
Learning, processing and optimising shapes

GRAPES Book

Extended abstracts of PhD Theses
of the GRAPES fellows

Athens - July 15, 2024



Introduction

GRAPES aims at considerably advancing the state of the art in Mathematics, Computer-
Aided Design, and Machine Learning in order to promote game changing approaches for gen-
erating, optimising, and learning 3D shapes, along with a multisectoral training for young
researchers. Recent advances in the above domains have solved numerous tasks concerning
multimedia and 2D data. However, automation of 3D geometry processing and analysis
lags severely behind, despite their importance in science, technology and everyday life, and
the well-understood underlying mathematical principles. The CAD industry, although well
established for more than 20 years, urgently requires advanced methods and tools for ad-
dressing new challenges.

The scientific goal of GRAPES is to bridge this gap based on a multidisciplinary consor-
tium composed of leaders in their respective fields. Top-notch research is also instrumental
in forming the new generation of European scientists and engineers. Their disciplines span
the spectrum from Computational Mathematics, Numerical Analysis, and Algorithm De-
sign, up to Geometric Modelling, Shape Optimisation, and Deep Learning. This allows the
15 PhD candidates to follow either a theoretical or an applied track and to gain knowl-
edge from both research and innovation through a nexus of intersectoral secondments and
Network-wide workshops.

Horizontally, our results lead to open-source, prototype implementations, software inte-
grated into commercial libraries as well as open benchmark datasets. These are indispensable
for dissemination and training but also to promote innovation and technology transfer. In-
novation relies on the active participation of SMEs, either as a beneficiary hosting an ESR
or as associate partners hosting secondments. Concrete applications include simulation and
fabrication, hydrodynamics and marine design, manufacturing and 3D printing, retrieval and
mining, reconstruction and visualisation, urban planning and autonomous driving.

GRAPES trained 19 ESR fellows; this book collects the extended abstracts of the PhD
Theses of the fellows that have completed their doctoral studies by July 2024. The complete
theses will be available upon completion at http://grapes-network.eu/index.php/publications/.
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Chapter 1

Carles Checa: Multihomogeneous and sparse
polynomial systems: resultants, Groebner
bases and regularity

1.1 Algorithms in algebraic elimination

Solving polynomial systems is one of the oldest and most ubiquous problems arising com-
putational science and engineering. These problems are inherently hard: their complexity
will grow exponentially in the number of variables. Thus, we cannot just tell the computer
”solve this” and expect it to respond in reasonable time. We ought to look at the struc-
ture coming from those polynomials and see if we manage to find better algorithms that
take advantage of the properties of each family of systems. Let’s see the particularities of
systems encountered within certain applications.

Figure 1.1: Implicit surface of a map given by three bilinear forms.

- Computer vision: A variety of polynomial systems arising in vision consists of matching
problems between snapshots captured by cameras (see Fig. 1.2). Thousands of polynomial
systems will have to be simultaneously solved [12, 13] so small differences in the computa-
tions will be helpful in the final result. As one thinks of the cameras as linear projections,
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interesting algebraic objects with multi-homogeneous or sparse structure such as Chow forms
[14] and distortion varieties [15] arise.

- Geometric modelling: On the one hand, transforming polynomial maps into implicit equa-
tions is a fundamental problem of computer-aided design (see Fig. 1.1). These maps may
have a natural multi-homogeneous or toric structure [16]. One might also want to compute
directly with the parametric form and study its topology [17]. On the other hand, Bezier
surfaces play a central role in the manipulation of the algebraic objects and they can also be
seen from the perspective of toric geometry [18, 19].

- Biology: In the study of chemical reaction networks, systems depending on parameters ap-
pear. The study of these parameters is helpful to decide a property called multistationarity.
Another fundamental problem is the study of the generic dimension depending on those
parameters [20, 21]. These systems also exhibit some toric structure [22].

Other applications in which there’s a lot of structure to be exploited include kinematics [23], cryp-
tography [24], algebraic statistics [25, 26], coding theory [27] or data analysis [28]. But, how can
we describe this structure?

Figure 1.2: Minimal problems in vision [1].

- Geometric structure: Perhaps the solution set has some symmetry, we know one solution
that we can exploit to get the rest of them, or the polynomials come from a given geometric
predicate (cylinders, cones...).

