterise it
with M design parameters (x1, x2, . . . , xM ).

2: Define the design space X with lower and upper bounds of M parameters, X := {xlk ≤
xk ≤ xuk , ∀k ∈ {1, 2, . . .M}}.

3: Define a shape modification vector δ(ζ,x) to modify G for any realisation x ∈ X .
4: Sample X to create set X = [x1,x2, . . . ,xSg ]T , where Sg is sample size.
5: Evaluate shape modification set δ(ζ,X) = [δ(ζ,x1), δ(ζ,x2), . . . , δ(ζ,xSg)]T

6: Create the dataset D(X) containing discrete representation of δ(ζ,X) as D(X) =
[d(x1),d(x2), . . . ,d(xSg)]T , where the discretisation of ith design xi is represented in
Eq. (7.9).

7: Compute Cg and its eigendecomposition: Cg = 1
Sg

∑Sg

r=1 d(xr)d(xr)
T = WgΛgWgT

8: Partition eigenspace of Cg as in Eq. (7.5), where elements of Λg
1 capturing minimum

95% of the variance (i.e.,
∑N

i=1 λi/
∑M

i=1 λi ≥ 95%).

9: Form geometrically-active latent variable v = Wg
1
T
d(x), v = {vr, r = 1, 2, . . . , N}.

10: With v create a geometrically-active subspace V ⊂ RN as, V := {vlk ≤ vk ≤ vuk , ∀k ∈
{1, 2, . . . N}}, where vlk and vuk are the lower and upper bounds and M < N .

11: Sample V to create set V = [v1,v2, . . . ,vSf
]T , where Sf is sample size.

12: Evaluate QoI for V, F = [f(v1), f(v2), . . . , f(vN )]T

13: Evaluate Gradients ∇F = [∇vf(v1),∇vf(v2), . . . ,∇vf(vSg)]T with respect to v.

14: Compute Cf and its eigendecomposition: 1
Sf

∑Sf

r=0∇vf(v) ∇vf(vq)
T = WfΛfWf T

15: Partition eigenspace of Cf as in Eq. (7.5), which is composed having maximum sepa-

ration between last element of Λf
1 and first element of Λf

2 (i.e., λP >> λP+1).
16: Form functionally-active subspace as u ∈ U ⊂ RP , which is bounded with lower ul and

upper uu bounds (i.e., U := {ulk ≤ uk ≤ uuk , ∀k ∈ {1, 2, . . . P}}).
17: Sample U to create set U = [u1,u2, . . . ,uSr ]T , where Sr sample size of the training

dataset for building surrogate model.
18: Evaluate QoI for U, G = [g(u1), g(u2), . . . , g(uSr)]T

19: Create dataset D = [U G] with columns of U as independent variables and G is the
dependent variable.

20: Use response surface method R on dataset D to create a surrogate model g∗(u).
21: Solve Eq. (7.41) to find an optimal design uoptimal in U .
22: To find the full space projection of uoptimal (xoptimal) in X solve optimisation problem

in Eq. (7.42).
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the discussion on surrogate modelling and shape optimisation, we explain the results of

the FAS formed with original design parameters and compare them with those formulated

with two-step feature extraction.

7.3.1 Dimensionality reduction with geometric features

Extraction of geometric features to form V or V∗ is commenced with the eigendecomposition

of Cg or Cg∗ , which accumulates the geometric variability of designs into eigenvalues and

eigenvectors. The former identifies the original geometric variability of the full design space

in terms of geometry or physics. In contrast, the latter contains the extracted feature for

the latent variable and defines the shape deformation modes of the highest impact on the

hull geometry. Here, the number, N and N∗, of latent directions for V and V∗ subspaces

are set to achieve the NMSE ≤ 5%, resulting in active latent variables capturing 95%

variability of the original design space.

As mentioned before, the eigendecomposition is implemented on a discrete version

of the covariance matrix, for which the original design space (X ) was sampled following a

uniform random distribution of Sg = Sf = Sr = 9000 hull-form designs by the Monte Carlo

method, according to parametric studies performed in earlier work [154]. Afterwards, the

elemental discretisation of the sampled designs was generated with each design containing

L = n[90 × 25] elements. This created a training dataset for feature extraction used for

the construction of V. To form V∗, cw values of designs were also included in this dataset,

which was evaluated under the same settings as described in §5.3.2. Fig. 7.4 (a) and (b)

show the absolute and percentage of the geometric variance retained, which is evaluated

as a cumulative sum of their associated eigenvalues for V and V∗, respectively.

From Fig. 7.4, it can be seen that for the present test case under the specified setting

that the first 15 and 11 eigenvectors, Wg
1 = {wg

i , i = 1, 2, . . . , 15} and Wg∗

1 = {wg∗

i , i =

1, 2, . . . , 15}, obtained from the eigendecomposition of Cg and Cg∗ , retains 95.18% and

95.34% of geometric variance, respectively. This results in approximately 44% (N = 15)

and 59% (N∗ = 11) reduction of the original design space’s dimensionality to create 15-
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Figure 7.4: Plot showing (a) absolute and (b) percentage of the geometric variance retained
by geometrically-active (V) and physics-informed geometrically active (V∗) subspaces of
dimension N . Horizontal lines on plot (a) and (b) indicates the threshold for 95% of the
geometric variance.

and 11-dimensional V and V∗, respectively. This also quantifies that only N = 15 or

N∗ = 11 latent directions govern or accumulate all the geometric variations in X . It is

also noteworthy that in the presence of cw the higher geometric variance is achieved and

its first eigenvector captures 50.61% of the variance, which is approximate twice the one

captured by the first eigenvector of Cg. Moreover, up to N,N∗ = 20, eigenvectors obtained

from Cg∗ contain a higher cumulative sum of eigenvalues compared to ones obtained from

Cg; however, it tends to be the same after 20th eigenvector.

Figures 7.5 (a) and (b) show the first three eigenvectors, {wg
i }3i=1 and {wg∗

i }3i=1, on

the hull surface obtained for V and V∗, respectively. The visualisation of these eigenmodes

directly on the design surface delivers an insight of great practical value as it shows the

type and order of the variance accounted for the most important eigenvector on the ship

hull geometry during shape modification. Both sets of eigenvector exhibit, to some extent,

a global shape modification on the geometry while accumulating significant variations in

sectional area and waterline along the ship length.

To compare the eigenmodes of V and V∗, a statistical metric, commonly known as
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Modal Assurance Criterion (MAC) [160], is used. MAC is a widely used metric to mea-

sure the statistical consistency or similarity between eigenmodes obtained analytically and

experimentally. It is bounded between 0 and 1, with 1 indicating two mode shapes are sim-

ilar. The results of MAC evaluated with the first three eigenvectors of V and V∗ are shown

in Fig. 7.6. It is interesting to note that in the physics-informed formulation, the first

eigenvector (wg∗

1 ) has been changed due to the presence of cw, however, it is second (wg∗

2 )

and third (wg∗

3 ) eigenvector shares a high degree of similarity with wg
1 and wg

2. In addition,

wg∗

1 and wg∗

3 also show some similarity. These results provide interesting insight and again

quantify that the eigenvectors for V∗ capture more of the geometric variance of X . This is

resulted because of the cw, which may act as the shape descriptor for the sampled designs

providing additional information to capture a higher percentage of geometric variance with

fewer latent variables. However, compared to V, V∗ is computationally expensive to evalu-

ate as it requires the evaluation of cw. One could study how geometrically-active features

will behave if one could use the geometry-based descriptor, such as shape integrals, which

are computationally inexpensive to evaluate compared to physics, into the dataset and the

designs’ parametric discretisation. Although this would require the validation of integrals’

accuracy and decision on the satiable order of integrals to achieve a concrete descriptor,

this seems to be an interesting study, and the authors plan to work in the future.

7.3.2 Dimensionality reduction with functional features

As explained previously, the extraction of functional features of a given design space is

driven with the eigendecomposition of the covariance matrix composed of the gradients of

cw with respect to the design parameter or the latent variables if the functional feature of

V or V∗ have to be learnt.

Learning gradients

To evaluate gradients of QoI, different techniques have been proposed in the literature.

For instance, if numerical noise in the QoI is small enough, one could use finite-difference
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Figure 7.6: Modal assurance criterion plot to compare the first three eigenvectors of the
geometrically-active, physics-informed geometrically-active and functionally-active sub-
spaces.
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or evaluate gradients using adjoint solvers if the based line legacy code or simulation

allows. However, often these capabilities are absent when simulation includes multiple or

coupled components, like in the present case. Moreover, for a complex problem involving

freeform shapes like cars and ships, the gradients, primarily evaluated from adjoint solvers,

are qualitatively correct. They have the right relative scaling and right sign. However,

quantitatively, in terms of magnitude, they are not reliable [97,98], at least when they are

used for active subspace.

Therefore, once could approximate these gradients with a local surrogate model, as we

are interested, in active subspace, in the local behaviour of the problem when approxi-

mating gradients. Therefore, inventors of ASM proposed an algorithm for building local

model-based gradients, in which a local linear model is fitted with a subset of predictions

from the training dataset [79].

In this approach, to evaluate the gradients for an ith design xi/vi/v
∗
i we obtain a

subset of ℓ designs from training dataset nearest to xi/vi/v
∗
i along with their cw values.

A surrogate model is fitted on this subset, and the gradients of this model are evaluated.

This process is repeated with all the samples in the training dataset. [79] recommends

using least squares to fit a local MLR model, but from our experiments, we found a local

GPR model with a linear basis fits the subset with better accuracy and is thus utilised

in the present study. Fig. 7.7 (a) and (b) show the sufficient summary plot for the MLR

and GPR models deployed on a subset containing ℓ = 700 samples from V and gradients

evaluated from these models for the baseline hull design are shown in Fig. 7.7 (c). Setting

an appropriate value for ℓ also requires some attention, which we will discuss in the next

paragraph. The R2 and MSE for the GPR model are 0.97152 and 0.16709, and for the

MLR model, these values are 0.66291 and 0.58155, respectively. From Fig. 7.7 (a) and

(b), it is clear that GPR well approximates the problem. Therefore, gradients evaluated

from this model are of better quality. Analysing Fig. 7.7 (c), it can be seen for most of

the parameters, gradients evaluated from MLR are lower in magnitude compared to the

ones evaluated from GPR. Moreover, for parameters 6, 13 and 14, gradients from MLR
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also have opposite signs compared to gradients evaluated from GPR. Therefore, we used

model-based gradients approximated with local GPR for functional features in all three

test cases.
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Figure 7.7: Sufficient summary plot between actual and predicted wave resistance co-
efficients (cw) evaluated using Gaussian Process Regression (GPR) and Multiple Linear
Regression (MLR). (b) Comparison of model-based gradients obtained using GPR and
MLR models.

As mentioned in the previous paragraph, the value of ℓ also has some impact on the

model accuracy, thereby on its gradients, as it defines the number of samples required to be

in the subset for the construction of a reliable local model. Based on the experiments, [79]

proposed that the value for ℓ should be chosen greater than the number of parameters

defining the model and less or equal to the total number of samples in the training dataset

(i.e., n < ℓ ≤ S). However, from the experiments performed in this work, instability was

observed in the model-based gradients as the value for ℓ varied, especially when the value

of ℓ is close to n. Therefore, to choose an appropriate value, we ran an experiment where ℓ

was varied iteratively, and at each iteration, a model was developed, and its gradients were

evaluated. This process was repeated and stopped when gradients became stable. The

results of this experiment performed during the construction of U2 can be seen in Fig. 7.8.

From this Figure, it can be observed that from ℓ = 50 to ℓ = 200 gradients of cw, ∆cw,

fluctuate greatly, after ℓ = 200 they start to converge till ℓ = 700, and from this point,
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gradients tend to be stable. Therefore, we chooses ℓ equals to 750, 700 and 400 for U1,

U2 and U3, respectively. After certain ℓ values, the model-based gradients were constant

throughout the sampled space or subspace for three test pipelines.
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Figure 7.8: Plot for gradients of wave resistance coefficient (∆cw) versus the size of the
training dataset (ℓ) used to construct the GPR model for the evaluation of model-based
gradients of the baseline test model.

Extracting features

As explained earlier for FAS, the separation between active and inactive features is made

by inspecting the decay in eigenvalues and taking the first P feature vectors having the

highest separation between their eigenvalues. These P features create latent variables for

a P -dimensional FAS.

Fig. 7.9 (a), (b), and (c) shows the plot of eigenvalues obtained during the feature

extraction for U1, U2 and U3, respectively, in three pipelines illustrated in Fig. 7.3. The

plot in Fig. 7.9 (a) shows the prominent separation between the first and second eigenvalues
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Figure 7.9: Eigenvalue decay versus the dimensionality (P ) of functionally-active sub-
space representation of (a) original design space, (b) geometrically-active and (c) physics-
informed geometrically-active subspaces.

and between the fifth and sixth eigenvalues, respectively. This shows the potential for a one-

or five-dimensional U1. The reconstruction error is high if U1 is taken as one-dimensional.

Therefore, based on the second prominent separation, the first five eigenvectors Wf1
1 =

{wf1
i , i = 1, 2, . . . , 5} are used to create a five-dimensional (i.e., P1 = 5) U1. This results

in approximately 81% reduction of the original design space’s dimensionality.

Fig. 7.9 (b) shows the eigenvalue plot for the second test pipeline, which is the two-step

feature-to-feature learning. In this case, the functional features of V are extracted, further

reducing its dimensionality. From Fig. 7.9 (b), it can be seen that the largest separation

occurs between the fourth and five eigenvalues. This results in a P2 = 4-dimensional U2,

span by the first four eigenvectors Wf2
1 = {wf2

i , i = 1, 2, . . . , 4}, resulting in 85% reduction

in the dimensionality of X . It can be seen that, in this case, compared to U1, there is no

notable reduction achieved with two-step feature extraction. However, as we will see in

subsequent sections, in terms of surrogate modelling and optimisation, U2 captures better

geometric and functional variability.

As explained previously, in the third test pipeline, the first geometric decomposition

happens not only in terms of geometry but also in terms of cw, which creates V∗. Af-

terwards, functional features of this subspace are extracted, and the eigenvalues obtained

during this extraction are shown in Fig. 7.9 (c). These results show a significant separation
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between the first and second eigenvalue, resulting in one-dimensional U3 (i.e., P3 = 1) with

the first eigenvector Wf3
1 = {wf3

1 }. The significant separation between the first and second

eigenvalue happens because the basis of the physics-informed geometric representation of

the original space accounts for the variation of both design parameters and cw. As the

first principal direction (eigenvector with the highest eigenvalue, i.e., wg∗

1 ) account for the

maximum variance in this subspace, therefore, when this is projected on the functionally-

active latent variables (u∗), which are learned with the gradients of cw with respect to v∗,

so the most of the variance in cw is captured with wf3
1 .

Fig. 7.5 (c), (d) and (e) show the eigenmodes of U1, U2 and U3, respectively, and the

comparison between these eigenmodes is shown in term of MAC plot in Fig. 7.6. The

first insight we try to make from these results is to look if eigenvectors of Wf1
1 , Wf2

1 or

Wf3
1 share some similarities with Wg

1 or Wg∗

1 . It can be observed that the first three

eigenvectors of Wf1
1 and Wf2

1 do not share any similarity as their MAC values are below

0.5. However, eigenvectors of Wf3
1 , especially wf3

1 , show some resemblance. It is also

interesting to note that wf3
1 are wg∗

1 are alike and is also slightly similar to wg∗

3 and wg
2.

Moreover, it is also noteworthy that none of the elements of Wf1
1 , Wf2

1 and Wf3
1 does not

have a significant likeness.

Sensitivity analysis

The functional features can give helpful insight into activity/sensitivity scores interpreta-

tion of original design parameters or latent variables on cw. These sensitivity scores are

similar to that one would obtain from Sobol’s total sensitivity indices and derivative-based

global sensitivity measures [80]. The eigenvectors identify the most important direction

X , which implies that QoI, cw in our case, changes the most along the latent variables

defined by these eigenvectors. The components of each eigenvector measure the relative

change along the direction defined by this eigenvector, so they impart significance to each

of the design parameters of the original design space or latent variables of GAS or PI-GAS.

Therefore, a global sensitivity analysis metric can be defined as:
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ϕi = ϕi(P ) =
P∑
j=1

λjwi,j , where, i = 1, 2, . . . P (7.43)

Here, ϕi is the activity score of the ith parameter indicating relative significance on cw.

For better visualisation, we normalise the activity scores using the following:

ϕi 7→
ϕi√∑P
i=1 ϕ

2
i

. (7.44)

For further details, interested readers should refer to ref. [80]. Fig. 7.10 (a), (b) and

(c) shows the activity score for x, v and v∗, respectively. From Fig. 7.10 (a), it can

be observed that the most significant parameter for X is x14 followed by x8, x15 and x4,

where x1 is the least significant parameter. In case of V (Fig. 7.10 (b)), the latent variable

v2 is the most significant one and v15 is the least significant parameter. Moreover, it is

interesting to note that in the physics-informed formulation (Fig. 7.10 (c)), the first latent

variable v∗1 is the most significant one, and its magnitude is approximately more than 90%

higher than the rest of the latent variables. This again shows an interesting behaviour of

this design space, when physics is involved during geometric feature extraction, then the

first eigenvector covers all the functional variance, and v∗1 of this eigenvector is responsible

for the maximum change in cw. This indicates that, in this case, the first eigenvector has

dominated or over-learned all the features in terms of physics.