- Algebraic structure: Polynomial systems can naturally be seen from the point of view of
commutative algebra. Therefore, the constructions that one attaches to a polynomial ideal
are part of the structure to be exploited (minimal free resolutions, saturations, complete
intersections...).
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Without losing sight on the first one, let me focus on the second type of structures. A common
way of using algebraic structure is by studying the Newton polytopes. Namely, we focus on which
terms in the polynomials of the system can have non-zero coefficients. This type of structure
also relates to asking in which space we are looking for the solutions: we would like that small
perturbations on the solutions on the systems do not change too much the solutions, thus we
usually prefer to work in compact spaces. The theory of toric varieties provides a very natural
choice for this space given its relation with the Newton polytopes structure (see Fig 1.3). One
of the most universal ways of noting the importance of the sparsity in polynomial systems is the
theorem of Bernstein-Khovanskii-Kushnirenko that counts the number of solutions in terms of the
mixed volume of the polytopes.

Figure 1.3: Systems with given Newton polytope arise in applications.

Once we established the setting of which kind of structure we want to exploit, we ask ourselves
which type of methods or algorithms of computation fit into the exploitation of the underlying
algebra. A big family of methods called ”symbolic-numeric” is usually considered. This type of
methods combine the fact that the coefficients of the systems are given in a numerical form (here
one deals with precision errors, condition stability, etc...) and the fact that one can consider the
coefficients as symbols and provide the solutions as algebraic manipulation of these symbols (here
one deals with linearization, finding bases of algebraic spaces, etc...). At this point, the objects
that I explored during my PhD are welcome in the room.
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1.2 Resultants and elimination matrices
In the previous Newton polytope context, let’s assume that the polynomials we are studying are
given in the following form:

Fi “
ÿ

aPAi

ci,axa i “ 1, . . . , l (1.1)

where the Ai are the sets of supports in a lattice. When we have n ` 1 polynomials and n variables,
we will usually have no solutions: the sparse resultant is a polynomial in the coefficients ci,a whose
vanishing locus indicates precisely for which values of ci,a we get systems of polynomials that have
a solution. The formulas for computing the resultant usually appear by taking the ratio of two
determinants.

These formulas are not only beautiful but also practical: the matrices appearing in resultant
formulas can be used for solving the polynomial systems either by posing an eigenvalue problem,
hiding a variable or using different methods that exploit linear algebra [29]. If we reaches an exact
determinantal formula, we also avoids many practical problems. Note also that we are eliminating
all the variables associated to the system, thus the resultant can fit in the context described by the
applications.

One family of matrices are those whose numerator and denominator arise as minors of the
Macaulay matrix:

Mν :
`

Sn`1 ÝÑ S
˘

ν pG0, . . . ,Gnq ÝÑ

n
ÿ

i“0

GiFi (1.2)

where ν is a multi-degree, S is a suitable Zr-graded polynomial ring (the Cox ring [30]) and the Gi

are polynomials of multi-degree ν minus the multi-degree of the Fi for i “ 0, . . . ,n. An interesting
computational problem is to find ν such that we can recover geometric properties of the system
from the rank of Mν (number of solutions, dimension...).

The Canny-Emiris formula: A possible choice of the minors of Mν providing the resultant
formulas comes from a combinatorial rule given by Canny and Emiris [31] which resembles the
classical formula of Macaulay [32]. In this formula, the rows of the minor correspond to lattice
points in a translation of the polytope ∆ “

řn
i“0 ∆i. Providing a mixed subdivsion on ∆ corresponds

to matching the rows and some of the columns of Mν and giving a maximal minor of this matrix.
The mixed subdivision also indicates the rows and columns that form the matrix appearing in the
denominator of the formula.

PhD results: In [33], we gave a family of subdivisions for which this formula holds, using
the proof in [34]. Moreover, different possible algorithms for dealing with the lattice points may
provide even smaller matrices. We considered using a greedy algorithm for the previous family of
subdivisions under suitable hypotheses on the Newton polytopes and fully characterized the lattice
points labeling the rows and columns of these matrices. In a newer version of the same paper
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Figure 1.4: A mixed subdivision providing a formula for three bilinear polynomials. Using the greedy
algorithm, we only need the red lattice points.

Figure 1.5: The four dots in this table correspond to multi-degrees providing Macaulay matrices for a
system of a three homogeneous polynomials in a Hirzebruch surface. In pink, you can see the degrees in
which the basis of Sylvester forms is used. Some of these matrices provide exact determinantal formulas
for the sparse resultant.

[35], we conjectured that which could be the minimal size of the matrices relating it to the Hilbert
function and the degree reverse lexicographical monomial order.

Sylvester forms: For dense polynomial systems, it is possible to reduce the size of Mν to the
cost of introducing forms in the saturation Isat “ pI : m8q, where I is the ideal generated by the
homogeneization of the polynomials in 1.1 and m is the irrelevant ideal of Pn [36]. The construction
of these forms consists on noticing that under suitable hypotheses on ν , the module pIsat{Iqν is free
and explicitly finding a basis in terms of some elements of Isat known as Sylvester forms. With
these, we transform the matrices of 1.2 into:

Hν :
`

Sn`1 ‘ Isat{I ÝÑ S
˘

ν pG0, . . . ,Gn, lµq ÝÑ

n
ÿ

i“0

GiFi `
ÿ

µPI

lµ sylvµ (1.3)

where I labels the basis of pIsat{Iqν .

PhD results: This construction was first extended to the multiprojective case in [37] and
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we reproduced it for any smooth projective variety satisfying a certain hypothesis [38]. We also
considered the role of Syvester forms in the construction of toric residues [39].

1.3 Gröbner bases and the Castelnuovo-Mumford regularity
Once a polynomial system is encoded in an ideal I, a natural thing to do is to try to find a set
of generators for I with good properties. One of the most established ways to do so are Gröbner
bases. Namely, one fixes a monomial order ă which allows us to choose leading terms (inp f q) for
each polynomial f and aims to find generators tgiuiPI of I such that their initial forms generate
the initial ideal.

inpIq “ pinp f q f P Iq is generated by tinpgiquiPI (1.1)

There are multiple algorithms to compute Gröbner bases (Buchberger, F4, F5...) and they can
also be seen from the point of view of exploiting the Newton polytope structure [40]. In this context,
more than trying to develop new constructions or techniques, my work focused on the description
of the invariants that govern these computations. For instance, we aim to control the degree of
the elements in a Gröbner bases in order to understand number of operations involved in their
computation. The algebraic invariant that allows us to do this study is the Castelnuovo-Mumford
regularity.

From the commutative algebra point of view, the Castelnuovo-Mumford regularity regpIq mea-
sures the degrees involved in a minimal free resolution of I. A famous paper by Bayer and Stillman
[41] established the relation between regpIq and the Gröbner basis for dense polynomial systems.
Using generic coordinates (i.e. the generic initial ideal ginpIq) and the degree reverse lexicographical
order, regpIq is the maximal degree of a minimal generator of of ginpIq. In particular, they showed
that regpIq “ regpginpIqq.

These results imply that the complexity of computing Gröbner bases only depends on the
algebro-geometric properties of I. This complexity can be doubly exponential on the number
of variables [42], but under suitable assumptions (for example, generic polynomials) it behaves
reasonably.

PhD results: An important part of my research was devoted to studying this type of results
in the multi-homogeneous setting. We studied the generators of the multi-homogeneous analogue
of the generic initial ideal (i.e. the multi-generic initial ideal mginpIq) and derived a relation with
the multi-graded Castelnuovo-Mumford regularity [43]. We compared our results with other type
of bounds appearing in the literature [44] and certified the presence of elements of certain multi-
degrees. Under suitable assumptions, a part of the picture described by these multi-degrees is
described with invariants of only one group of variables.
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Chapter 2

Eriola Hoxhaj: Reconstruction of Surfaces and
Planar Maps from their Branching Curves and
Planar Sections

Abstract:
This study centers on reconstructing particular surfaces and planar maps from a provided planar
curve. The planar curve emerges either as a projection of a surface onto the plane or as the planar
section of a surface. If the surface is smooth, the projected planar curve is termed the branching
curve; otherwise, it consists of the branching curve and the image of the surface’s singularities,
referred to as the apparent contour. Both the defining equations of the branching curve and the
apparent contour are the discriminant of the equation of the surface with respect to the direction of
the projection. By resolving the singularities of the projected planar curve, a space curve is obtained,
known as the ramification curve or contour—defined by the vanishing locus of the surface’s equation
and the partial derivative with respect to the direction of the projection. Using straightforward
techniques from Linear Algebra, is derived the equation of the surface from the contour/ramification
curve. Efforts so fare are dedicated to successfully reconstructing various surfaces, including smooth
surfaces, those with ordinary singularities, rational surfaces, and Darboux cyclides.