7.3.3 Surrogate model training

The training data for surrogate models consists of Sr = 9000 uniformly distributed designs

with design parameters or latent variables as independent variables and cw as the dependent

variable. The accuracy of the surrogate model can be affected by the outliers in the

training dataset, which can result in inaccurate or mediocre prediction of cw. Therefore, a

univariate method based on the quartiles is used to detect and remove outliers [161], which

identifies an element of the dataset as an outlier if its value is more than 1.5 interquartile
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Figure 7.10: Plot showing activity/sensitivity scores (ϕ) for the (a) design parameters, x,
(b) geometrically-active latent variables, v and (c) physics-informed geometrically-active
latent variables, v∗.

ranges above the upper quartile (75%) or below the lower quartile (25%). GPR was

then applied to build surrogate models g1, g2 and g3, with samples from U1, U2 and U3,

respectively, and hyper-parameters of these models are optimised with different kernel

function, but square exponential kernel provided better results thus selected for the final

surrogate model. The comparative results of training GPR with different kernel functions

will be discussed in the subsequent sections. For training validation, 10-fold cross-validation

is implemented. Table 7.1 shows the results of training-MSE, which is evaluated between

actual and predicted values of cw in the training dataset. Cross-validation-mse is calculated

when unseen data is given to the model for prediction. The optimised values of the hyper-

parameters for the surrogate models are also given in Table 7.1,

In these cases, cross-validation- and training-MSE values are very close to each other,

which ensures a good generalisation capability of the trained models. The R2 error is

bounded between zero and one, and its value equal to zero indicates that the trained model

does not improve prediction over the mean model, and a value close to one shows good

prediction. Thus a model with higher R2 should be selected. From the results of Table 7.1,

one can see that g3, which is constructed from U3, has the lowest training error followed

the by g2 and g1. These results show that feature-to-feature dimensionality reduction does
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Table 7.1: Error and hyper-parameter values obtained during the training of surrogate
models g1, g2 and g3 in functionally-active subspaces U1, U2 and U3.

Surrogate models g1 g2 g3
Dimensions 5 4 1
Training-MSE 0.31594 0.20619 1.7499e-05
Cross-validation-MSE 0.33141 0.21993 1.9108e-05
R2 0.68402 0.80379 0.99998

Hyper-parameters

σ2ϵ 0.07330 0.13790 0.14440
σ2l 0.00080 0.64871 3.45700
σ2s 1.48940 9.83550 5.63820

help to elevate the surrogate modelling accuracy. Fig. 7.11 (a) shows the plot of MSE

versus dimensionality of g1, g2 and g3. It is noteworthy that for all three models, the MSE

decreases as their dimensionality increases. However, for g3, this change is negligible (see

Fig. 7.11 (b)) as even with one parameter, g3 has significantly higher accuracy compared

to the other two models.

In the case of g1, the MSE decreases up to five parameters, and after that, there is no

significant improvement. Note that these results also align with the results of the eigen-

decomposition that the whole problem can be well represented with five latent variables.

Similar behaviour can be observed in the case of g2, the MSE continues to drop up to

four parameters and there is no significant improvement with further increasing its dimen-

sionality. One might be interested in this slight improvement in the model by increasing

the dimensionality. However, this will increase the computational cost of training the

model. For instance, on a basic personal computer with an i7-7700 Intel Core, 3.6-GHz

processor, and 8-GB physical memory, it took 20.68 and 55.16 minutes to train a five- and

27-dimensional g1, respectively.

It should also be noted that the MSE for g2 remains lower than g1, even if it is con-

structed with all parameters. Moreover, as explained previously, even though there is no

significant difference between U1 and U2 in terms of dimensionality reduction but g2 with
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four latent variables has notably higher accuracy than g1 trained with five latent variables

obtained from directly from X (i.e., single-step learning). This again demonstrates the

potential of two-step feature-to-feature learning for surrogate modelling.
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Figure 7.11: Plot showing Mean Square Error (MSE) versus dimensionality (P) of surrogate
models g1, g2 and g3 trained, respectively, with designs sampled from U1, U2 and U3. (b)
A magnified version of the plot between MSE and dimensionality of g3.

Comparison of GPR-based surrogate model with other techniques

The performance of the GPR-based surrogate model was also compared with other meta-

modelling techniques, such as MLR, Decision Regression Trees (DRT), and Support Vector

Machine (SVM), along with their different variations. In DTR, we tested fine, medium and

coarse versions, in which leaf size was set to 4, 12 and 36. SVM was tested with different

kernels, including linear, quadratic, cubic and Gaussian kernels with varying length-scale

(σ2l ), resulting in fine (σ2l =
√
Sr/4), medium (σ2l =

√
Sr) and coarse (σ2l = 4

√
Sr) Gaus-

sian SVM. Moreover, the performance of the GPR model trained with different kernel

functions, rational quadratic, matern 5/2, exponential and squared exponential, was also

evaluated in-term of training-MSE and R2. The results of this comparison for g2 are

given in Fig 7.12, which show an interesting behaviour that the linear techniques, MLR
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and Linear SVM, cannot map well the nonlinear behaviour of the problem; thus, com-

pared to other techniques, they show high training-MSE and low R2. Among DRTs, the

medium tree shows better performance, and medium Gaussian followed by cubic SVM out-

performance other variants of SVM. Subsequently, it is interesting to note that compared

to other techniques, GPR models show better performance, among which GPR construed

with squared exponential kernel shows the best accuracy, while the other kernel functions

show similar accuracy. Similar behaviour was observed when these techniques were used

for the construction of g1 and g3, and GPR with squared exponential kernel showed the

highest performance in training-MSE and R2.

MLR: Multiple Linear Regression
F-Tree: Fine Regression Tree
M-Tree: Medium Regression Tree
C-Tree: Coarse Regression Tree

L-SVM: Linear SVM
Q-SVM: Quadratic SVM
C-SVM: Cubic SVM
FG-SVM: Fine Gaussian SVM

MG-SVM: Medium Gaussian SVM
CG-SVM: Coarse Gaussian SVM
Bo-Trees: Boosted Trees 
Ba-Trees: Bagged Trees

Q-GPR: Quadratic GPR
M-GPR: Matern 5/2 GPR
E-GPR: Exponential GPR
SE-GPR: Squared Exponential GPR
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Figure 7.12: Comparison of different techniques used to construct g2.
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7.3.4 Optimisation

To optimise the baseline hull, we utilised the Jaya Algorithm (JA) [109], a recently proposed

simple yet effective meta-heuristic optimisation technique whose performance has been

proven in various engineering applications. JA is a population-based technique requiring

a set of randomly sampled initial solutions to optimise. Unlike most population-based

meta-heuristic optimisation techniques, JA does not require tuning any algorithmic-specific

parameters. This nature lifts an additional burden from the user and ensures a solution

closer to the global optimal.

The optimisation is run in connection with the trained surrogate models as described

in Section 7.2.6 to reduce the model-scale calm-water wave resistance coefficient, cw, of

the baseline ship model. As JA is a stochastic meta-heuristic technique that may provide

different results in each run, 100 different optimisation runs were performed. In each run,

a total of 1500 iterations were conducted. Fig. 7.13 (a) shows the average values of cw in

100 runs, and Fig. 7.13 (b) shows the cw value in a single run versus the first 50 iterations

performed in U1, U2 and U3. The optimisation results obtained after exploration of U1, U2

and U3 are shown in Table 7.2.

Table 7.2: Optimisation results obtained after exploring U1, U2 and U3 in connection with
g1, g2 and g3.

U1 U2 U3
Dimensions 5 4 1
cw of optimised designs 0.00067353 0.00060254 0.00070930

It is noteworthy that U2 gives the most optimal design followed by U1 and U3. Inter-

estingly, despite showing higher accuracy both in terms of dimensionality reduction and

surrogate modelling, U3 does not give the most optimal design. This is probably because

the geometric variability captured by this subspace is very small and has overlearnt the

variability of cw. Therefore, the optimiser cannot explore diverse designs for optimum

global compared to U1 and U2. Fig. 7.14 (a), (b) and (c) shows the shape difference be-
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Figure 7.13: Plots for the objective function (cw) versus a number of optimisation iterations
performed in functionally-active subspaces of Fig. 7.3. (a) Average cw over 100 optimisation
runs and (b) cw in a single optimisation run over the first 50 iterations.

231



Chapter 7. Physics-informed feature-to-feature learning

tween the baseline design and optimised designs obtained, respectively, from U1, U2 and U3.

Table 7.3 shows the design and hydrostatic properties of the baseline and optimal designs

obtained from these design spaces. Among these properties, during the shape optimisation,

designers intend to keep the volume displacement (∇), length (L), length at the waterline

(Lwl), overall beam (B), beam at the waterline (Bwl) and draft (T ) the same as baseline

design. It can be seen from Table 7.3 that these parameters are close to each other with

mirror variations. Although these variations can be reduced with design constraints during

optimisation, they are not critical, at least in the present work context.

Compared to U1, the optimised design from U2 shows a 10.54% of improvement in cw,

which is mostly associated with the sonar dome area and flat of side close to the stern.

In Fig. 7.13 (b), it is also noteworthy that optimisation performed in U2 converges faster,

which is beneficial for computational cost reduction of SDO, especially when designs have

to be evaluated with time expensive simulation tools during optimisation, as optimal design

can be achieved with fewer design evaluations. In U3 the convergence stopped after 7th

iteration.

Furthermore, as U3 is one-dimensional and U1 and U2 are five and four-dimensional,

therefore, for a balanced comparison, we set the dimensionality of U3 from one to five

and see if further increasing its dimensionality can help to obtain a better result. Five-

dimensional g3 was developed to evaluate designs in the five-dimensional version of U3.

The optimal design obtained at the end of optimisation has cw = 0.00070373, which shows

slight improvement compared to the one obtained from one-dimensional U3. Moreover,

this design still has lower performance than the design obtained from U1 and U2.

We also tested one-dimensional behaviour of U1 and U2. For this, the dimensionality

of U1 and U2 was set to one and one-dimensional g1 and g2 were constructed. The optimal

designs obtained from the exploration of one-dimensional U1 and U2 have cw values of

0.001025 and 0.001004, respectively, which are higher than the one obtained from one-

dimensional U3. This shows that U3 captures well the monotonic behaviour of the problem.

However, in comparison to U1, the one-dimensional U2 shows better performance.
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Chapter 7. Physics-informed feature-to-feature learning

The efficiency of one-dimensional g1 and g2 differs in the higher dimensions. Therefore,

g1 and g2 were constructed again in their original dimensionality, which was five and four,

respectively. Then to test the geometric and functional variability captured by the first

latent variables, we again explored one-dimensional U1 and U2 with optimisation. However,

during this exploration, designs were evaluated with five- and four-dimensional g1 and g2

as they have better prediction capability than their construction in a single dimension.

This optimisation problem is formulated as in Eq. (7.45).

given u′ = Wf
1

′T
v ∈ U ′, Wf

1

′
∈ RN×P ′

u′′ = Wf
1

′′T
v ∈ U ′′, Wf

1

′′
∈ RN×P ′′

where P ′ < P ′′

Wf
1

∗′
∈ RP

′′×P ′

cw ≈ g′
(
u′′)

min
u′

g′(Wf
1

∗′
u′)

subject to ul
′ ≤ u′ ≤ uu′

ul
′′ ≤Wf

1

∗′
u′ ≤ uu′′

yield u′
optimal

(7.45)

Here, U ′ is the one-dimensional (P ′ = 1) version of U1 and U2, and U ′′ represents their

original dimensionality (i.e., P ′′ equal to four for U1 and equals to five for U2). During

exploration of U ′ for optimal design, u′
optimal, W

f
1

∗′
projects the lower-dimensional design,

u′ ∈ U ′, on the higher-dimensional space U ′′, which is evaluated with surrogate model,

g′, to guide the optimiser. Here, g′ is trained in U ′′ thus has the dimensionality of P ′′.

Moreover, the first constraint in Eq. (7.45) defines the viable search space for exploration

of u′
optimal. Whereas the second constraint in Eq. (7.45) ensures that the design evaluated

with g′ lies within its domain on which this model was initially trained. The evaluation of

design’s cw, which lie outside U ′′, will result in its false/inaccurate estimation, resulting in

guiding the optimisation towards local optima.
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Table 7.4: Summary of the optimisation results under different dimensionality of subspaces
and surrogate models.

U1 g1 U2 g2 U3 g3

Dimensions 5 5 4 4 1 1
cw 0.0006735 0.0006025 0.00070373

Dimensions 1 1 1 1 5 5
cw 0.0010250 0.0010040 0.00070373

Dimensions 1 5 1 4
cw 0.0008759 0.0008506

In this comparison, the optimal designs obtained from one-dimensional U1 and U2 have

cw equal to 0.00087596 and 0.00085064, respectively. This concludes that the evaluation of

designs with five- and four-dimensional g1 and g2 during the exploration of one-dimensional

U1 and U2 shows better results compare to the evaluation of designs with one-dimensional

g1 and g2. Even in this case, U2 provides the most optimal design, and the monotonic

behaviour of the problem is well defined with U3. Table 7.4 summarises all the optimisation

tests performed under different dimensionality of subspaces and surrogate models. These

results again demonstrate that the dimensionality reduction performed with feature-to-

feature learning encodes the lower-dimensional latent subspace well compared to the one

performed with signal-step feature extraction.

7.4 Conclusions & future works

This chapter proposed a dimensionality-reduction method to reduce the computational

cost and increase the efficiency of SDO. The proposed approach commences with feature

extraction to learn a lower-dimensional latent space in which the basis of the original design

space was formed while preserving the maximum geometric variability of the designs. Af-

terwards, another set of features of this subspace was extracted to reduce its dimensionality.

This two-stage feature-to-feature learning creates a functionally-active subspace while re-
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taining the geometric and functional variability of the original design space. The geometric

features help optimisation to explore diverse designs in a lower dimension, and functional

features facilitate efficient surrogate model training. We tested the proposed approach

on a 27-dimensional design space to optimise the DTMB 5415 ship hull. The objective

for optimisation was to minimise the calm-water resistance (cw), where cw was evaluated

using the surrogate model trained in the functionally-active subspace. Three different

methodological pipelines were tested, and results showed that compared to conventional

feature learning techniques, the two-step feature extraction improves SDO’s computational

efficiency.

As a future work, authors are keen to work on the development of a Psycho-Physical

metric [8] to visually access the geometric variance retained by a certain subspace, which

might facilitate designers to explore subspaces in a generative design paradigm effectively.
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Chapter 8

ShipGAN: Deep convolutional

generative model for parametric

ship design

8.1 Introduction

“What I cannot create, I do not

understand.”

Richard Feynman

Recently, the increasing pervasiveness of machine learning in engineering design, mainly

in the form of the emerging scientific machine learning (SciML), has, on several occasions,

taken off the vast computational burden from traditional solvers by constructing efficient

low or even high-fidelity surrogate models that almost instantaneously predict performance,

thereby accelerating the entire simulation-driven design (SDD) pipeline. Although the ef-

forts of integrating SciML in ship design are increasing, the pace is relatively slow compared

to other engineering fields.

Furthermore, there are few efforts to introduce these tools at the preliminary ship de-
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Chapter 8. ShipGAN: Deep convolutional generative model for parametric ship design

sign stage, where naval architects and/or involved designers typically identify designs from

existing databases while attempting to match new requirements. Afterwards, they may

construct a parametric model using a suitable ship-hull surface representation, typically

comprising NURBS surface patches or simpler panel meshes. This usually results in a nar-

row design space permitting only slight variations of a baseline design [162]. Designers also

get inspiration from existing designs while using their features and components to create

a small set of potential alternatives. However, embedding these features is a complicated

task and constructing a new parametric description for the unique shape using existing

strategies is highly expertise-driven and time-intensive. Although this approach has served

the community well, especially when considering well-established ship types, we may need

to leap forward toward radical design ideas when uncommon requirements demand the

exploration of a richer design space or if new business models require revolutionising and

redesigning existing ship types. This obviously benefits novel design tasks, e.g., special

purpose vessels, but it can also offer a competitive advantage for traditional players in the

industry.

There have been substantial efforts in computer-aided ship design for building robust

parametric tools, but they can only handle a specific hull type; some relevant examples of

such tools are presented in [1, 2, 4, 54, 163, 164]. Despite their efficiency in creating valid

and smooth ship-hull geometries, they cannot be readily used to generate instances of ship

types that deviate significantly from their target ship types. For example, in Fig. 8.1,

the parametric construction proposed by [1], and later explicitly adapted for container

ship hulls by [2], is depicted. Such parameterisation cannot be directly or easily mapped

to an entirely different ship-hull type, such as the DTMB naval ship shown in the same

figure. Although some generic approaches, like FFD (free-form deformation) [61], may

be applicable to some extent, they either use a rather crude low-fidelity and featureless

representation or require significant effort and experimentation for adaptation into new

designs. For example, FFD-based parameterisations are not truly feature-driven [18], which

deprives designers of the commonly needed feature-modelling capabilities and local control
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for designs such as bulbous bows or other features of local nature.

How to map 
parameterisation?

DTMB Hull

KCS Hull

Figure 8.1: The Parameterisation proposed by [1,2] for container ship hulls. Is it applicable
to a naval ship design such as the DTMB hull?

In this work, we aim to tackle the above-mentioned challenges in a typical parametric

hull design by proposing a generic parametric modeller, ShipGAN. The new model can

handle various ship hull types and transform one type into a completely different one, as

shown in Fig. 8.2. The proposed modeller uses deep generative models, specifically deep

convolutional generative adversarial networks (GANs) [165, 166], with a new architecture

and loss function suitable for the problem at hand. These generative models were initially

proven to be promising for generating entirely novel images from given datasets and re-

cently have been exploited for engineering design problems, i.e., aerodynamic design and

optimisation [32, 166]. If appropriately trained, they can efficiently learn latent represen-

tations, which can then be used as design parameters to construct diverse design spaces

for shape optimisation. However, the capacity of these approaches has not been explored

in ship design.

Despite their proven efficiency in design, these models have their limitations. Since

they were initially developed for 2D datasets, e.g., processing of images, their application

in 3D design requires suitable geometric representations to extract meaningful features. An

inappropriate training of such models can therefore result in many invalid shapes. More
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Chapter 8. ShipGAN: Deep convolutional generative model for parametric ship design

importantly, if the dataset is composed of various design sub-classes, they also tend to lose

in generalisability [96].

We, therefore, propose a modified architecture and a loss function to overcome the

drawbacks inherited from GAN. To commence the training of ShipGAN, we first developed

a technique to transform different types of ship hulls into a common geometric represen-

tation. Furthermore, we constructed a shape-signature tensor (SST) using appropriately

encoded designs and their geometric moments (GMs) [132]. Therefore, the so-constructed

SST augments and enriches the geometric information related to designs given to the Ship-

GAN model during training by infusing the moment-related physics associated with ship

hulls. In this way, SST acts as a unique descriptor of each dataset design instance that

enables the extraction of meaningful features which are not only geometry-driven but also

physics-integrated to provide rich and physically-valid design alternatives. We use a deep

convolutional architecture [165] for the model to capture sparsity in the training dataset,

along with a space-filling term [99] in the loss function to enhance diversity.

To the best of the authors’ knowledge, this is the first attempt to construct a generic

parametric modeller in the field of parametric computer-aided ship design. In accordance

with the aim of this work, we report the following main contributions:

1. Development of a large shape dataset containing more than fifty thousand design

variations of several existing classes of ships; no such extensive dataset is publicly

available.

2. Development of an intuitive approach to convert all ship designs into a common

geometric representation. This technique also ensures a smooth NURBS-based re-

construction of designs resulting from the model.

3. The combination of a geometry descriptor with its relevant geometric moments en-

ables capturing of global and local geometric features with physics-informed elements

in the latent space, which in turn allows the generation of designs that are both ge-

ometrically valid and physically plausible.
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4. Introduction of a space-filling term to the loss function, which enables the model to

cover the entire spectrum of the training dataset, thereby enhancing diversity and

potentially avoiding mode collapse issues [167].

5. We finally conducted extensive comparative studies that showed ShipGAN outper-

forms typical GANs in design diversity, quality and validity. We also demonstrated

the usability and generic capabilities of ShipGAN in the ship design cycle via large-

scale ship-hull optimisation experimentation.

8.2 Background on generative adversarial networks

This section provides a brief but essential introduction to typical GANs, i.e., Vanilla GAN,

and their applications in engineering design and optimisation. A typical GAN model con-

sists of two neural networks, generator G and discriminator D, which are trained simulta-

neously to enhance the capability of G to map from a latent space to the data distribution

of interest and thus aim to generate new designs which could have been part of the real

designs dataset. In contrast, D tries to classify designs, i.e., to distinguish between real

(designs in the training dataset) and generated designs, also referred to as fake designs.

Networks G and D are trained simultaneously to reach a Nash equilibrium with the fol-

lowing minimax loss function:

min
G

max
D
Ladv(D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))] (8.1)

where x represents designs in the training dataset and z denotes the latent tensors

randomly sampled from a given distribution pz. The training of the GAN is typically seen

as a game or competition between G and D, thus referred to as adversarial training, which

facilitates learning the data distribution pdata(x) of real designs x. During training, the

performance of D is maximised so that it can accurately distinguish x from the synthetic
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designs, G(z), sampled from pz. During this training, G minimises log(1 − D(G(z))) to

learn to produce designs that the discriminator will classify as real designs, i.e., designs

resulting from the generator will tend to be similar to real designs.

The adversarial training commences with mini-batches of samples from pz, and G

tries to produce realistic designs based on these samples. Then, D is trained to identify

whether the presented designs are real (i.e., from the training dataset) or fake (i.e., from

the generator). During this process, both networks adjust/optimise their parameters to

outperform their opponent, i.e., as D improves its classification ability, G also enhances its

ability to create data that fools D. This process continues until convergence is achieved.

This way, G of the trained GAN model can generate new designs with sufficient diversity

within the prior distribution.

Both G and D can be nonlinear mapping functions, such as a conventional neural

network (NN) or a convolutional NN (CNN). In our case, we use CNN as they have been

proven more effective in capturing sparse features. D and G with CNN-like architecture

are often referred to as Deep Convolutional GAN (DCGAN) [165,166].

8.2.1 GANs in engineering design

GANs and their variations have been used for various tasks; however, in this work, we

focus on their application in engineering design. Recent applications of GANs in the

context of engineering design have appeared in topology optimisation [168, 169], design

and optimisation of aerofoils and wings [32], design of metamaterials [170] and synthesis

of design creativity in bicycle design [171].

Chen et al. [32] proposed a Bézier-GAN model for airfoil design and optimisation. To

achieve a high representation capacity (i.e., design variation) and compactness (i.e., design

validity), Bézier-GAN uses a Bézier curve layer right after the generator, which fits a

Bézier curve to data sampled from the employed distribution. Later, Chen et al. in [172]

proposed a Bézier-GAN variation based on conditional GANs, called CBGAN, to mainly

tackle the inversion ambiguity in the inverse design of aerofoils. A performance-conditioned
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diverse GAN (PcDGAN) was proposed by Nobari et al. [173], which uses a new self-

reinforcing score called Lambert Log Exponential Transition Score (LLETS) for improved

conditioning. Chen and Ahmed proposed a performance-augmented diverse generative

adversarial network (PaDGAN) [96] and its multi-objective extension MO-PaDGAn [174]

to ensure that the trained generator remains applicable, with good-performing designs,

outside the training dataset domain. To achieve this objective, PaDGAN uses a new

loss function based on determinantal point processes (DPPs), which tries to maximise

the spread of designs based on their geometric similarity and performance. However,

PaDGAN requires the evaluation of performance and its gradients, which is commonly

computationally expensive to evaluate. This problem is tackled in the present work by

using geometric moments (GMs) as a physics-informed performance descriptor instead of

directly employing performance evaluations.

To detect geometric abnormality of generated aerofoils or wings, Li et al., [166] trained

a DCGAN with a discriminative model based on convolutional neural networks, which

detects invalid designs without the need of a separate and expensive computational evalu-

ation. Chen and Fuge [175] proposed a hierarchical GAN model to allow the synthesis of

designs with interpart dependencies. Nobari et al. [176] trained a conditional GAN model

to enforce the generator to create designs within a specific performance range and tested

their network in the generation of 3D shapes corresponding to aeroplanes. A CreativeGAN

model was proposed by Nobari et al. [171] to ensure the generation of novel design alter-

natives. To enhance novelty, CreativeGAN used the K-nearest neighbour (KNN) approach

to detect novel features of designs and use these features to train StyleGAN model [177],

which is capable of generating designs with the detected novel features.

8.3 ShipGAN

In this section, we provide an in-depth presentation of the ShipGAN model considerations

and its architecture, schematically depicted in Fig. 8.3. The generator and discriminator of
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the proposed model have a deep convolutional architecture to better capture the sparsity

in the data. ShipGAN uses space-filling [99] to evenly capture the diversity present within

the training dataset and SST to inject the notion of physics in the latent features during

training.

Let G be a geometric object representing a baseline design (e.g., a parent hull) in an

ambient space A ⊆ R3. We also assume that P (G) is a vector function Rn̄ → A that

provides the geometry of the object G, x = P(G). Along with x, there is a lumped

geometric moment vector, M(G) ∈ RnM . Now combining the geometry and its moments

results in a unique SST,

SST =
(
P (G),M(G)

)
, (8.2)

encompassing high-level information about the baseline design. Therefore, the training

dataset comprises the set of shape designs, X = {x1,x2,x3, . . . ,xn} and the corresponding

GMs of each design.

8.3.1 Shape dataset

SciML for engineering design problems suffers mostly from inappropriate and/or insuf-

ficient amounts of data. This is especially challenging if labels, typically performance

parameters, are evaluated by time-consuming high-fidelity solvers. However, generative

models are generally unsupervised and do not require labels; nevertheless, a sufficiently

diverse dataset with novel design alternatives is required to acquire a trained model with

good generalisability. In the context of engineering design, application of such models has

so far appeared in automotive [178] and aerofoil [32] design, since relevant datasets such as

shapeNet1 and UIUC airfoil coordinates database2, containing several thousand designs,

are publicly available. To the best of the authors’ knowledge, no equivalent, diverse and

publicly available dataset of ship-hull designs exist.

1https://shapenet.org
2https://m-selig.ae.illinois.edu/ads/coord_database.html
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This is probably why so far in ship design research, SciML models are implemented on

a specific design type whose variations are created synthetically using a baseline parame-

terisation. However, in such cases, new hulls are generally slight variations of the parent

hull (baseline design). Therefore, if GANs were trained on a specific ship-hull type using

a similar baseline variation process, one could not expect significant novelties in generated

designs. To overcome this hurdle and construct a sufficiently diverse and large dataset of

existing ship-hull geometries, we extensively studied the pertinent literature on systematic

hull form series, optimisation, and machine learning to extract all relevant hull types. This

exercise resulted in consideration of systematic series, e.g. FORMDATA, and a variety of

parent hull families from different ship types, e.g., KCS3, KVLCC24, VLCC, JBC5, DTC,

and DTMB6), shown in Fig. 8.4, which are widely used in industry in academia.

Among the hulls in Fig. 8.4, the FORMDATA series is based on the statistical analysis

of existing ships of various types and has been widely used for designing typical ships. It

covers conventional wall-sided hull forms. The hull variation resulting from FORMDATA

can provide approximately 5000 hull forms but of only three basic types of ship lines,

referred to as U, N and V, which are generated by combining two series, A and F, for the

after and fore parts, respectively. The shapes of these lines are varied systematically with

respect to the midship section-area coefficient cM and the block coefficients cBA and cBF of

the aft and fore parts of the ship, respectively. Therefore, the dataset still needs to be more

diverse. More importantly, if we add the previously mentioned 17 hull geometries within

this dataset and use them for training our model, then there is a good possibility that

their impact will be either zero or minimal. To overcome this issue, we created synthetic

variations of the remaining hull in Fig. 8.4 based on the parametric approach discussed

in [18]. These designs’ length, beam and width are kept constant, and non-dimensional

parameters, varying between 0 and 1, are used to create shape variations.

3http://www.simman2008.dk/KCS/kcs_geometry.htm
4http://www.simman2008.dk/kvlcc/kvlcc2/kvlcc2_geometry.html
5https://www.t2015.nmri.go.jp/jbc.html
6http://www.simman2008.dk/5415/combatant.html
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For some hulls, variation resulting from this parameterisation is shown in Figures 8.5 -

8.10. It can be seen that all the hull variations have plausible geometries with significant

variations. We have 52,591 design variations used to train the ShipGAN model. The

distribution of wave resistance (Cw) and volume of these designs are shown in Fig. 8.11.

8.3.2 Shape encoding for GANs

It is well known that deep learning models require datasets with vector inputs of fixed

dimensions to extract meaningful features. This is relatively easy to achieve for natu-

ral language processing and/or vision/image processing, where these models originated.

However, selecting suitable data encoding is a significant challenge when considering ap-

plications of deep learning models in 3D free-form shape processing. Free-form shapes,

even when belonging to the same family, can have significantly different topology, struc-

ture, geometric parameterisation, and resolution; see Fig. 8.12 as an example of three ship

hulls with significantly different geometrical representations and dimensionality. There-

fore, we need to ensure that all shapes in the training dataset share the same underlying

topology, representation, and resolution. All designs need to be converted into a common

representation with a similar resolution at a prepossessing stage.

Signed distance function (SDF), voxels, point clouds and meshes are commonly used

with satisfactory results for shape visualisation tasks in computer graphics and machine

learning-based regression models for performance prediction [179]. However, in generative

models, when the output is also a 3D shape, these approaches often result in the loss of

local geometric features of the input shapes. More importantly, the resulting designs of

such approaches commonly lack surface smoothness, which is crucial for several engineering

analyses. In the case of ship hulls, both local features and surface smoothness are essential

in appropriately evaluating the hydrodynamic performance of a ship hull. Although one

can achieve a certain level of smoothness by increasing the employed resolution, this also

increases the network complexity and memory requirements. A detailed discussion of such

approaches with their advantages and disadvantages can be found in [179].
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Figure 8.11: distribution of wave resistance coefficient and design volume in the training
dataset of ShipGAN.
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(c)

Figure 8.12: Example of three ship hulls with different surface structure and parameter-
isations: the DTMB hull is constructed with a single NURBS surface, whereas the KCS
and S-175 are composed of several NURBS surface patches with a significantly different
number of control points.

NURBS-based surface representations are quite common among ship hull designers as

they provide the most accurate and versatile mathematical description of design geometry

and are thus favoured in the pertinent industry. As mentioned before, DCGAN models

require fixed dimensional vectors as input, and therefore a common fixed description is

needed. However, especially when the dataset comprises different design classes, converting

all of them into a common NURBS representation is not a trivial task, especially for 3D

shapes.

In summary, any approach used for the construction of a 3D dataset for SciML training

should:

1. represent all shapes with the same resolution;

2. capture both local and global geometric features of the shape;

3. maintain geometric similarity between the original and reconstructed shapes;
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4. satisfy the above conditions with a relatively low resolution (e.g., with few mesh

elements) to avoid redundancies and reduce the model’s overall complexity.

In traditional and even modern ship design, the body plan (BP) is probably the most

useful representation of the ship’s hull lines. If appropriately constructed, it can be used,

along with the basic reference lines, to develop the remaining ship lines plans, i.e., the

profile plan and half breadth plan of the ship. Therefore, a body-plan-inspired approach

can encode the geometric information in a uniform and consistent manner in a ship hull.

Our approach is based on the intuitive arrangement of mainly transverse planes along the

length of the ship hull so that all critical features of the hull surface are captured. More

importantly, once a new design is generated from the GAN model, we can reconstruct a

smooth and fair hull surface with sufficient accuracy and relative ease. The basic steps of

our implementation are summarised below and illustrated in Fig. 8.13 for the KCS hull

case.

1. Assume the axis-aligned bounding box shown in Fig. 8.13(b) with L,B, and D its lon-

gitudinal, transverse, and vertical dimensions, respectively, and the ship hull placed

as shown in the same figure.

2. Convert into a non-dimensional representation using the bounding box length, i.e.,

the resulting principal dimensions L̄, B̄, and D̄ of the scaled hull and a bounding box

will now become 1, BL , and D
L , respectively.

3. Divide the hull into four parts using a non-uniform partition, [0, 0.1, 0.3, 0.8, 1], which

corresponds to the typical regions of different geometric variation for ship hulls in the

longitudinal direction; see Fig. 8.13(c). The intervals P1 = [0, 0.1], P2 = [0.1, 0.3],

P3 = [0.3, 0.8], and P4 = [0.8, 1] correspond to the bow, fore transition, wall-sided

(midship), and stern parts, respectively.

4. Assuming that m is the overall number of ship lines (curves) used to describe each

ship hull in the dataset, divide this number equally to the 4 identified regions, i.e.,
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E
4 lines for each region, P1, P2 P3 and P4. This arrangement generates a dense

line description in areas with abrupt geometrical changes (P1, P2, and P4) and a

rather sparse representation for the region with an almost constant cross-section; see

Fig. 8.13(d).

The employed cross sections (CSs) used in our encoding for P2, P3, and P4 correspond

to intersections of the ship hull surface with transverse planes, i.e., planes perpendicular to

the longitudinal direction. However, CSs in P1 are generated by a family of planes gradually

“rotated” from the transverse to the longitudinal orientation as shown in Figs. 8.13(h-j).

This approach is implemented to avoid disconnected cross-sections resulting from intersec-

tions of the bulbous bow area with transverse planes. In more detail, the following steps

describe the construction of CSs in P1:

1. Create the deck curve DP1 of the hull part in P1 and divide it into E
4 equally-spaced

points; see Fig. 8.13(e)).

2. Define as pint the upper edge point of the intersection line of the longitudinal plane

of symmetry and the transverse plane at L̄ = 0.1. Using the line segments defined

by pint and each of the identified points on DP1 , generate m
4 planes intersecting the

ship hull; see Fig. 8.13(f).

3. Create CSs in P1 by computing the intersections of the previously constructed planes

and the ship hull; see Fig. 8.13(g).

4. Generate N points for each of the generated CSs in all regions; see Figs. 8.13(i,j).

8.3.3 Preparing geometric data for training

As previously mentioned, there are n = 52, 591 designs in our shape dataset. Before

training, all designs in this dataset are deconstructed using the previously described body-

plane-based approach. For this deconstruction, we use E = 56 CSs, and each CS is divided
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into N = 25 points. Hence, the ith design will be represented with xi, corresponding to

25×56 grid points. We have experimented with different grid resolutions, but, as indicated

in Fig. 8.14, the employed, relatively low, resolution of 25×56 grid points provides sufficient

surface reconstruction accuracy while preserving both local and global geometric features.

(d)

Figure 8.14: Comparison between the original KCS hull and its surface reconstruction from
the grid points of the proposed body-plan-based approach. (a) Surface representations of
the original and reconstructed hulls, (b) their geometric representation, comparisons in
terms of (c) the one-sided Hausdorff distance [3], and (d) Gaussian curvature.

Finally, the x (longitudinal), y (transverse) and z (vertical) coordinates of the generated

grid points are used to construct three [25×56] matrices as shown in Fig. 8.15. Hence, the
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geometric representation/encoding of the shape dataset is materialised with n = 52, 591

3-tuples of [25× 56] matrices.