In the realm of rational (parametrizable) surfaces, another approach involves reconstructing a
planar map from a provided branching curve. This involves using the linear normalization of a
branching curve composed with a parametrization of the surface.

In addition, our analysis extends to the reconstruction of Dupin cyclides, which are surfaces
also known as channel or kanal surfaces in two distinct ways: they are the envelope of two families
of generating oriented spheres. When an oriented plane intersects a Dupin cyclide, it touches four
spheres of the family, paired up on each side of the plane, with at least two of these intersections
being real. Here, orientation contact refers to tangency compatible with normals. These points of
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contact serve as the focal points for the bicircular quartics that arises as planar sections of the Dupin
cyclide. With this understanding, one can reconstruct the family of Dupin cyclides using a provided
bicircular quartic as its planar section. The self-duality of Dupin cyclides establishes a connection
between the apparent contour and the dual of the planar section, facilitating characterization based
on specific planar sections.

2.1 Introduction

Algebraic Geometry is the discipline of Mathematics that solves systems of polynomials. The simple
question arises: Why is Algebra associated with Geometry? The first relation between them is the
Fundamental Theorem of Algebra, which states that a polynomial of degree d has at most d

roots. The notions of polynomials and roots have geometric meanings, and the degree corresponds
to Algebra. The vanishing locus of a polynomial defines a hypersurface, specifically a variety of
codimension one with degree d. In three-dimensional space, this is referred to as an algebraic surface,
and in a two-dimensional plane, it is known as an algebraic curve. Algebraic surfaces have huge
applications in Computer Vision and are very helpful in solving many problems. One of the most
important tasks for researchers in Computer Vision and Machine Learning is the reconstruction of
surfaces from two-dimensional pictures. Knowledge of algebraic surfaces provides many advantages
in this study. One advantage is that they are rigid; namely, with a small perturbation, another
surface is obtained, which is not isomoprhic to the previous one. Additionally, algebraic surfaces
have a small number of parameters, making computations easy.

Considering the projection of smooth algebraic surfaces onto a plane, two specific curves are
obtained: the ramification curve and the branching curve. The ramification curve is the locus of
points on the surface whose the tangent space passes through the center of projection. It is defined
as the vanishing locus of the equation of the surface and its partial derivative with respect to the
direction of the projection. By projecting the ramification curve, one can obtain the branching
curve.

The reconstruction of a surface from the given branching curve depends on resolving the singu-
larities of the branching curve, which leads to the ramification curve. Singularities occur at points
where the curve lacks smoothness, and in algebraic computations, they correspond to points where
the determinant of the Jacobian matrix equals zero. The entries of the Jacobian matrix represent
the first partial derivatives of the curve’s equation.

In cases where the surface is not smooth, the projected curve is called the apparent contour,
which is the union of the branching curve with the image of the singular locus of the surface, known
as the singular image. It is crucial to investigate all the singularities that appear in the apparent
contour, including the singularities of the branching curve, the singularities of the singular image,
and any common intersections between the branching curve and the singular image. Resolving the
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singularities of the apparent curve yields a curve lying on the surface, known as the contour. This
contour represents the union of the ramification curve with the singular locus of the surface. It is
defined as the vanishing locus of the equation of the surface and its partial derivatives with respect
to the direction of the projection.

The final step involves determining the equation of the smooth (or singular) surface by identi-
fying forms that vanish on the ramification curve (or contour). These forms should have the same
degree as the surface equation and its partial derivative, and linear algebra techniques are used for
this purpose.

In addition to all that, the aim of this research was to find solutions for real problems. However,
sometimes it is very difficult to perform computations within our perception of space. Therefore,
the right place to conduct Algebraic Geometry is in projective space. The projective space, denoted
as Pn, is the set of pn ` 1q tuples of numbers, not all zero, modulo the equivalence relation where
a point is equivalent to all its non-zero scalar multiples. Geometrically, Pn can be understood as
the set of rays passing through the origin of an pn ` 1q-dimensional space. Drawing a hyperplane
(an n-dimensional subspace) at a unit distance from the origin, almost all the rays intersect the
hyperplane at points, which serve as representatives of the rays. Projective space extends Euclidean
space by adding points at infinity, which arise as the intersection of parallel lines. It does not make
sense to speak of a polynomial vanishing at a point in Pn, as the same polynomial may not vanish for
some scalar multiples of that point. However, the notion of vanishing at a point in Pn is well-defined
for homogeneous polynomials, i.e polynomials all of whose monomials have the same degree.