Figure 8.15: Illustration of transformation of grid points into training set’s 3-tuples of
input matrices.

8.3.4 Enhancing shape validity and diversity

As shown in Chapter 6 that using geometric moments along with the shape increases the

chances of creating a large number of geometrically valid shapes, as adding moments gives

a rich set of information about the geometry. More importantly, the existence of a strong

correlation between physical QoI (i.e., wave resistance coefficient (Cw)) and geometric

moments also induces the notion of physics in the extracted latent features (see §5.3.1 for

further details). Thus, the resulting features have not only the ability to form a compact

but also a physics-informed design, ensuring high-quality valid designs. We add GMs to

the 4th order of each design into their grid point matrix. The last row of the matrix

contains 32 components of the moments, and we add zeros in the remaining 25 elements

to complete three [25× 57] matrices for each design in the training dataset (see Fig. 8.16).

Such matrices in x, y and z directions result in SST.
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𝑥 =

243.00 242.76 242.5
242.24 241.98 241.71
241.54 241.25 240.96

242.25 241.98 240.63
241.44 241.15 239.78
240.67 240.37 238.96

239.13 237.48	 235.64
238.30 236.69 234.92
237.49 235.92 234.21

⋯
15.04
15.04
15.04

11.28
11.28
11.28

7.52 0
7.52 ⋯ 0
7.52 0

⋮ ⋱ ⋮
227.29 227.26 227.20
225.45 225.43 225.39
1.0000 0.7123 0.0761

227.11 226.92 226.50
225.33 225.15 224.87
0.0099 0 0.0007

225.91 225.35 224.77
224.45 224.06 223.66
0 −9.4𝑒 − 5 0

⋯
15.04
15.04
0.998	

11.28
11.28
0

7.52
7.52
0

⋯
0
0
0

Grid point coordinates

Geometric moments Adding zeros to 
complete the matrix

Figure 8.16: Structure of a matrix containing x coordinates of the grid points of a design
in the training dataset.

If GANs are not adequately trained, then the resulting generator fails to map to the

entire space of the training data. Thus, it can create only small subsets of designs, ex-

tensively lacking diversity [167]. This behaviour is prominent when the training dataset is

composed of designs with different classes, like in the present case. Generators with such

drawbacks can easily be analysed by visually inspecting a large set of resulting designs, as

the designs with low diversity will be either identical, or a small subset of identical designs

will be repeated many times.

Therefore, we introduced a space-filling criterion to enable ShipGAN to map latent

features on the entire training space and enhance diversity. This criterion is implemented

using Audze and Eglais [99] approach. It follows a physical analogy that molecules, designs

in our case, in space exert repulsive forces on each other that lead to potential energy in

space. These molecules are in equilibrium in case of minimum potential energy, which

guarantees their uniform distribution over the entire design space. This criterion for m

designs resulting from the generator is evaluated as

S =

m−1∑
i=1

m∑
j=i+1

1

||xj − xi||22
. (8.3)

Here, xi and xj the pair of designs from the generator. Minimisation of S favours their

uniform distribution of designs over the entire design space. For more details on space-

filling, readers should refer to [13].
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8.3.5 Loss function

The space-filling term (given in Eq. (8.3)) is added to the original loss function of the

GAN given in Eq. (8.1), resulting in a new loss function written as:

min
G

max
D
Ladv(D,G) + ΓG S. (8.4)

ΓG controls the weight of the space-filling term. Typically, as the training of GAN com-

mences, it is more likely to generate unrealistic designs; therefore, at the start of the

training, we set ΓG equal to 0 and increase it during training so that ShipGAN focuses on

learning to generate realistic designs at the early stage and takes space-filling into account

later when the generator can produce more realistic designs. During the training ΓG is set

an escalating schedule proposed by [96], which is described as

ΓG = Γ′
G

(
t

T

)p
, (8.5)

where Γ′
G is the value of ΓG at the end of training, t is the current training step, T is the

total number of training steps, and p is a factor controlling the steepness of the escalation.

Architecture of generator and discriminator

As mentioned at the beginning of the section, the generator, G, and discriminator, D,

are materialised via deep convolutional neural networks whose structure is shown in Fig.

8.17. The discriminative network, D, consists of 6 convolutional layers and one input layer,

which takes three [25×57] matrices of grid points (x, y and z coordinates) augmented with

4th order GMIs. A dropout layer, with a dropout probability of 0.5, succeeds the input

layer to prevent over-fitting on the training data. This layer acts as a mask that randomly

nullifies the contribution of some neurons toward the next layer. An activation layer follows

each convolutional layer with a leaky rectified linear activation function (ReLU). The last

convolutional layer uses a sigmoid activation function that calculates the probability of
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a design being fake or real. For the second, fourth and fifth convolutional layers, batch

normalisation is applied before the ReLU layer. The discriminator typically reduces data

dimensions when assessing whether a design is real or fake in an operation that resembles

downsampling when dealing with images. This downsampling in D is performed with

strides of different padding sizes instead of the common pooling layer, as strides tend to

improve the accuracy and stability of the model; see [166].

The generator, G, is the transpose of D and comprises 5 transposed convolutional

layers, along with an input, projection and reshape layer. The input layer takes a randomly

sampled z from a given distribution and feeds it to the “project and reshape” layer. Apart

from the last layer, each convolutional layer is followed by batch normalisation and ReLU.

The last convolutional layer of G has an activation layer with a hyperbolic tangent function

to ensure an output value between -1 and 1, generating the normalised [25× 57] matrices

corresponding to our SST.

z

Figure 8.17: Convolutional architecture of the generator used in shipGAN.

This architecture resulted from systematic experimentation described in §8.4 and se-

cures an adequately stable and smooth training procedure; additional details about the se-

lection process and possible enhancements are given in §8.4. Model training is performed

with the Adam gradient descent algorithm on a PC with dual 24-core 2.7GHz Intel®

Xeon® 6 Gold 6226 CPU, NVIDIA Quadro RTX 6000 GPU and 128GB of memory, using
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the following settings: number of epochs = 500; minimum batch size = 128, learning rate

= 0.0002 and gradient decay factor = 0.5. Generator and discriminator networks employ

9.7 and 9.6 million learnable parameters, respectively.

Size of the input feature vector z

Unlike other techniques, such as principal component analysis (PCA) and others, the

determination of the latent vector’s (z) size can be challenging in GANs. An inappropriate

size for z can easily result in mode collapse issues, i.e., the generator learns to map several

different z vectors to the same output [167]. Especially when z is small, the possibility of

the generator’s failure to cover the entire training dataset distribution increases, and it may

produce many invalid designs and/or designs with minimal diversity. Obviously, a larger z

may resolve this, but not without cost, since large vectors correspond to high-dimensional

design spaces when performing shape optimisation, which increases the computational

complexity of the entire simulation-driven design pipeline. Therefore, for estimating a

sufficient but not redundant size of z, we perform PCA and use the number of eigenvalues

required for achieving a target variance as a reasonable estimation of the initial size of z.

Figure 8.18: Percentage of variance retained versus size of z.

As it can be easily seen from Fig. 8.18, 30 latent features in z can capture 99% of
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geometric variance. We, therefore, set the initial size of z to 30 and then reduce it iteratively

while measuring the diversity, novelty, and maximum mean discrepancy (MMD) [166] of

generated designs. The variety and novelty are estimated with the sparseness at the centre

(SC) [180] and the novelty score described in [96], respectively. The MMD metric is

evaluated using Eq. (8.6) below, which measures the similarity between the distribution

of designs in the training dataset and designs resulting from the generator. A high value

of the MMD means that the generator cannot completely cover the design space in the

training dataset, which may indicate a mode collapse issue. We may also note here that

as GAN incorporates nonlinear layers, it should be able to capture the variability and

nonlinearity in the training dataset with fewer latent variables compared to PCA. Thus,

the initial size 30 can also be considered as an upper bound for the size of z.

MMD =
1

n2

n∑
i=1

n∑
j=1

k
(
xi,xj

)
+

1

m2

m∑
i=1

m∑
j=1

k
(
xiGAN ,x

j
GAN

)
− 2

nm

n∑
i=1

m∑
j=1

k
(
xi,xjGAN

)
,

(8.6)

where x and xGAN correspond to designs in the training dataset and designs generated

from the generator, respectively, with n and m being the corresponding total numbers of

the two sets of designs. Finally, k is a radial kernel function defined as

k(x,y) = exp

[
−||x− y||2

2θ2

]
, (8.7)

with θ = 0.1.

We evaluate SC and novelty metrics using Eqs. (8.8) and (8.9), respectively. The SC

measures the average distance of the centroidal design, xcentroidGAN , to the m designs resulting

from ShipGAN. In contrast, novelty evaluates how different newly generated designs are

from the designs in the training dataset, X . It is estimated first by finding the nearest

distance between the ith new design, xiGAN , and all n designs in X , and then by averaging

all of those m nearest distances.
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SC =
1

m

m∑
i=1

||xcentroidGAN − xiGAN ||2 (8.8)

Novelty =
1

m

m∑
i=1

min
xj∈X

||xiGAN − xj ||2. (8.9)

Here, xj are the designs in the training dataset, X .

Figure 8.19: Plots depicting the value of (a) SC, (b) MMD and (c) novelty metrics evalu-
ated using Eqs. (8.8), (8.6) and (8.9), respectively, versus the number of employed latent
features.

We analyse the influence of latent space dimensionality against these three metrics in
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Fig. 8.19. Higher values of SC and novelty generate diverse designs, while low values of

MMD correspond to good coverage of the design space X by the generator. Figure 8.19

clearly indicates that as the number of latent features increases, diversity and novelty

increase approximately up to the number of 20 features and then tends to plateau. In

contrast, the MMD reduces rapidly and reaches a sufficiently low value with 5 features.

These results indicate that 20 features is a well-balanced selection for the size of feature

vector z, and as it will be demonstrated subsequently, a generator trained with 20 features

produces valid and physically-plausible designs.

8.4 Experiments: Design synthesis and optimisation

This section presents the process and experimentation results used to validate the appro-

priateness and efficiency of the proposed model.

8.4.1 Design reconstruction

After the training process has been completed, we use the generator of the trained model

as a parametric modeller with 20 parameters ranging between -1 and 1, generating design

in a 20-dimensional subspace Z. For an input vector z sampled from Z, the generator

produces three [25 × 57] matrices corresponding to the x, y and z coordinates of grid

points of a new design. Recall that the last row in these matrices corresponds GMIs;

therefore, we remove this row from all three matrices to construct the final shape. The

shape reconstruction using a NURBS surface of the new design is generated by first fitting

a NURBS curve to the points of each cross section (CS); see Fig. 8.20(a). Then, the

3D surface representation is created by interpolating the reconstructed CSs with a bicubic

NURBS surface using a skinning scheme (a.k.a. loft operation) as shown in Fig. 8.20(b).

The resulting surface is smooth and fair with sufficient continuity, as indicated by using

an isophotes mapping analysis (zebra stripes) on the reconstructed hull surface shown in

Fig. 8.20(b)). The smooth transition of the zebra stripes on the surface indicates a smooth
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and fair hull surface of C2 continuity.

(c)

Figure 8.20: (a) Interpolation of points of CSs using cubic NURBS curves. (b) Construction
of NURBS surfaces interpolating the curves with a loft operation. (c) Inspection of hull
surface fairness using isophotes mapping analysis.

Indicative variations of the ship hulls generated using the ShipGAN model are shown

in Fig. 8.21. From a visual inspection of these designs, a designer can easily conclude

that these designs are physically valid and plausible with distinct geometric features and

characteristics. One can also easily identify augmented features from the designs in the

training dataset on several of the generated designs have . In Fig. 8.22, we depict three

generated hulls from the ShipGAN model and the correspondence of their features to

existing hulls. For example, the new design on the top right corner of Fig. 8.22 adopts

features in the bow (green arrows), aft (grey arrows), and stern (orange arrows) regions,

resembling to JBC, Megayacht and DTC parent hull features7, respectively. This supports

our claim that the proposed generic parametric model can generate hulls with diverse

features from completely different ship hull types, which is one of the features existing

7see also Fig. 8.4
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parametric modelling approaches in hull design largely lack.

8.4.2 Design validity and diversity

The geometric validity of designs resulting from the model is partially tested by search-

ing for designs with self-intersecting geometries. We randomly sampled 30,000 designs

over ten runs and searched for self-intersecting geometries. Interestingly enough, no self-

intersections were found in any of the 300K tested designs. This is a strong indication that

the ShipGAN model is a robust and efficient model, and these properties are attributed to

its convolutional architecture, reliable training and inclusion of GMIs in the SST.

However, even though no self-intersecting geometries were detected, some of the ShipGAN-

generate designs may be implausible from a practical point of view. Examples of such

designs are shown in Fig. 8.23. Nevertheless, the possibility of receiving such designs is

rather low as a visual inspection of large numbers of randomly sampled designs resulted in

less than 1 out 70 instances with questionable designs. Even such designs can be eliminated

by setting appropriate design constraints and/or employing the physical solver to rule out

such designs during design optimisation.

We also use t-distributed stochastic neighbour embedding (t-SNE) [181] to further

analyse the diversity and potential model collapses, i.e., closely clustered and/or identical

designs from the generator or insufficient coverage of the design space. t-SNE is a statistical

method for visualising high-dimensional data by giving each data point a location in a 2D

or 3D map and can provide some indication of the distribution of designs. From Fig. 8.24,

it can be seen that newly generated designs cover well the entire convex hull enclosing the

designs in the training dataset. It should be noted that the topology of the t-SNE plot,

more precisely the distance between the cluster, their size and orientations, may not have

any physical meaning and therefore, in the present case, it’s mainly used to visualise the

distribution of generated designs within the training space. Moreover, as can be seen in

the same figure, some of the new designs reside out of the convex hull, which according

to [96], further indicates the ability of the generator to create novel designs. In summary,
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JBC

Megayacht

DTC DTMB

Pram type

Global-S

New designs

Figure 8.22: Examples of newly generated designs using ShipGAN adopting features from
parent designs in Fig. 8.4.
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Figure 8.23: Example of implausible designs.

these results demonstrate that the parametric modeller resulting from ShipGAN is able to

generate

1. designs similar to the training dataset (new designs overlap the existing ones),

2. designs with augmented features from different classes of design in the training

dataset (new designs between the clusters), and

3. completely novel designs (new designs outside the convex hull).

Comparison with GAN

We finally compare ShipGAN with a GAN model trained with the exact same settings and

architecture as ShipGAN but without space-filling and GMIs components to highlight their

respective impact. We first evaluate the SC metric for both models, using 30,000 randomly

sampled designs over ten runs (300K designs in total). The results of this experiment are

shown in Fig. 8.25. It can be easily seen that the ShipGAN model shows significantly

higher diversity and novelty compared to the GAN. We also conducted a t-test to see if

there exists a significant difference between the diversity values. The p−values resulting

from this test are 3.7354E − 09 and 2.1315E − 09, respectively, which are lower than 0.05,

indicating a significant difference.

275



Chapter 8. ShipGAN: Deep convolutional generative model for parametric ship design

-80 -60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

Barge Bulker S-175 CrewSupply DTMB
FormData KCS MegaYacht PilotBoat PramType
Global-S KVLCC2 New Designs Convex Hull of X

Figure 8.24: t-SEN plot of some design in the training data and newly generated designs
from the ShipGAN model.
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Figure 8.25: (a) Diversity and (b) novelty of designs created with the generator of GAN
and ShipGAN.

Furthermore, we also analysed the ability of GAN to produce valid designs, i.e., designs

with non-self-intersecting surfaces, by once again sampling 30,000 designs over ten runs

and averaging the number of invalid over valid designs. As discussed earlier, for a similar

test, ShipGAN resulted in zero invalid designs; however, approximately 4.32% of designs

resulting from GAN were invalid designs. Although this difference is not so significant, it

still demonstrates the capability of ShipGAN to produce valid geometries, mainly due to

the usage of geometric moments in the SST. Moreover, most invalid designs resulting from

GAN have self-intersecting surfaces near the bow of the hull, see Fig. 8.26, which is a local

feature. This shows that due to the absence of rich information about the geometry, which

in ShipGAN is given with the enhanced SST, the GAN fails to capture the local features

of the designs well.

8.4.3 Shape optimisation

The capabilities of such generic parametric modeller can be exploited in different ways

to support the designers throughout all three stages of the ship design; i) concept (pre-

277



Chapter 8. ShipGAN: Deep convolutional generative model for parametric ship design

Figure 8.26: Examples of invalid (self-intersecting) designs resulted from the GAN model.
The red curve indicates the regions of intersection.

liminary) design, ii) contract (full) design, and iii) detail (build) design, especially at the

earlier two. As explained earlier, typically, parametric modellers are used solely at the con-

tract phase, where a potential parent design, with resemblance to given design constraints

and requirements, selected at the preliminary phase is parameterised and improved with

simulation-driven pipelines. Therefore, existing parametric approaches can only handle a

particular hull type and cannot aid the designer at the preliminary design stage, where

exploring various innovative candidate solutions for the parent design is essential.

With the aid of the generic parametric capabilities of ShipGAN, one can start optimi-

sation from the preliminary design phase with a set of preliminary optimisation criteria,

e.g., resistance for an interval of speeds, and constraints, e.g., displacement or volume

of displacement, maximum breadth (i.e., to pass through the Panama channel) or maxi-

mum draft (i.e., to access specific ports). To showcase this, a simple optimisation setup is

formed with optimisation aims to explore the design space, Z, for a container ship with a

load-carrying capacity of 3600TEU (Twenty-foot equivalent unit) and an oil tanker with

300,000 tons capacity with improved Cw by solving the optimisation problem in Eq. (8.10)

and (8.11).
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Find z∗ ∈ R such that

Cw(z∗) = min
z∈Z

Cw(z)

subject to Volume = 115716.96m3, Over all length = 242.61m,

Beam = 32.2m, Depth = 19.5m.

52666.04m3 ≤ Volume of displacement ≤ 58209.84m3

30.59m ≤ Beam at waterline ≤ 33.81m,

Draft = 10.8m, Length at waterline = 232.5m.

(8.10)

Find z∗ ∈ R such that

Cw(z∗) = min
z∈Z

Cw(z)

subject to Volume = 470644.41m3, Over all length = 330.00m,

Beam = 58.12m, Depth = 30.00m.

296990.90m3 ≤ Volume of displacement ≤ 328253.10m3

30.59m ≤ Beam at waterline ≤ 33.81m,

Draft = 20.8m, Length at waterline = 325.50m.

(8.11)

The constraints in Eq. (8.10) and (8.11) are set to have a final design similar to existing

container ship designs with similar load-carrying capacity, such as the KCS and KVLCC2

hull shown in Fig. 8.4. The KCS is the well-known 3600TEU KRISO container ship

designed by the Maritime and Ocean Engineering Research Institute (MOERI). In contrast,

the KVLCC2 (KRISO Very Large Crude Carrier) represents a typical 300,000 tons tanker

hull form and has been the subject of several experimental and computational studies. The

first four constraints are set to have the same load-carrying capacity as KCS and KVLCC2.

The last four constraints are physics associated, constraining the submerged part of the

hull geometry to ensure Cw is calculated under the same conditions as KCS and KVLCC2.
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Figure 8.27: (a) Convergence plot of Cw verses first 100 optimisation iterations. (b) 3D
surfaces of the KCS hull and the optimised hull having the same particulars as KCS
obtained using the ShipGAN model.
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The optimisation problems above are solved using Jaya Algorithm (JA), a simple yet

efficient optimiser; see more details in [109]. Hydrodynamic simulations for evaluating Cw

are performed using a software package based on a linear potential flow theory using Daw-

son (double-model) linearisation, whose details of the employed formulation, numerical

implementations, and validation of the numerical solver are provided in [120]. The com-

putational domain for the free-surface calculation extends from 1Lpp upstream to 3Lpp

downstream and 1.5Lpp sideways, whereas Lpp is the length between the perpendicular of a

ship hull. A total of [20×70] grid points are used for the free surface, whereas [25×56] grid

points are used for the hull discretisation and simulation is performed at Froude number

0.25.

Furthermore, as JA employs a stochastic approach, results may differ in each run;

therefore, three different optimisation runs are performed, and the results are averaged

in this work. In each run, a total of 500 iterations are performed, and Fig. 8.27(a) and

8.28(a) displays the convergence graph of Cw over the first 100 iterations of the best of

five runs. The optimised designs obtained in these cases, along with original KCS and

KVLCC2 geometries, are depicted in Fig. 8.27(b) and 8.28(b).

The optimised designs in Fig. 8.27(b) and 8.28(b) satisfy all the design constraints set

in Eq. (8.10) and (8.11), with the Cw values of 4.012E-07 and 5.9171E-05, respectively. It is

noteworthy that Cw values of KCS and KVLCC2 are 1.846E-03 and 5.972E-03, respectively.

So the optimised designs show significant improvement (i.e., reduced Cw value) compared

to the existing designs but have the same design characteristics. The improvement in

optimised design can also be seen with the reduction of the wave elevation pattern both

in terms of transverse and diverging stern waves, which is visible in Fig. 8.29. These

results demonstrate the generic parametric capabilities of the ShipGAN modeller that,

under different design considerations, it can create not only different design geometries but

also with better performance compared to the existing ones.

Furthermore, to test the capability of ShipGAN in the context of conventional paramet-

ric modelling, where parametric modellers are developed for a specific hull with a design
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Figure 8.28: (a) Convergence plot of Cw verses first 100 optimisation iterations. (b) 3D
surfaces of the KVLCC hull and the optimised hull having the same particulars as KVLCC
obtained using the ShipGAN model.
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Figure 8.29: Wave pattern of the KCS hull and the optimised hull having the same partic-
ulars as KCS obtained using the ShipGAN model.

space capable of creating minor design variations of the parent hull. For this purpose, we

first selected the crew supply vessel hull shown in Fig. 8.4 and searched the design space

Z for the closest design zcs. Afterwards, we used zcs as a parent hull and shrunk the

original design space Z so, as in conventional parametric modelling, it can only produce

slight variations of the parent hull. For this purpose, we constructed two design spaces Zcs1
and Zcs2 with bounding limits set to [0.95zcs, 1.05zcs] and [0.90zcs, 1.10zcs], respectively,

allowing 5% and 10% variations of zcs. The optimisation is performed as follows:

Find z∗cs ∈ R such that

Cw(z∗cs) = min
zcs∈Zcs1/Zcs2

Cw(zcs)

subject to 53.96m3 ≤ volume of displacement ≤ 59.64m3,

5.55m ≤ Beam at waterline ≤ 6.13m,

Draft = 0.9m, Length at waterline = 34.69m.

(8.12)

Note that the first four constraints in Eq. 8.10 and 8.11 are not included in Eq. 8.12
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as the design spaces Zcs1 and Zcs2 intrinsically satisfy these constraints. The results of

this experiment are shown in Fig. 8.30. The Cw values of zcs and its optimised versions

resulting from Zcs1 and Zcs2 are 3.649E − 03, 2.090E − 03 and 8.677E − 07, respectively.

It can be seen that the optimised designs have a significant reduction in their cw values,

especially design resulting from the Zcs2 as it provides higher design variations compared

to Zcs1 .

8.5 Conclusions and future works

In this chapter, we demonstrated the first application of deep convolutional generative

adversarial networks for the parametric modelling of ship hulls. We first present a new

architecture of GANs by introducing a space-filling layer to ensure the generator can cover

all design classes. We also inputted GMs to the network along with the shape repre-

sentation in the form of SST. GMs provide rich information about the overall design’s

geometric stricture, and for the ship design, they also induce the notion of physics. This

approach results in the trained generator providing 100% geometrically valid geometries

and practically feasible shapes.

In this chapter, we have mainly focused on developing a generic parametric modeller.

In the future, our immediate goal is to explore the capabilities of such modellers at the

preliminary design stage and how a more practical optimisation problem can be set up for

a user to exploit generic parameterisation abilities fully. In the long term, we also aim to

train GANs simultaneously for physics (similar to reduce-order modelling) and geometries

with a fully connected layer for physics prediction.
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Chapter 9

GenYacht: An interactive

generative design system for yacht

Hull design

9.1 Introduction

In this chapter, we aim to take the next step in the computer-aided preliminary yacht hull

design by interactively inducing the user preference on designs into the design of space

exploration. This is achieved by introducing a new interactive design system, GenYacht,

which brings the benefit of the interactive and generative design to the preliminary design

stage to generate user-driven hull forms with better performance. However, the proposed

interactive technique can also be utilised for design applications in maritime and other

engineering fields.

Generative design is an algorithm-driven design process to empower experienced or

novice designers to generate the desired number of optimum alternatives for an initial

design. Instead of a single solution, the generative design creates potentially various solu-

tions satisfying the given design requirements. It facilitates the designer with the comfort
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of selecting a solution that best meets their needs [35]. Even for the most experienced

designers, their intuition might be limited when manually exploring an unprecedentedly

large design space. In generative design, a basic layout of an input CAD model is first

created. Design specifications and constraints are then defined. Various computational

simulations are later executed to obtain a set of optimised solutions [13].

Interactive design is a process in which a given design space is explored, and a target

design is evaluated based on human subjective evaluation. The interaction with a human

evaluator facilitates the generation of a solution that incorporates human intuition without

explicitly codifying them into the design process. In interactive design systems, the user

carries out the design exploration either with interactive interfaces [9, 158, 182, 183] or

by integrating the meta-heuristics with the interactive interfaces to semi-automate the

exploration process [45,184–186]. In the latter approaches, users are interactively involved

at each iteration/generation of an optimiser and guide the optimisation process towards the

promising regions of the design space. In this approach, an initial population is first created

consisting of randomly sampled designs. A user then performs interaction for selecting a

design [187], or they can rate all the designs shown [188]. The optimiser then performs an

iteration to generate designs similar to the selected or highly-rated design(s). The creation

of similar designs is usually done utilising a distance-based metric [184,186]. This iterative

and interactive process continues until the user reaches a preferred or satisfactory design.

As designs generated in each iteration are based on the user’s selection(s) in the previous

iteration, starting the interactive process with the randomly generated designs, which are

mostly clustered and non-uniformly distributed, can restrain the user from exploring all

the design possibilities. Furthermore, distance-based exploration can force the optimiser

to converge to similar designs at a fast rate; therefore, a large portion of design space can

be left unexplored, which will be proven via experimentations later in this work.

The proposed system is based on novel interactive and generative design techniques,

which run in parallel during the hull form creation. The generative design technique

(GDT) provides a promising way to explore the design space and generate well-diverse
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design alternatives automatically. A design space is first created based on the upper and

lower bounds of the geometric parameters of the parent hull. GDT generates a set of N

design alternatives in this space. These alternatives are uniformly distributed in the design

space, and each design represents a particular location in the design space (see the output of

GDT in Fig. 9.1, which illustrates the hull forms generated in the two-dimensional design

space). The interactive design involves user preference/intuition interactively during the

design process, thereby guiding the design exploration towards a more promising region

of design space. At this step, hull designs are searched with GDT, and three-dimensional

(3D) surface models for the yacht hulls are generated using Khan et al.’s [4] parametric

design technique. Afterwards, these models are presented to the user with their physical

properties, such as hydrostatics and resistance. The user then interacts while selecting

a design(s), and the design space is refined based on the chosen design(s). An overall

workflow of GenYacht is shown in Fig. 9.1. In this work, the refinement of the design

space is done using a novel space-shrinking technique (SST), which shrinks the design space

and generates new designs in the shrunk space for the next interaction. The interactive

process continues until the user reaches a hull design with desired characteristics. It is

noteworthy that the user selections are made not only based on the hull’s performance but

also according to its form appearance.

9.2 Related works

Triggered by digital and manufacturing advances, interactive and generative design has re-

ceived significant attention in computer-aided design (CAD) and computer graphics com-

munities. We mainly focus our literature review on interactive and generative design for

exploring design space for parametric CAD shapes. In this section, we first review prior

works in interactive design, followed by a discussion of existing studies in naval architecture

and a brief introduction to generative design systems.
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9.2.1 Interactive design

Computational design tools help users to create digital designs for various applications,

which is done using optimisation techniques, interactive interfaces or a combination of both

to create hybrid systems. These tools guide users into exploring a given parametric design

space for specific physical criteria. Mainly, interactive interfaces (commonly used in the

computer graphics community) are developed for particular design applications, which are

used to synthesise and assemble components to explore design variations. For instance, Bole

[182] developed a transformation tool to interactively manipulate geometric parameters

for a ship hull design. Interactive tools have also been proposed for synthesising three-

dimensional (3D) characters [189], procedural modelling of the architectural structures

[190] and for 3D modelling of garment patterns [191]. Some researchers have also developed

interactive techniques for exploring 3D shape variations [192,193] and for prediction of their

physical properties, such as the aerodynamics of automotive [158], and mechanical stress

of 3D components [9].

Interactive design approaches have also been coupled with meta-heuristics, which usu-

ally refer as Interactive Evolutionary Computation (IEC). In IEC, human evaluation is used

as a component of objective function during solution space exploration for an optimum so-

lution. During exploration, the user’s intuitive assessment of a solution is incorporated to

create a user-oriented or user-centred design. The incorporation is carried out differently

during optimisation for different end objectives. In IEC, an overwhelming majority of

works proposed interactive genetic algorithms (IGA) for various design applications. IGAs

are based on the typical genetic algorithm (GA) principle. Brintrup et al. [184] proposed

an IGA to incorporate the qualitative and quantitative criteria for ergonomic chair design.

In their technique, a user plays the role of the qualitative criterion guiding the optimisation

to the desired location in the design space. First, an initial population of solutions are pre-

sented to the user, where they rate the designs on a Likert scale, and these ratings act as

a fitness value for each design. Therefore, the designs with higher scores become parents,
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and the evolutionary process is carried out to generate designs similar to the parent.

A multi-stage IGA (MS-IGA) was proposed by Dou et al. [188]. At the initial stage, MS-

IGA generates populations of simple designs and as the interactive evolutionary process

continues the design becomes complex. Dou et al. argue that this helps to minimise

user fatigue during an interaction, which is one of the significant drawbacks of the IGA-

based systems [194]. In IEC, user fatigue is the inability of the user to select potential

designs during the design interaction due to physical or psychological exhaustion [184]. In

another study, along with the user rating, Dou et al. [195] incorporated the time spent to

evaluate each design to calculate its fitness value. The incorporation of evaluation time

simulates user hesitancy in the design process. The performance of their works [188, 195]

was validated with a car dashboard design.

Poirson et al. [186] elicited user perception about the product design using IGA. In

their approach, a user first selects the design which mainly represents a given semantic

attribute. Then, GA moves the population of solutions closer to the chosen design via a

distance function. Poirson et al. also performed different experiments on the parameter

tuning of GA, as the convergence of GA mainly depends on these tuning parameters.

Hernandez et al. [196] addressed the problem of Unequal Area Facility Layout using an

IGA. However, instead of presenting the entire population of designs, Hernandez et al. [196],

and Machwe and Parmee [197] utilised clustering techniques to enable a user to evaluate

the representative design of each cluster, thereby ameliorating user fatigue. Gu et al. [198]

incorporated the Neural Network-based learning technique, General Regression Neural

Network (GRNN), into IEC to approximate the user’s aesthetic perception during the

interactive evolutionary process. IGA-based systems have also been proposed for aircraft

[199], software design [200] and structural design [201].

The literature also contains some recent techniques [202] to interactively prune the

Pareto Front solution set at each generation of multi-objective GA, which helps to reduce

the size of the Pareto front and to obtain the desired Pareto optimal solutions at the end

of the evolutionary process. Recently, a few researchers have diverted also their attention
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to utilising other meta-heuristic algorithms such as Particle Swarm [187] and Teaching-

Learning-Based Optimisation [185] to develop IEC-based design systems.

IGA has been used for various design applications; however, to the best of our knowl-

edge, Duchateau’s work [45] is the only example related to the subject of the present

study in the field of naval architecture. In [45], Duchateau proposed an IGA-based tech-

nique to allow users to create and select designs based on insight gained during the design

exploration process. The proposed method was applied for the preliminary design of a

mine-countermeasures vessel. Duchateau argued that the complexity of the ship design

hinders designers from exploring vast and potentially more regions of the design space

with traditional design techniques. Therefore, an interactive and evolutionary approach

was proposed to steer the optimiser to explore more promising design solutions gradually.

In naval architecture, DeNucci’s work [203] is another example of the user’s involvement in

the design process, which focuses on capturing and integrating the design rationale (i.e., the

reasoning behind the design decision) at the conceptual stage of ship design. DeNucci de-

veloped a Rationale Capture Tool (RCT) to incorporate design rationale as user experience

and performance into the design process, thereby linking the users’ design configuration

preferences to the ship’s performance at its preliminary design phase.

In this work, we propose a new interactive design to overcome the drawbacks above of

the IGA-based system. Therefore, in Table 9.1, we describe some advantages of GenYacht

over typical IGA-based design systems.

9.2.2 Generative design

During the last few years, generative design techniques have played a critical role in au-

tomating the exploration of parametric design spaces. Unlike traditional optimisation-

based design exploration, GDTs explore large design spaces to find a variety of optimal

alternatives that give users the ability to choose a design that best fits their needs. The

literature contains many efforts from researchers in design exploration techniques for the

preliminary design of naval vessels [47, 49, 50, 204]. However, these techniques are not de-
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Table 9.1: Comparison between IGA-based systems and GenYacht

No. IGA GenYacht

1 Interactive process starts with the ini-
tial population of randomly generated
designs, which, in most cases, are not
well spread out in the design space.
Therefore, this can limit users from well
exploring all regions of design space
[193].

The interactive process starts with uni-
formly distributed designs, covering all
the design possibilities within the design
space. This allows users to effectively
explore the entire design space.

2 Requires tuning of optimisation pa-
rameters, such as selection operator,
crossover and mutation probability, for
desirable results, which is non-trivial for
most of the users [13].

Does not require parameter tuning
of the optimisation-specific parameters.
The only user-defined parameter is the
shrink/expand rate, which controls the
diversity of designs in each interac-
tion. According to the experiments con-
ducted in this work, the shrink/expand
rate does not affect the optimiser’s per-
formance to generate uniformly dis-
tributed and non-collapsing designs.

3 Selection of suitable distance metric(s)
is critical [186] to converge (i.e., get sim-
ilar) the initial population of solutions
towards the user-selected designs.

The design space is shrunk in each
interaction while eliminating the non-
preferred regions, which aids the op-
timiser in converging to the user-
preferred designs.

4 It is hard to maintain the high vari-
ations between designs in the interac-
tions.

A user can create significantly diverse
designs at each interaction using space-
filling and non-collapsing criteria (will
be discussed in Section 9.3).

5 Starting the interactive process with
random designs requires users to carry
out many interactions to explore all
the design possibilities. Therefore, this
higher number of design evaluations can
increase user fatigue [184, 197], thereby
converging towards the local optimal
and undesirable solutions.