In this context, determining the working space and understanding the properties of the ob-
jects are crucial for applying the appropriate tools in the study. One category of surfaces under
consideration is Dupin cyclides. To facilitate their examination, Laguerre geometry is employed,
the latter is a classical spherical geometry grounded in oriented spheres, oriented hyperplanes, and
their oriented contact. Oriented contact refers to tangency with compatible normals.

In particular, the cyclographic model R4 of Laguerre geometry is used here. In this model, each
sphere is represented as a point pm1,m2,m3,rq in 4-dimensional Minkowski space M “ R4

3,1, where
m1,m2,m3 are the coordinates of the center and r is the radius of the sphere. The Euclidean space
is identified as the hyperplane r “ 0.

A Dupin cyclide is the envelope of all spheres that are touching three given spheres. A planar
section of a Dupin cyclide yields a curve called a bicircular quartic. The focal points of bicircular
quartics are the same as the touching points of the three generating spheres with the plane section.
Thus, the entire process of reconstruction depends on the properties of the focal points of the planar
section curve, which are defined as the intersection points of the isotropic lines tangent to the curve
itself.

While different techniques are employed for the reconstruction of surfaces in this work, there
exists a relation among them. Notably, the curve on the planar section of the Dupin cyclide serves
as the dual curve of the apparent contour, obtained through the central projection of the Dupin
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cyclide, as demonstrated in [45, Theorem 3.1]. This duality arises from the property of the Dupin
cyclide being self-dual (see [46]). The following statement connects the reconstruction of Dupin
cyclides with the reconstruction of other surfaces examined in this work.

Proposition 2.1.1. Let S be a surface in P3, and let its dual surface be denoted as S˚ Ă P3˚. The
apparent contour obtained from a central projection S Ñ P2 and the curve obtained from a planar
section of the dual surface S˚ are dual to each other.

Proof. Let S Ă P3 be a surface and a point o P P3zS be the center of the projection

π : pP3ztouq Ñ P2.

Let B Ă P2 be the apparent contour of the surface S with respect to the projection π. Ad-
ditionally, let C Ă S be the contour, which consists of points x P S where the tangent plane TxS

passes through the center of the projection o. In simpler terms, for any point y P B, there exists a
corresponding point x P C such that the center of projection o lies on the tangent plane TxS. ”Con-
sequently, when the tangent plane TxS is projected via π, it becomes a line l within the plane that
tangentially intersects the contour C at point x. The dual of this tangent to C corresponds to the
point y P C˚. Together, these points represent the tangential planes to any point on S that pass
through the center of the projection o. The entire set of tangential planes is denoted as S˚. The
requirement for these planes to pass through the center of the projection imposes a linear condition,
meaning the dual surface S˚ is intersected by a hyperplane, known as a planar section.

Outline

The thesis is organized with an introduction followed by three main chapters. The introduction
provides a broad overview of the addressed topic, briefly discussing the problems tackled in subse-
quent chapters. Initial emphasis is placed on three primary motivations behind the work. The first
motivation originates from the field of computer vision, where surfaces are constructed from im-
ages captured by cameras. These images can be considered as central projection with the camera’s
position as the center. The second motivation explores the conditions determining the existence
of such projection, referencing Chisin’s conjecture. The final motivation is drawn from insights
presented in the paper [47], specifically concerning the Dupin coordinate system. This work serves
as a foundation for the reconstruction of Dupin cyclides from planar sections. Additionally, the
motivation highlights the broader application of Dupin cyclide coordinate systems in addressing
diverse challenges within various problems in physics.

After discussing the motivations, a survey of prior works on surface reconstruction, including
cubic surfaces, smooth surfaces, and surfaces with ordinary singularities, is presented. This back-
ground sets the stage for the second chapter, which is also published in the paper [48], focusing on
the reconstruction of Darboux cyclides. The chapter delves into the planar curve obtained through
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projection onto a plane using a calibrated camera. The singularities of that curve are thoroughly
examined, and a method involving resolving special points is employed to reconstruct the desired
surface.