Starting the interactive process with
uniformly distributed design can help
users explore more design possibilities
with fewer design evaluations, reduc-
ing user fatigue. Moreover, the space-
shrinking technique better controls the
total number of interactions performed.
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veloped in the context of generative design. Therefore, we can only explore a limited region

of design space to generate single or Pareto designs, which are usually a slight variation of

the parent shape. To give some background to the readers from naval architecture, here,

we mentioned some existing generative design systems developed for parametric design ex-

ploration and their limitations.

A random search-based generative system, Genoform, was developed by Krish et al. [35]

for parametric design exploration, in which variation between designs is achieved via the

Euclidean distance-based similarity criterion. Genoform cannot explore a design space well

due to its random search nature, proven via experimentation in [13]. An iterative design

exploration system, Fractal [205], was developed by Autodesk, which provides nI design

possibility for a given parametric shape. Here, n represents the geometric parameters, and

I is the number of levels for each parametric range. Another system called Dream Lens was

proposed by Matejka et al. [206] to explore and visualise many generatively created designs.

Dream Lens explores performance spaces for the given problem domains. Recently, Khan

et al. [8] proposed a Psycho-physical distance metric to induce human perception into the

design process for the exploration of diverse shapes.

Similarly, Kazi et al. [207] developed DreamSketch, a generative design platform for

exploring design sketches at the conceptual stage. The usability of this system requires

users to have digital sketching skills. Moreover, Zaman et al. [208] devised GEM-NI, a

generative design software for exploring two-dimensional shapes. Later, an extension of

GEM-NI called MACE was also proposed by Zaman et al. [209] to enhance the capability

of visualisation of design alternatives. Gunpinar and Gunpinar [210] proposed a generative

design approach based on a particle tracing algorithm, and recently, Khan and Awan

[13] developed a generative design system, DesignN, for exploration of CAD shapes with

continuous and discrete parameters. However, in [210] and [13], no physical performance

criterion was evaluated during the design exploration.

Some researchers have also introduced some application-specific generative design sys-

tems, such as ParaGen, Dexen and GENE ARCH, which were introduced by Turrin et
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al. [7], Patrick [211] and Caldas [212] for exploring parametric structures, façade and en-

ergy efficient building designs, respectively.

9.3 Method overview

In this section, the algorithmic details of GenYacht will be introduced. After describing

the basic terminology and the generative design approach, the proposed interactive design

approach will be presented in line with the space-shrinking technique and GenYacht’s user

interface.

9.3.1 Basic terminology and generative design techniques (GDT)

Let a design space X formed for a parent yacht hull m, which is represented using a

set of geometric parameters, xm = {xm,k, k = 1, 2, . . . , n} ∈ X ⊆ Rn. X is a subset of

Rn and is bounded by the lower xl
m and upper xu

m bounds of geometric parameters (i.e.

X := {xlm,k ≤ xm,k ≤ xum,k,∀k ∈ {1, 2, . . . n}}).

It is impractical, if not impossible, for a user to manually iterate through all the astro-

nomical possibilities of hull designs in X . Therefore, our objective is to explore X with the

aid of an optimiser to find a set N consisting of N uniformly distributed diverse hull forms

(N = {x1,x2,x3, . . . ,xN} ∈ X ). Here, N is a user-defined parameter, and each design

in N represents a specific location in X . To obtain the set N , Khan and Gunpinar’s ap-

proach [38] is adopted, which is briefly explained in this subsection. This approach utilises

Audze and Eglais [213] space-filling criterion (F1(N )) to find uniformly distributed designs

(see Equation 9.1).

F1(N ) =

N−1∑
p=1

N∑
q=p+1

1

D(xp,xq)2
(9.1)

where
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D(xp,xq) =

√√√√ n∑
k=1

(xp,k − xq,k)2 (9.2)

Here, D(xp,xq) is the Euclidean distance between the designs p and q. Minimisation

of F1(N ) favours the uniform distribution of the N designs in X .

In the case of high-dimensional design spaces, the space-filling criterion favours the

placement of designs to the design space’s boundaries, which is undesirable. Therefore,

the space-filling designs are searched within the class of Latin-hypercube with a criterion

of non-collapsingness between designs. This criterion divides each dimension of X into N

intervals and ensures that the two designs do not share the same range. It is incorporated

into the search process using Equation 9.3, which calculates the number of intervals that

N designs share. Minimising this equation creates complete or semi-non-collapsing designs

depending on a user-controlled parameter Ω, which adjusts the weight for F2(N ).

F2(N ) = Ω×
N−1∑
p=1

N∑
q=p+1

K(yp,yq) (9.3)

K(yp,yq) =

n∑
j=1

f(yp,k, yq,k) (9.4)

f(yp,k, yq,k) =


1 if yp,k = yq,k

0 otherwise

(9.5)

In Equation 9.3, K(yp,yq) denotes the number of intervals that the designs p and q

share, and yp and yq are the discrete representations for xp and xq, respectively. To

calculate the discrete value (yp,k) of kth geometric parameter (xi,k) for the ith design, its

range between lower (xki,l) and upper (xki,u) bounds is first partitioned into N intervals

[xli,k = x1i,k, x
2
i,k, . . . , x

N
i,k = xup,k] and an integer coordinate r is then assigned to yki as

follows: ∀r ∈ {1, 2, . . . , N}, (xri,k ≤ xi,k < xr+1
i,k )⇒ (yi,k = r).

During the design exploration for the N designs, the cost function F(N ) in Equation
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9.6 is minimised.

F(N ) =

N−1∑
p=1

N∑
q=p+1

1

D(xp,xq)2
+ Ω×

N−1∑
p=1

N∑
q=p+1

K(yp,yq) (9.6)

In this approach, the design exploration process starts by generating an initial pop-

ulation (P) consisting of N sub-populations (P = {pL, L = 1, 2, . . . N}). The Lth sub-

population of P consists of s randomly sampled designs (pL = {xg, g = 1, 2, . . . s}) in X .

For each solution, P contains a sub-population of size s. During the convergence, an opti-

miser guides all the sub-populations to their optimum position under the consideration of

each subpopulation’s best solution (i.e. a solution that minimises F(N )). Initial solution

set N = {xp1 ,xp2 , . . . ,xpN } is first obtained from P containing N solution; one solution

from each sub-population using a greedy-selection strategy [38]. The initial N contains

the combination of solutions which gives a minimum value of F(N ). During the optimi-

sation, each iteration is completed by performing N sub-iterations, and a sub-iteration is

completed after updating all the designs in a sub-population using an optimiser. After

the convergence, GDT returns an optimal set Nop of N space-filling designs. Algorithm 5

summarises the stepwise procedure of GDT.

Different optimisers, such as Genetic Algorithm (GA) [214], Particle Swarm Optimisa-

tion (PSO) [215], Artificial Bee Colony (ABC) [216], Teaching-Learning-Based Optimisa-

tion (TLBO) [217] and Jaya Algorithm (JA) [218], have been integrated into GDT and a

final selection for GenYacht system was made based on optimisers’ performance and com-

putational complexities. The results of these optimisers will be shown in Section 9.4.1. Fig.

9.2 (a) and (b) show the randomly distributed designs and uniformly distributed designs

created using GDT. It can be seen that designs generated using GDT are well distributed

and cover all the regions of the design space.
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Algorithm 5 The pseudo-code of generative design algorithm

1: function GDT (X , N, s,Ω)
2: Input: Create a parent hull m and parametrise it with n geometric parameters

(xm,1, xm,2, . . . , xm,n).
3: Input: Initialise number of designs to be created (N), sub-population size (s) and

parameter Ω.
4: Input: Define the design space with lower and upper bounds of n parameters, X :=
{xlm,k ≤ xm,k ≤ xum,k∀k ∈ {1, 2, . . . n}}.

5: Randomly create an initial population (P) consisting of N sub-populations
(p1, p2 . . . , pN ) of size s.

6: Select N initial best designs (N = {xp1 ,xp2 , . . . ,xpN }) one from each sub-population.

7: while termination criterion is not satisfied do
8: for L = 1 to N do
9: for g = 1 to s do

10: Update design xg of pL using an meta-heuristic optimiser and obtain updated
design x′

g.
11: Calculate cost value F(N ′) and F(N ) for N ′ = {x′

g,xp2 , . . . ,xpN } and N =
{xg,xp2 , . . . ,xpN }.

12: if F(N ′) < F(N ) then
13: Replace the old design xg with x′

g in pL
14: else
15: Reject the new design x′

g and keep xg in pL
16: end if
17: end for
18: Obtain the updated pL and set as p′L.
19: Find the new best design x′

pL
from p′L.

20: Replace xpL with new x′
pL

in set N (i.e. N = {x′
p1 ,xp2 , . . . ,xpN }).

21: end for
22: end while
23: return Optimal design set Nop.
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



Final Design

Shrunk 
Design Space

Initial Design Space 1st Interaction

2nd Interaction
Final Selection

(b) (c)

Uniformly Distributed Designs

(a)

Randomly Distributed Design

Figure 9.2: Illustration of designs generated via random sampling in a two-dimensional
design space (a). While the designs generated using GDT in the same two-dimensional
space are uniformly distributed because of space-filling and non-collapsing criteria (b).
The interaction process started with GDT-generated designs, and in each interaction, the
design space is shrunk towards the user selection (c). The selection of design is indicated
with a tick mark.

Constrained design spaces

GenYacht also allows users to explore constrained spaces composed of feasible (i.e. designs

satisfying the constraints) and infeasible (i.e. designs violating the constraints) designs.

GDT should only generate feasible designs. Therefore, in this work, Deb’s heuristic con-

strained handling method [219] was utilised, which uses a tournament selection operator.

This operator selects two designs and compares them with each other. A design p is said

to be constrained-dominate other design q if any of the following heuristic rules are true:

1. The design p is feasible and design q is not.

2. The designs p and q both are infeasible, but design p violate less number of con-

straints.

3. The designs p and q both are feasible, but design p has minimum cost function value.

The design p is selected only if constrained-dominate design q. If both designs, p and

q, are infeasible and have the same number of constraint violations, the design with better

cost value is then selected.
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9.3.2 Interactive design approach

In an interactive design stage, N hull designs generated via GDT are shown to the user

along with their physical properties such as form coefficients, residuary and frictional re-

sistance, metacentric radius, metacentre, longitudinal and transverse moments of inertia,

longitudinal and vertical centre of buoyancy and flotation. The user then selects the de-

signs according to the hulls’ overall appearance and physical properties. This interaction

step allows users to compare designs based on their requirements and helps them make

an appropriate design decision. Once the desired hull form is selected, the design space

is refined based on the selected design. The refined design space is then imported into

GDT to generate new designs in the following interaction step. This interaction proce-

dure is repeated multiple times until a desirable number of designs is obtained. Fig. 9.2

(c) illustrates the implementation of the proposed interactive design approach on a two-

dimensional design space. As shown in this Figure, the design space formed in the previous

interaction shrinks at each interaction by focusing on the preferred designs. This way, the

user’s interest region can be better scanned.

Our design space shrinking process follows the analogy of woodcarving in which a carver

first selects a large piece of timber (usually bigger than the size of the final form) to create

the desired artefact. They then remove the large chunks of wood to achieve a general shape.

Afterwards, the carver scrapes the pieces of timber step-by-step and gradually proceeds

to a final shape. Such material scraping can be reflected as an exponential decay. In the

initial interactions, the design space shrinks at a faster rate, and it decreases exponentially

as the interaction process continues. The algorithmic details of the proposed SST are given

in the next section.

Space-shrinking technique (SST)

In the proposed interactive approach, an initial design set Nop is first generated using GDT

and an interaction loop between the user and GenYacht is then completed involving three
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steps: (2) the user selects preferable design(s) among the ones generated by GDT, (3) the

design space is refined based on the selection(s), and (3) the shrunk space is inputted to

GDT for the creation of new designs )for the next interaction. At the end of the multiple

interaction loops, single or multiple preferred designs are obtained.

For the sake of simplicity, a single hull selection will be considered in the method’s

explanations. In the T th interaction loop, the user selects a tth design (xt) from N T−1
op =

[xp1 ,xp2 , . . . ,xpN ], which is obtained from GDT in the (T − 1)th (T is integer) interaction.

After the user selection, a new design space, X T , is formed while shrinking the previous

design space (X T−1) based on the selected/preferred design xt = (xt,1, xt,2, . . . , xt,n), and

a new design set N T
op is obtained from X T . The shrinking of design space is performed by

calculating new lower (x́l
m) and upper (x́u

m) bounds using Equation 9.7 for X T := {x́lm,k ≤

xt,k ≤ x́um,k,∀k ∈ {1, 2, . . . n}}.
x́lm,k = xlm,k +

∣∣∣λT− ×RlT ∣∣∣
x́um,k = xum,k −

∣∣∣λT− ×RuT ∣∣∣ where k ∈ {1, 2, . . . , n} (9.7)

Here, λT− is the shrink rate initialised by the user in the T th interaction and ranges

between 0 < λT− ≤ 1. When λT− is zero, the space-shrinking process terminates. RlT and

RuT are the continuous growth and decay parameters, respectively, which are computed

using Equation 9.8 after the interaction T .


xt,k = xlm,k × exp(RlT × T )

xt,k = xum,k × exp(RuT × T )

(9.8a)

Equation 9.8a represents the continuous exponential decay of the design space during

the interactive process. xt,k represents the amount after shrinkage and xlm,k is the initial

amount at the T th interaction. Solving the Equation 9.8a for RlT and RuT yields Equation

9.8b.
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
RlT = ln

(
xt,k
xlm,k

)
× 1

T

RuT = ln

(
xt,k
xum,k

)
× 1

T

(9.8b)

After obtaining the shrunk space, xlm,k and xum,k are set equal to x́lm,k and x́um,k respec-

tively. Additionally, GenYacht can expand the design space. If the user is not satisfied

with the designs in an interaction he/she can expand the design space instead of shrinking

the space. During the expansion, the upper and lower bounds of X T are constrained by

the upper and lower bounds of the initial design space X (i.e., X T := {x́lt,k ≤ xt,k ≤ x́ut,k :

(x́ut,k ≤ xum,k) ∧ (x́lt,k ≥ xlm,k)∀k ∈ {1, 2, . . . n}}), which limits the new design space from

over-expanding the initial design space. The design space is expanded using Equation 9.9.


x́lm,k = xlm,k −

∣∣∣λT+ ×RlT ∣∣∣
x́um,k = xum,k +

∣∣∣λT+ ×RuT ∣∣∣ where k ∈ {1, 2, . . . , n} (9.9)

Here, λT+ is the expansion rate and ranges between 0 < λT+ ≤ 1. Algorithm 6 summarises

the stepwise procedure of SST.

It should be noted that the parameter values should be scaled so that parameters with

large values do not disproportionately affect the space-shrinking or expanding process.

Scaling is done using Equation 9.10 to avoid negative natural log values, where [a, b] = [1, 2].

xt 7→
xt − xlt
xupt − xlt

× (b− a) + a (9.10)

To track the amount of shrinkage or expansion for the design space after each in-

teraction, we introduce a quantity Q (see Equation 9.11), which calculates the average

percentage of shrinkage or expansion amount in the T th interaction for the dimensions of

the design space.

Q =
1

n
×

n∑
k=1

(
100−

x́ut,k − x́lt,k
xut,k − xlt,k

× 100

)
(9.11)
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Algorithm 6 The pseudo-code of SST

1: Input: X , N , s and Ω.
2: Generate an initial design set Nop ← GDT (X , N, s,Ω).
3: Display designs in Nop.
4: Initialise T ← 0
5: repeat
6: T ← T + 1
7: Select tth design (xt) from N T−1

op (Note: N 0
op = Nop).

8: Input: Ω, N , s, λT− or λT+
9: for k = 1 to n do

10: if λT− is define then

11: X T ←

{
x́lm,k ← xlm,k + (λT− ×RlT )

x́um,k ← xum,k − (λT− ×RuT )

12: else if λT+ is define then

13: X T ←

{
x́lt,k ← xlm,k − (λT− ×RlT )

x́um,k ← xum,k + (λT− ×RuT )
14: end if
15: if x́um,k > xum,k (x́lm,k < xlm,k) then

16: x́um,k ← xum,k (x́lm,k ← xlm,k)
17: end if
18: xlm,k ← x́lm,k and xum,k ← x́um,k
19: end for
20: N T

op ← GDT (X T , N, s,Ω)

21: Display all designs of N T
op.

22: until The user obtains a satisfactory design(s)

In an interaction between the user and GenYacht, the user can select multiple designs.

Let the user select two designs, xt1 and xt2 . Two design spaces, X T1 and X T2 , are then

formed. Therefore, two solution sets, N T
op1 and N T

op2, are separately obtained using GDT

so that 2×N designs are shown to the user in the next interaction (T + 1).

In the (T + 1)th interaction, if the user again selects two designs, one from N T
op1 and

the other from N T
op2, then again 2 × N designs are created. However, if the user selects

a design from N T
op1 (N T

op2), then N T
op2 (N T

op1) is discarded and X T+1
1 (X T+1

2 ) is formed to

create N designs for further interactions. If the user selects two designs from N T
op1 (N T

op2),

2×N designs are generated and N T
op2 (N T

op1) is discarded.
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9.3.3 User-Interface of GenYacht

GenYacht is programmed in a Microsoft Visual Studio platform using the C++ program-

ming language and Parasolid’s (a 3D geometric modelling kernel) API functions. A parent

hull, shown in Fig. 9.3, is initially stored in the database. During the interactive process,

design modification of the parent shape is performed using the parametric design approach

proposed by Khan et al. [4]. In this design framework, the overall hull shape is divided

into three regions: Entrance-Region (ER), Middle-Region (MR) and Run-Region (RR).

Each region is then represented with a set of geometric parameters such as length (L),

beam (B), and depth (D). Moreover, the entrance region is further constituted of three

more geometric parameters: entrance angle (θ), bow angle (β) and sheer angle (α). The

parametric representation of the parent hull can be seen in Fig. 9.3. The description of

these parameters with their upper and lower bounds values (in meters) used for the study’s

experiments are given in Table 9.2.

𝑳𝒆
𝑳𝒎

𝑳𝒓

𝑩𝒆

𝑩𝒎
𝑩𝒓

𝑫𝒆

𝑫𝒎
𝑫𝒓

𝜷

𝜽
𝜶

Figure 9.3: Parametric representation of the parent yacht hull created using Khan et al.’s
design technique [4]. The parent hull is divided into three regions: Entrance, Middle and
Run. An independent set of geometric parameters represents each region.

The main window of GenYacht consists of an OpenGL-based graphical interface for de-

sign visualisation (see Fig. 9.4). There are several dialog boxes in GenYacht for interactive

designs, calculating hydrostatics and resistance, and setting the initial design space. To

start the interactive design, the user first retrieves the parent hull using the ’initial design

button’ in the main window. The user then inputs the number of designs generated in

the interactive design dialog box and selects the geometric parameters. To create a design
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space used in the interactive design process, the user can set any values for the upper

and lower bounds of geometric parameters using the design space dialog box. GenYacht

generates the specified number of yacht hulls, and the physical results of these hulls can

be calculated at a user-given draft value and Froude number. Based on the designs’ form

appearance and physical results, the user next makes design selection(s). Along with the

selected design(s), the user inputs the shrink/expand rate value in the interactive design

dialog box, which generates designs in the shrunk/expanded space for the next interaction.

The user keeps interacting with GenYacht until the desired final designs are obtained.

GenYacht also provides users with the ability to define different geometric constraints

at any time during the interactive process(such as overall length (LOA), maximum beam

(Bmax) and maximum depth (Dmax)). The physical constraints can also be implemented

in GenYacht to generate a hull with specific performance characteristics. For instance,

users can put a constraint on creating designs with specific resistance values. However,

care should be taken while defining the constraints and design space, as there can be a

case when a hull with a particular performance criterion might not be generated within

the given design space. GenYacht notifies the user of the occurrence of such a situation. A

user can also export the final design in the .x t file format can be later imported to other

digital platforms for further design and performance analysis. Hydrostatics and resistance

results of the hull design can also be exported to a .xlsx file for future study.

9.4 Results and discussion

In this section, we first compare the performance of five different meta-heuristics while in-

tegrating them with GDT. Afterwards, the efficiency of the GDT and SST is demonstrated

with various experiments, and the effectiveness of GenYacht is also validated with a user

study. Finally, we compared the performance of GenYacht with IGA.
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9.4.1 Optimiser selection for GDT

Five different optimisation techniques, GA, PSO, ABC, TLBO and JA, were tested in this

section. Among them, TLBO and JA are newly proposed yet powerful methods which do

not require any parameters to tune their convergence performance. Therefore, this quality

of TLBO and JA alleviates an extra burden on the user during the design process. Our

aim of testing these optimisation techniques was to select the one having converged to the

most negligible value of F(N ) (Equation 9.6) in lesser computational time. As mentioned

in [186], an interactive design approach with high computation cost may result in user

fatigue. Long waiting times between interaction loops can cause a loss of user interest.

Mutation and crossover rates were set to 0.1 and 0.8 in GA, which controls the ex-

ploration and exploitation of the search process. The linear-decreasing-inertia-weight was

used, and cognitive (c1) and social (c2) learning factors were taken as 2 in PSO. The

number of employed and onlooker bees was set to the size of the sub-population (s) in

ABC. The performances of these optimisation techniques were tested under the standard

algorithmic settings of N = 10, n = 12, s = 10 and Ω = 6. Fig. 9.5 shows a plot between

F(N ) and the number of iterations. The computational time taken by the optimisers is

given in Table 9.3.

It can be observed from the plot in Fig. 9.5 that JA, GA and TLBO have similar

performance, while JA converged to a lower value of F(N ), and it can create completely

non-collapsing designs (see Table 9.3). Based on these results, JA was selected to be used

in GDT to update the designs in the sub-populations.

9.4.2 Validation of GenYacht system

In this section, the results of GDT and SST will be given, which are embedded in the

GenYacht system.
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Figure 9.5: Plots for the objective function (F (N )) versus the number of iterations per-
formed in GA, PSO, ABC, TLBO and JA.

Table 9.3: Computational times for GA, PSO, ABC, TLBO and JA when used with
Algorithm 5

Computational Time (minutes) Space-filling (F1) Collapsing Designs

JA 0.84 16.56 0
TLBO 3.51 17.82 3

GA 2.14 17.95 0
ABC 1.40 18.79 3
PSO 2.94 19.06 6
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Results of GDT

Fig. 9.6 shows 20 space-filling design alternatives for the parent hull, which were generated

using GDT. These alternatives are searched within a 12-dimensional design space bounded

with parametric limits shown in Table 9.2 and with the parameter settings of s = 10 and

Ω = 6. From Fig. 9.6, one can easily observe that the designs are distinct, which can

help users of GenYacht to start the interactive process with a design that meets their

requirements. As mentioned before, the design modification is performed using Khan et

al.’s parametric design framework [4], which locally modifies the geometric parameters.

To ensure the generation of plausible shapes (i.e., realistic hull shapes) in interactions,

the following hard design constraints have been implemented: (1) −Be
3 ≤ (Be − Bm), (2)

−De
3 ≤ (De −Dm), (3) Br ≤ (Bm, Be) and (4) Dr ≤ (Dm, De). The first two constraints

limit the parameters Bm and Dm, and the last two constraints Br and Dr. According to

our experience, if Bm >> Be or Dm >> De, and if Br >> (Bm, Be) or Dr >> (Dm, De),

implausible designs can occur as shown in Fig. 9.7 (a) and (b), respectively.

Figure 9.7: Example of implausible/non-realistic designs without hard design constraints.

During the hull form design, there are a variety of numerical performance analyses,

consisting of both hydrostatics and hydrodynamics, that naval engineers have to perform

to determine whether the hull form can fulfil the design requirements before the selection
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Figure 9.8: Plot showing the residuary resistance (Rres) versus Froude number (Fn) for
the first six designs in Fig. 9.6.
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of the final design. Therefore, using GenYacht, users can also evaluate the hydrostatics

properties, form coefficients, residuary (Rres) and frictional (RF ) resistance of each hull

design at the given values of the draft (T ) and Froude numbers (Fn). Table 9.4 shows the

hydrostatics and resistance results for the first ten designs in Fig. 9.6. It should be noted

that the hydrodynamics of a hull includes wave resistance, sea-keeping, manoeuvrability,

and so forth, which mostly require Computational Fluid Dynamic (CFD) analyses to be

performed. However, running these computationally expensive analyses makes the user

wait long before performing the next interaction. This can also result in directing the

exploration process towards the non-preferred regions. Therefore, we have utilised empir-

ical equations proposed by Keuning and Katgert [220] to calculate the Rres of the hull

alternatives. Fig. 9.8 shows the plots of Rres (expressed in Newton) versus Fn of the first

six designs in Fig. 9.6. The differences in the appearances and performances of the designs

in the plots of Fig. 9.8 demonstrate that the designs generated by the proposed system in

Fig. 9.6 are diverse in terms of both appearance and performance. Fig. 9.8 also validates

the implementation of Keuning and Katgert’s [220] technique to calculate residuary resis-

tance at different Froude numbers. Frictional resistance is also calculated according to the

ITTC formula [221]. Reynolds number (Rn) and frictional resistance coefficient (CF ) are

calculated for a yacht navigating in seawater at 15◦C with density and kinematic viscosity

of 1.189 × 10−6 (m2/s) and 1026.021 (kg/m3), respectively. The total resistance (RT ) is

the sum of Rres and RF .

The core objective of this work is to propose an interactive design system that allows

users to generate yacht hull designs at the preliminary stage while taking its form ap-

pearance and physical properties into account. After selecting the desired hull form(s),

the user can export it and perform detailed hydrodynamic and structural analyses using

off-the-shelf computational tools.

314



Chapter 9. GenYacht: An interactive generative design system for yacht Hull design

F
ig

u
re

9.
9:

Y
ac

h
t

h
u

ll
al

te
rn

a
ti

ve
s

cr
ea

te
d

d
u

ri
n

g
fi

ft
ee

n
d

es
ig

n
in

te
ra

ct
io

n
s

u
si

n
g

a
sh

ri
n

k
ra

te
(λ

−
)

of
(a

)
0
.1

,
(b

)
0.

5
an

d
(c

)
1
.0

(F
o
r

b
et

te
r

v
is

u
al

is
at

io
n

of
d

es
ig

n
s

in
th

is
fi

gu
re

,
th

e
re

ad
er

is
re

fe
rr

ed
to

th
e

d
ig

it
al

ve
rs

io
n

o
f

th
is

ar
ti

cl
e)

.

315



Chapter 9. GenYacht: An interactive generative design system for yacht Hull design

4 9 2 10 7 9 9 6 6 8 9 8 9 10 6
(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7
4 8 8 3 4 1 1 8 2 5 1 3 5 6 10

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

35

4 6 9 2 4 1 1 2 2 9 4 1 1 9 7
(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

Figure 9.10: Plots showing the percentage shrinkage (Q) of the design space during fifteen
design interactions (T ) when (a) λ− = 0.1, (b) λ− = 0.5 and λ− = 1.0.
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Results of SST

The results of SST were validated with different experiments using different values of

the shrink rate (λ−). Ten design alternatives were first generated, and interaction then

proceeded with an objective to select a design having a trade-off between appearance and

performance. Fig. 9.9 (a), (b) and (c) show the designs created in the fifteen design

interactions with λ− settings of 0.1, 0.5 and 1.0, respectively. Fig. 9.10 (a), (b) and (c)

shows plots for the average percentage of space-shrinkage Q versus the design interactions

(T ) in Fig. 9.9 (a), (b) and (c), respectively. In Fig. 9.10, the top axis (in red colour)

shows the design selected in each interaction for design in 9.9. The area under the curve

represents the percentage of the space shrunk in fifteen interactions. It is noteworthy that

at higher values of λ−, the value of Q is high in the interactions. For instance, when λ−

was set to 0.1, 0.5 and 1.0, the original design space shrunk by 6.93%, 34.66% and 69.31%

in the first interaction (T = 1), respectively. Afterwards, in the second interaction (T = 2),

3.47%, 17.32%, and 34.66% per cent of the design space created in the first interaction was

shrunk.

As mentioned before, at each interaction user selects a design and, depending on the

shrink/expend rate value, the design space is shrunk/expended, and new N designs are

generated for the next interaction. At higher values of λ−, the amount of design space

shrinks is higher (see Fig. 9.10 (c)), which might create a narrower design space. The

designs generated from this space for the next interaction can be similar (i.e. designs

with less diversity, see designs in Fig. 9.9 (c)). When λ− is set to higher values during

interactions, the designs converge faster (i.e., get similar) towards the selected design. For

instance, the interaction results shown in Fig. 9.9 (c) were obtained using λ− = 1.0. In

this setting, designs started to converge after the third interaction.

On the contrary, designs generated from a design space created with a smaller value of

λ− will be more diverse. As shown in Fig. 9.10 (a), when λ− was set equal to a minimal

value (i.e.λ− = 0.1 ), the shrinkage of the design space in each interaction is small, and
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designs generated are diverse. Thus, it may require a higher number of iterations for a user

to converge to the final design. However, for small values of λ−, the user can explore more

variety of designs. For instance, the design generated in Fig. 9.9 (a) are created when

λ− = 0.1; therefore, even at the 15th interaction, designs are still diverse, thereby showing

a slow convergence. Moreover, as shown in Fig. 9.9 (b), at λ− = 0.5, the user can achieve

a better trade-off between design diversity and convergence because the amount of space

shrinks at each interaction is moderate (see Fig. 9.10 (b), which shows the amount of space

shrinks at each interaction when λ− = 0.5). Therefore, we recommend the users start the

interaction at λ− = 0.5. Fig. 9.11 shows a plot between Q and λ−, which confirms a linear

relationship between these two parameters.
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Figure 9.11: Plot showing the percentage shrinkage (Q) of the design space versus shrink
rate (λ−).

The ability of the proposed system to search for a target design was also tested. First, a

target design was randomly selected from the design space in Table 9.2 and its parameter

values and hydrostatic properties were stored. Afterwards, the interactive process was
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started to replicate the target design. At the first interaction, 20 designs were generated,

and from these designs, a design having parameter and hydrostatics values close to the

target one was selected. Based on the selected one, 20 new designs were generated, and

the process was repeated for four interactions. The target and final design obtained after

the fourth interaction is shown in Fig. 9.12. It can be observed that visually both designs

are very similar. Moreover, their parameter values and hydrostatic properties, shown in

Table 9.5, are also close to each other. This validates the ability of the GDT and SST

techniques to converge to the desired hull design.

Here, the interactive process should be started with an appropriate number of designs

to visualise all the uniformly-distributed designs that sufficiently cover the design space.

However, this number can be high, particularly for the high-dimensional design spaces

or the design spaces whose dimensional bounds are large. The claim that the proposed

method removes user fatigue may not hold true in such cases. However, as proven via

experiments, using GenYacht, the user can still explore a design space well compared to

IGA.

Target Design


Generated Design


Figure 9.12: The design space is explored interactively to replicate a target design. The
image at the top is the target design, and the image at the bottom is the design generated
after four interactions using GenYacht. The similarity between the two designs indicates
that the user could approximate the target design well.

9.4.3 Computational time

As mentioned before, one of the crucial criteria in interactive design techniques is that it

should be computationally less expensive. Long waiting times cause user fatigue, thereby
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Table 9.5: Parametric values and hydrostatic properties of the design shown in Fig. 9.12.
Hydrostatic properties were calculated at the draft of 2.0 meters.

Parameters (units) Target Design Generated Design

LOA (m) 20.72 20.07
Bmax (m) 6.62 6.84
Dmax (m) 3.49 3.71
Awp (m2) 92.26 92.69
Ax (m2) 7.89 7.38
Aws (m2) 116.23 113.12
V (m3) 96.06
IT (m4) 205.70 193.46
LCB (m) 11.20 11.17
KB (m) 0.670 0.645
LCF (m) 11.40 11.56
BM (m) 1.98 2.05
KM (m) 2.65 2.70
Cp 0.636 0.608
Cb 0.414 0.382
Cwp 0.737 0.754
Cm 0.651 0.629
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Figure 9.13: Plot showing GenYacht’s computational cost (in seconds) versus a number of
designs (N).

hindering the user from effectively exploring the design space for a good design. The

experiments in this study were conducted using a PC with an i7-7700 Intel Core, 3.6-GHz

processor, and 8 GB physical memory. Fig. 9.13 shows a plot of the computational time (in

seconds) of GenYacht versus the number of designs (N) generated. The computational cost

is the sum of the computational time taken by GDT to explore N space-filling designs,

parametric modification of N designs using Khan et al.’s [4] approach, computation of

hulls’ physical properties and space-refinement in one interaction. From Fig. 9.13, it

can be seen that GenYacht took approximately two minutes to create 50 designs in an

interaction. These results confirm that the computational complexity of the proposed

system is significantly low.

321



Chapter 9. GenYacht: An interactive generative design system for yacht Hull design

Subject  3


Subject  5


Subject  6


Subject  8


Subject  10 


Subject  9


Subject  8


Subject  7


Subject  1


Subject  4


Subject  2


Figure 9.14: The designs generated by the subjects in the user study (For better visuali-
sation of designs in this figure, the reader is referred to the digital version of this article).
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9.4.4 User study

A user study was conducted to validate the efficiency and feasibility of GenYacht. We

selected ten PhD candidates as the subjects in the user study from the Department of

Naval Architecture, Ocean and Marine Engineering at the University of Strathclyde, who

had an average 3.60±2.67 (average ± standard deviation) years of industrial and research

experience in the ship and parametric design. A brief introduction of the interactive designs

approach was first presented to the subjects, and a small training session on the proposed

system was then given along with a description of SST and its behaviour with the shrink

rate. Plots in Fig. 9.10 and 9.11 were described to them, so they could better understand

tuning this parameter. Subjects were also familiarised with the geometric parameters of

the primary hull form, and they were asked to set some design specifications before starting

the interactive process. To avoid user fatigue, we asked subjects first choose some designs

based on their form appearance and then compare these designs based on their physical

performance before making the final selection or vice versa. The results of the interactive

process for each subject are shown in Table 9.6, and the designs generated by the subjects

are shown in Fig. 9.14. The average time the subjects completed the interactive process

was 5.12±1.07 minutes.

After the interactive process was completed, we asked the following questions to the

subjects for further evaluation of the system. Their responses were acquired on a 5-point

Likert scale (1: Strongly Disagree, 2: Disagree, 3: Neutral, 4: Agree, 5: Strongly Agree):

Q1: GenYacht is easy to use in an interactive generation of hull forms.

Q2: GenYacht yacht provides a more sophisticated approach for preliminary hull design

compared to the traditional parametric design exploration techniques.

Q3: Using GenYacht, I was able to generate a satisfactory design within my design re-

quirements.

The average Likert scores given by the subjects for the first, second and third questions
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Table 9.6: Results of the user study.