In the third chapter, which is also published in the paper [49], attention turns towards the
reconstruction of a Veronese surface. The study advances through parameterization, culminating
in the generation of a planar map that has the same branching curve as the Veronese surface.
Singular points on the branching curve are examined, and then they are resolved to deduce a space
curve, i.e., the linear normalization embedded within the Veronese surface.

The final chapter investigates the reconstruction of a Dupin cyclide from a curve obtained by
planar cross-section, as published in the paper [50]. This particular curve possesses focal properties,
which are used to determine the families of Dupin cyclides that have the given curve as their planar
section. Through these comprehensive explorations, the thesis contributes to the understanding
and application of various surface reconstruction techniques.

2.2 Motivation

2.2.1 Computer vision

The advancements in computer vision problem-solving have introduced another field called algebraic
vision, which translates computer vision problems into the language of algebraic geometry. A key
element in this approach is the use of projective varieties in multiview geometry, as highlighted
in [51]. The primary focus has been on developing algorithms for constructing correspondences
between 2D images, identifying the 3D positions of matched points derived from 2D points, and
extracting related camera parameters. The studies delve into various camera types, emphasizing
the importance of camera calibration, which is closely related to measurements and coordinate
systems in Euclidean geometry.

In the real plane, two conics intersect at two points instead of four algebraic solutions. Two of
these points are complex: p1 : i : 0q and p1 : ´i : 0q, known as circular points, located on the line
at infinity. Analogously, in 3D space, two spheres surfaces intersect through a conic rather than a
quartic curve. This implies the existence of an imaginary conic on the plane at infinity, known as
the absolute conic, represented by the equation x2 ` y2 ` z2 “ 0.

The absolute conic is a fundamental concept in Euclidean Geometry, providing completeness
to the framework closely related to the perpendicularity of lines. Two lines are perpendicular
when their directions are conjugate with respect to the absolute conic. In the context of a camera
positioned away from the plane at infinity, the world’s plane at infinity is mapped one-to-one
with the image plane, and the absolute conic must project onto a conic in the image plane. The
knowledge of this corresponding conic within the image plane is useful for camera calibration.
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Capturing plane images from a space surface can be seen as a central projection p : P3 Ñ P2,
with the camera serving as the projection center. Considering, without loss of generality, the center
of projection to be the point (0:0:0:1), then the projection is defined by a 3ˆ4 matrix of rank three
with the block structure represented as P “ rI3ˆ3|03ˆ1s. In this configuration, I3ˆ3 represents the
identity matrix, and 03ˆ1 signifies a zero 3-vector. This matrix, referred to as the camera matrix,
is fundamental for 3D reconstruction from a single view. The center of a camera P is the point
defined by the kernel kerpPq Ă P3. In particular, the calibrated camera is determined by a 3 ˆ 4

matrix whose left 3 ˆ 3 portion lies in the special orthogonal group SOp3q.
There are also reconstructions observed in two views, using the fundamental matrix F , which

matches points x1 Ø x from two images and fulfills the condition x1Fx “ 0. These images are pro-
jections from two cameras that have captured the same object in space. Once the fundamental
matrix is computed, it is possible to determine the two camera matrices, up to projective transfor-
mations. This, in turn, enables the deduction of spatial coordinates through a technique known as
triangulation. All these aspects are explored in Epipolar Geometry [51].

Outside pointwise reconstruction, there are some notable outcomes (see [52]) in reconstructing
surfaces from specific apparent contours in a discrete manner. Initially, the challenge is tackled by
addressing the mapping between successive apparent contours through the use of epipolar corre-
spondence. Subsequently, surface approximation is accomplished

2.2.2 Chisini’s conjecture

As mentioned in the preceding section, numerous studies have been conducted to reconstruct 3D
objects from 2D images. A significant focus of these investigations has been on reconstructing
algebraic surfaces. Initially, the emphasis was on the challenge of reconstructing smooth surfaces
by demonstrating the existence of a projection onto the plane that generates a given branching
curve.