Interaction Subjects 1 2 3 4 5 6 7 8 9 10

Initial Designs (N) 15 25 17 10 10 25 21 17 15 20

T = 1
Design Selected 8 24, 7 3 1 9 20 9 15 8 9
λ1− 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.7 0.5
N1 10 10 17 13 10 5 21 17 15 20

T = 2
Design Selected 7 19 1 4 8 1 15 2 10 6
λ2− 0.5 0.5 0.5 0.8 0.5 0.5 0.8 0.5 0.8 0.3
N2 7 10 10 6 10 10 21 17 15 20

T = 3
Design Selected 3 1 4 1, 2 5 1 8 15 9 12
λ3− 0.5 0.5 0.5 0.8 0.7 0.9 1.0 0.6 - 0.3
N3 5 5 5 3 10 5 21 20 - 15

T = 4
Design Selected 3 2 1 3 6 1 15 9 - 13
λ4− 0.5 0.5 1.0 1.0 0.9 - - 0.6 - -
N4 5 5 5 6 20 - - 20 - -

T = 5
Design Selected 2 2 4 4 7 - - 2 - -
λ5− - - 1.0 - 0.9 - - 0.8 - -
N5 - - 3 - 5 - - 20 - -

T = 6
Design Selected - - 3 - 1 - - 2 - -
λ6− - - - - - - - 1.0 - -
N6 - - - - - - - 20 - -

T = 7 Design Selected - - - - - - - 3 - -
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Figure 9.15: Box and Whisker plot the scores given to questions Q1, Q2 and Q3 given by
the subjects during the user study. The subjects were asked these questions at the end of
the user study for further evaluations of GenYacht.
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





1st Interaction 2nd Interaction 3rd Interaction

Figure 9.17: The area bounded in red (of the design space in Fig. 9.16) was unexplored
when IGA was used.

were 3.90±0.7379, 4.40±0.6992 and 4.00±0.9428, respectively. The variations of the user

scores were also analysed using the Box and Whisker plot, shown in Fig. 9.15. These

results indicate that users could generate good designs using GenYacht. Some subjects

also suggested creating parent shapes using GenYacht, which they would like to further

optimise for the specific performance criteria. Subjects also like that GenYacht allows users

to compare a wide variety of designs, which is essential in ship design because mostly the

optimal configuration is the one that best satisfies the customers’ design requirements.

9.4.5 Comparison with IGA

We have also compared the performance of GenYacht with an IGA-based technique. As

mentioned in Section 9.2.1, there are many variations of IGA in literature. In this work, we

implemented IGA similar to [186] and utilised first a two-dimensional design space formed

using the geometric parameters, Le and Be, of the parent hull for better visualisation of

GenYacht’s and IGA’s performances (see Figures 9.16 and 9.18). However, we selected

a preferred design instead of rating the designs as this selection scenario is similar to

GenYacht. An initial population of random designs was first generated, and a design

was selected from the initial population. GA then performed an iteration/generation to

create a new population to minimise the normalised Euclidian distance between the chosen

design and designs in the population pool. In each generation, designs were evaluated to

make a selection. Here, GA was used with crossover and mutation rates of 0.8 and 0.1,
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respectively. It can be seen from Fig. 9.16 that after each generation of GA, the newly

generated designs moved towards the selected design. Here, it is noteworthy that IGA

focuses on the convergence towards the selected hull form instead of maintaining diversity.

Furthermore, the main drawback of IGA is that it depends mainly on the initial pop-

ulation. Therefore, starting the interactive process with randomly sampled designs may

limit exploration. More than 50% of the design space remained unexplored when IGA was

used in Fig. 9.16. Fig. 9.17 highlights these unexplored regions.

Fig. 9.18 (b) and (a) show the interactive results of GenYacht for a two-dimensional

design space created with Le andBe, and the shrunk design space at each interaction. It can

be observed that, compared to IGA, GenYacht let the users start the design process with

well-sampled diverse designs, and explores the design space effectively at each interaction.

Moreover, SST provides a sophisticated way to focus the computational effort on exploring

potential regions.

Fig. 9.19 (a) shows the yacht hull designs generated using GDT, and the left-most

image of Fig. 9.19 (b) shows the randomly sampled designs, which were then used to

perform the interaction process using IGA. The space-filling values (F1(N )) of GDT and

random designs is 17.2708 and 26.1553, respectively. The high value indicates that the

random design does not spread in the design space evenly. A glance at the appearance of

these designs can reveal that there exists a clustering pattern in randomly generated hull

forms (first image of Fig. 9.19 (b)). For instance, from the top, the first three, the next

four and the last three designs are similar. However, designs created via GDT (Fig. 9.19

(a)) are unique to a large extent. Fig. 9.19 (b) also shows the interactive results of IGA.

It can be observed that the designs generated in each interaction are very similar as there

is no control for the user maintaining the design diversity.
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9.5 Conclusions and future works

This work proposes a novel interactive and generative design-based CAD system for the

preliminary design of yacht hull forms. The proposed system introduces a new design

approach in naval architecture, which enables naval architects, engineers and novice users to

integrate their design preferences about the hull form into the design of space exploration.

Users can generate designs that best fit their design requirements, not only in terms of

physical performance but also considering the design’s overall appearance. In GenYacht,

a generative design approach first generates a user-defined number of space-filling hull

forms satisfying the given design constraints. Among these designs, the user selects a

suitable one, which is then used to create a new design space using a space-shrinking

technique. The new space is then fed to the generative design technique to generate a set

of space-filling designs for the next interaction. This generative and interactive process

continues until the user reaches the desired shape. Experimental and user study results

reveal that the proposed system has the potential to create user-centred yacht hull forms,

which better reflect designers’ design considerations. The new system also benefits the users

in naval architecture and marine engineering compared to the parametric-based exploration

techniques.

In future work, we plan to use non-dimensional parameters to define the hull design

space and to test GenYacht with this design space. We would also like to integrate more

physical performance criteria, such as sea-keeping and stability. Furthermore, we would

like to develop empirical equations for these criteria using deep learning. Our efforts will

also continue to develop a web-based user interface to give better usability to potential

users. It will also be worth working on developing a similar interactive system for other

types of marine vessels, such as chined hulls (or planing crafts) and multihulls.
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Conclusion

As it has been extensively discussed throughout the thesis that to date, in many industrial

sectors, including maritime, designers and engineers use extensively off-the-shelf parametric

modellers and simulation tools. These tools are characterised by conservatism, for they are

built to generate shapes lying in the neighbourhood of a successful baseline/parent shape.

Next, these modellers are coupled with optimisers for improving the baseline shape against

performance criteria (e.g., ship wave resistance, sea-keeping, structural strength, etc.),

which involve time-consuming simulations, e.g., computational fluid dynamics (CFD). At

the end of the process, the new design is likely a local optimum whose shape is a minor

variation of the existing one. Conclusively, the coexistence of conservative parametric

modellers with high-cost simulations and a large number of design parameters needed

for shape optimisation of complex shapes leads to non-efficient simulation-driven design

pipeline that suffers from the curse of high-dimensionality and a limited capability to

explore design spaces efficiently for delivering variant, innovative, user-centred and truly

optimal designs.

In this thesis, the objectives of efficient design space exploration and reduction of com-

putational cost are achieved by lowering the design space’s dimensionality i) by eliminating

the parameters which are less sensitive/significant towards the physical QoI using PSA and

ii) by extracting the latent feature with feature extraction/embedding approaches to form a

332



Chapter 10. Conclusion

subspace of reduced dimensionality. To achieve this objective, first, a novel intra-sensitivity

concept is proposed to study the local behaviour of parametric sensitivities and eliminate

instabilities - a parameter can be sensitive in some local regions of the design space but

become insensitive in others. Such behaviour makes PSA vulnerable to fluctuations even

with slight perturbation in the parametric ranges of the design space. Therefore, the out-

come of intra-sensitivity allows designers to construct viable design spaces for the reliable

execution of PSA.

Afterwards, to release the computational burden inherited from implementing PSA or

intra-sensitivity, a new geometric-moment dependent PSA is proposed that harnesses the

geometric variation of designs in a design space using geometric moments as a geomet-

rical QoI to measure parametric sensitivities. These results can be a prior estimation of

parametric sensitivities and used to construct a design space of lower dimension with only

a subset of highly/strongly sensitive parameters. This approach can significantly reduce

the computational time because, typically, sensitivities are learnt directly with physical

QoI, which can add a heavy computational burden on the entire design process as one

has to perform computationally intensive physical simulations for both PSA and shape

optimisation.

The commonly used feature extraction approaches for dimension reduction usually

generate subspaces that often fail to accommodate physical information and preserve the

intrinsic geometric structure of the shape, thus resulting in many invalid geometries with

slow convergence, mostly toward local optima. Therefore, a shape-supervised subspace is

developed, which extracts a high-level geometry description as a shape signature vector

(SSV) and uses it as a substitute for physics. SSV enables the subspace to preserve the

intrinsic geometric structure and embeds latent features related to the designs’ physics.

A feature-to-feature learning strategy is also proposed to create a functionally-active

subspace for expediting the construction of surrogate models at an off-line stage. To achieve

this, we first extract geometrically-active features to capture the features materialising

maximum geometric features; afterwards, we use the active-subspace method to remove the
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physically-active features from the geometrically-active subspace. The resulting subspace

is geometry and physics augmented to construct efficient surrogate models using Gaussian

process regression with only a handful of samples. These surrogate models are later used

to bypass physical simulations during shape optimisation.

For the versatile parameterisation of ship hulls, we developed ShipGAN using deep con-

volutional generative adversarial networks, so the resulting parametric modeller is generic

with the ability to perform feasible and plausible design modifications for a large vari-

ety of hulls. To train the ShipGAN model, we first select 13 different classes of ships,

including containers, oil tankers, bulk carriers, naval and crew supply vessels, etc. This

approach breaks the current conservatism in the parametric computer-aided ship design

paradigm, where parametric modellers can only handle a particular ship hull type. We

have shown through extensive experimentation that ShipGAN can create designs with

augmented features resulting in versatile design spaces that give geometrically valid and

practically feasible shapes.

Finally, we proposed a generative and interactive design tool, GenYacht, which empow-

ers experienced and novice designers to generate all desired optimisation and performance

alternatives for boilerplate ’parent’ hulls. GenYacht’s generative approach samples the

design space using a space-filling and non-collapsing optimisation strategy. Minimisation

of these criteria ensures that various features are uniformly distributed within the design

space. Interactive modelling allows designers to perceive the 3D representation of the

hull during the generative process, capturing the targeted regions of change. Generated

designs are presented to the customer, and attribute options are selected and combined

based on the requirements. Afterwards, the design space is further refined using a novel

space-shrinking technique, which isolates the available design features based on iterative

customer specifications. The altered features are then fed into the generative design model

for the next iteration. The experiments conducted in this study show that GenYacht can

be used as a complete yacht-hull design system. Its underlying components provide notable

benefits to maritime vessel architects and designers over contemporary techniques.
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10.1 Future Work

The outcome of this thesis showed how integrating computational geometry with data-

driven approaches could result in powerful techniques for intuitive design parameterisation

and efficient design spaces, which are explored via computationally low-cost solvers with

the integration of human intelligence, thereby mitigating the drawback in typical SSD

pipelines used in the maritime industry.

However, our contributions are only the initial steps to igniting the importance of

radical and intuitive computational tools. We have witnessed the rise of computational

power diving the entire ship design through all three phases; i) concept (preliminary)

design, ii) contract (full) design and iii) detail (build) design, via efforts like the HOLISHIP

project [222]. However, including data-driven power and computational integration of

human intelligence within these pipelines is still a path to pave, which will exploit the

power of vast and user-centred design spaces. Therefore, there are still many exciting

challenges and research directions which are essential to be explored for significant reforms

in this field.

10.1.1 Path to simulation-driven design and manufacturing

The technical contribution of this thesis has exhibited that a radical approach to SDD

can result in innovative designs meeting all design requirements. It is imperative that

the resulting designs be manufactured and used in the real world. Therefore, simulations

should not only drive the design phase but the entire ship development cycle, including

manufacturing, while embedding the proper manufacturing criteria and constraints. This

will genuinely increase innovation, reduce costs, and streamline production schedules to

stay ahead of the competition. Simulation-driven manufacturing is crucial for ship design,

where large-scale physical prototyping is nearly impossible. A design resulting from the

SDD may be optimal, but its overlooked manufacturability aspect can drain the resources

and increase the computational cost, resulting in a significant burden at such a late stage
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in the development process.

In contrast, a simulation-driven design and manufacturing (SDDM) approach will be

optimistic to deliver manufacturability insights directly to designers from manufacturing

engineers right from the preliminary design stage. It will accelerate market placement and

enables the exploration of cost-effective workflows, especially for additive manufacturing.

Therefore, in the future, we will work on selecting critical manufacturing criteria and

constraints to implant them in parallel to the design constraints.

10.1.2 AI to navigate preliminary design stage

To date, the exploration of design spaces in the maritime industry is highly knowledge-

driven, gained through an iterative process of trial and error. Optimisation only means

using designers’ experience-based intuition to take the best out of two to three feasible

solutions. In contrast, the design spaces are composed of infinite design possibilities with

many potential solutions. Therefore, efficient exploration of rich space for innovative design

is a crucial part of the preliminary design stage. This thesis shows that this stage can

extensively benefit from intelligent approaches, such as deep learning-based generative

models.

However, the primary limitation of these models in maritime is the unavailability of

extensive design data with complete manufacturing detail. In this thesis, we have worked

on developing a large dataset of various ship designs and have made it public. In the

future, extending these efforts and working on constructing and preserving high-quality

databases will be beneficial. This would involve building a solid consortium of maritime

partners from industry and academia, along with automatic verification systems that allow

database input to be efficiently crowd-sourced. The availability of such a database may

encourage new AI algorithms and systems specifically born to support maritime design

tasks.
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10.1.3 Revisiting ship design theory and practice

One pitfall of the maritime industry for lagging behind compared to other fields like auto-

motive and aeronautical towards radical design ideas and adoption of new tools is mainly

due to the ill definition of design theory and decentralised design practices. Ships are large

and complex entities used for transportation. The designers do not benefit from a proto-

type, so they must get the design right first. This aspect requires the design to be practised

and approached systematically; however, the research on design theory and practice in this

field is almost negligible.

There is a need to improve the design practice so it is efficiently mimicked computa-

tionally. It is vital to eliminate the existing loopholes, modernised design practices and,

more importantly, understand how naval architects perceive design. This is one of the lim-

itations that most of the tools resulting from the research cannot make it to the industry.

Most researchers are mainly focused on high-fidelity physical tools leaving the research on

developing new design interfaces neglected. Although some tools exist, there is a need to

understand how they are used in the industry. Therefore, in the future, we will also work

on developing a framework to understand how naval architects approach towards design

and what are the most efficient interfaces to integrate the proposed approaches.

10.1.4 End-to-end system and its adoption to industry

Although some academic scholars from the maritime field have contributed considerably to

the modernisation of preliminary ship design techniques, their usage in the industry still

needs to be improved. The serviceability and survivability of any new design approach

are only possible if the industry is willing to take risks and move towards radical design

ideas. Throughout this PhD thesis, we have realised that the maritime sector’s hindrance

to adopting new design tools is mainly due to the unavailability of end-to-end systems.

Therefore, in the future, we will develop a complete end-to-end system considering the en-

tire cycle of ship design with the integration of design and manufacturing constraints. The
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new system should adopt the concept of digital prototyping to validate design algorithms

and techniques. The new system will be tested and marketed to the industry, which is

essential to understand the capabilities and limitations of the new design approaches and

to provide insight into the core of the existing design problems in maritime.
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Software resulting from the thesis

The software resulting from the work in this thesis is written using Matlab, C++ and

Python languages, whereas the code for design creation and parametric modelling devel-

oped to create design variations are implemented using Rhino3D’s scripting language. All

the codes related to the works are well documented and uploaded to the GitHub reposi-

tory1.

1https://github.com/shahrozkhan66
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List of Publications resulting from

the thesis

B.1 Journal Publications

1. Khan, S., Kaklis, P., Serani, A., & Diez, M. (2022). Geometric moment-dependent

global sensitivity analysis without simulation data: application to ship hull form

optimisation. Computer-Aided Design, 103339.

2. Khan, S., Kaklis, P., Serani, A., Diez, M., & Kostas, K. (2022). Shape-supervised

dimension reduction: Extracting geometry and physics associated features with geo-

metric moments. Computer-Aided Design, 103327.

3. Khan, S., & Kaklis, P. (2021). From regional sensitivity to intra-sensitivity for para-

metric analysis of free-form shapes: Application to ship design. Advanced Engineer-

ing Informatics, 49, 101314.

4. Khan, S., Gunpinar, E., & Sener, B. (2019). GenYacht: An interactive generative

design system for computer-aided yacht hull design. Ocean Engineering, 191, 106462.
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B.2 Conference publications

1. Khan, S., Kostas, K., Kaklis, P., Serani, A., & Diez, M. (2023). Bayesian shape

optimisation in high dimensional design spaces using isogeometric boundary element

analysis. In AIAA SciTech 2023 Forum.
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ModiYacht: intelligent CAD tool for parametric, generative, attributive and inter-

active modelling of yacht hull forms. In SNAME 14th International Marine Design

Conference. OnePetro.
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feature learning for design-space dimensionality reduction in shape optimisation. In
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B.3 Conference Talks
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International Conference on Sensitivity Analysis of Model Output (SAMO), Florida
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Subspace: A shapewise-supervised dimension-reduction approach for shape optimi-

sation. In 8th European Congress on Computational Methods in Applied Sciences
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Accelerators of Shape Optimisation. In GRAPES’ Second Doctoral School, Lugano,
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sitivity analysis for free-form marine shapes. In International Center for Numerical
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