The question of whether a surface can be reconstructed from its branching curve when projected
onto the plane was posed by Chisini (see [53],[54], [55]). He examined a smooth compact complex
surface, denoted as S, and a generic morphism f : S Ñ P2, with B as the branching curve with nodes
and cusps as singularities that fulfills the following conditions:

(a) the ramification curve R of f is smooth and reduced;

(b) f |R : R Ñ B has degree one;

(c) f ˚pBq “ 2R `C, where R is irreducible and non-singular, and C is reduced;

Two generic morphisms pS1, f1q and pS2, f2q with the same branching curve B are said to be
equivalent if there exists an isomorphism ϕ : S1 Ñ S2 such that f1 “ f2 ˝ ϕ . Therefore, when it

16



GRAPES Book

is said ” f is unique,” it means ” f is unique up to equivalence.” The fundamental inquiry was to
determine the degree of f to which the curve B characterizes the morphism f .

Based on these assumptions, Chisini then introduced a proposition and offered an alleged proof,
which later was considered as conjecture.

Conjecture 2.2.1. (Chisini). Let B be the branching curve of a a generic morphism f : S Ñ P2 of
degree deg f ě5. Then f is unique up to equivalence.

The necessity of imposing a bound on the degree of f is illustrated by a counterexample pre-
sented by Chisini and Catanese (refer to [55], [56], [54]). Consider the curve B as a sextic curve with
nine cusps; it is the dual curve of a nonsingular plane cubic. This curve serves as the branch curve
for four distinct non-equivalent generic morphisms. Among these morphisms, three are of degree
four and represent planar maps obtained by projections of the Veronese surface (for more details,
see and section 2.3). The fourth one, of degree three, is the projection onto P2˚ of the elliptic ruled
surface obtained as the preimage of C in the incidence variety P2 ˆP2˚

There were some attempts, but Kulikov proved that the Chisini conjecture holds for generic
morphisms of degree greater than or equal to 5 with branch curves that are cuspidal, i.e., charac-
terized by the absence of nodes (see [56]). Additionally, as outlined in [54], Kulikov established a
condition for the validity of the conjecture. He identified that the degree of f must exceed a specific
function, depending on the degree, genus, and the number of cusps present in the branching curve.

Theorem 2.2.1. Consider a generic morphism f : S Ñ P2 of degree deg f = N with branch curve
B Ă P2. Denote by 2d the degree of B (it is always even), by g the genus of the desingularization of
B, and by c the number of cusps of B. The morphism f : S Ñ P2 is uniquely determined by B if

N ą
4p3d ` g ´ 1q

2p3d ` g ´ 1q ´ c
(2.1)

Thus, in this case the Chisini Conjecture holds for B

In general, as deduced from [54], the number of non-equivalent generic morphisms with a given
branching curve B is less than or equal to 22g`c´1.

Here, some results and cases obtained by Kulikov are presented.

(a) Let f : S Ñ P2 be any generic morphism of S “ P1 ˆP1. Then, for the branching curve B of
f , the generic morphism f is unique.

(b) Let S be a K3 surface and f : S Ñ P2 any generic morphism. Then, for the branching curve
B of f , the generic morphism f is unique.

(c) Let S be an Enriques surface and f : S Ñ P2 any generic morphism. Then, for the branching
curve B of f , the generic morphism f is unique except, possibly, for deg f “ 4. In the
exceptional case where deg B “ 12, g “ 19, c “ 36, n “ 0, if such a morphism exists, then:
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(a) For B, there exist at least two non-equivalent generic morphisms.
(b) Any generic morphism f 1 with such a branching curve B has deg f 1 ď 4.

(d) Let S be an abelian surface and f : S Ñ P2 any generic morphism. Then, for the branching
curve B of f , the generic morphism f is unique except, possibly, for deg f “ 6. In the
exceptional case where deg B “ 18, g “ 28, c “ 72, n “ 36, if there exists a generic morphism
f 1 which is not equivalent to f , then deg f 1 ď 6.

(e) Let S Ă PN be a complete intersection and f : S Ñ P2 the restriction of a generic projection.
Then, for the branching curve B of f , the generic morphism f is unique.

(f) The Chisini Conjecture holds for the dual curve B of a nodal plane curve except, possibly,
for:

(a) deg B “ 30, g “ 10, c “ 72, n “ 324;
(b) deg B “ 20, g “ 6, c “ 45, n “ 120;
(c) deg B “ 18, g “ 5, c “ 39, n “ 92;
(d) deg B “ 16, g “ 4, c “ 33, n “ 68.

In all the exceptional cases, if there exist non-equivalent generic morphisms for B, then these
morphisms have degree ď 6.

(g) The Chisini conjecture holds for a curve B of genus g ď 3.

(h) The Chisini conjecture holds for B satisfying the inequality d ą 3pg ´ 1q.

2.2.3 Cyclide coordinates

The investigation and analysis of phenomena in physics necessitate the application of various math-
ematical concepts, giving rise to the interdisciplinary field known as physical mathematics. An
integral aspect of this field involves solving problems related to the theory of potentials, with a
significant emphasis on solving Laplace’s equations. In his dissertation on Potential Theory [57],
Maxime Böcher presented a captivating introduction, tracing the evolution of cyclide coordinates
and their application in physics.

Initial efforts were made to determine potentials for homogeneous bodies, closely resembling
spherical bodies. In these endeavors, the use of spherical functions introduced by Legendre played a
crucial role in addressing the gravitational attraction of rotating bodies. Importantly, solutions to
these problems needed to satisfy specific values within the boundaries of these bodies. Establishing
boundary conditions required consideration of general bodies, exemplified by one of the six confocal
cyclides.
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The term ’cyclide’ was initially introduced by Dupin (1822) to describe a surface where all lines
of curvature are circles or straight lines. However, following Darboux’s approach, the term ’cyclide’
is now used to denote a more general category of surfaces. Specifically, any fourth-degree surface
having an absolute conic as a double curve falls under this broader definition. Conversely, the term
’Dupin’s cyclid’ is reserved for a surface that is the inverse of the torus, as originally referred to by
Dupin.

Particularly noteworthy was the simultaneous discovery by Moutard and Darboux of the or-
thogonal system composed of general confocal cyclids. Subsequently, Darboux used this triple
orthogonal set of surfaces to establish a system of curvilinear coordinates, now known as cyclid
coordinates. One particular case of cyclid coordinates is a class called offset Dupin cyclide systems
that were introduced in [58] and used for the separation of variables in the Laplace equation (see
an overview in [59]).

Inspired by these developments, the idea emerged to classify Dupin cyclide coordinate systems
based on their singularities, which were bicircular quartics obtained as planar sections of cyclides
in each of three directions, as detailed in the article [47]. During the study of these systems, certain
conclusions were drawn regarding the reconstruction of a Dupin cyclide from planar section curves,
i.e., bicircular quartics, and its focal properties.

2.3 Reconstruction of smooth surfaces

Following Chisini’s conjecture regarding the existence of a projection of a surface onto a plane with
a given branching curve, attempts were made to find the complete construction, including both the
surface and the projection. The simplest example and initial construction involved smooth cubic
surfaces (see [60]).

Example 2.3.1. Smooth Cubic Surfaces. Consider a central projection p : S Ñ P2 of a cubic surface
from a point. Both the ramification curve and the branching curve have degree six. Notably, the
branching curve is determined as the discriminant of the cubic surface’s equation.

The complexity of the discriminant is elementary since the equation of a smooth cubic surface
can be simplified into a straightforward form, known as the Tischirnhaus form. This transformation
is achieved through projective automorphisms within the projective space P3. The equation of S
can be expressed as:

F “ w3 ` Apx,y,zqw ` Bpx,y,zq,

with the discriminant given by
∆ “ ´p4A3 ` 27B2q.

The equation ∆ “ 0 represents the branching curve, which consists of six cusps. There is a unique
conic passing through the six cusps, defined by the polynomial A. Once the conic is identified, the
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next step involves searching for the cubic curve defined by B that passes through these six cusps.
Let C be a cubic form in the ideal of the six cusps, linearly independent of multiples of the conic
form. One can then express B “ λC `LA, where λ P C and L is a linear form. The next step involves
imposing and solving the following equation:

´p4A3 ` 27pλC ` LAq2q “ 0

Finally, one can determine the equation of the surface using the defining polynomial F .

For surfaces with equations of higher degrees, proceeding in the same way becomes more chal-
lenging. Finding the polynomials that pass through all the singularities of the branching curve
requires a different technique.

According to Chisini, the ramification curve of a smooth surface under a generic projection is
smooth, and the branching curve has nodes and cusps as singularities, which are obtained from
the projection. A cusp in a branching curve occurs when the ray passing through the projection’s
center is tangential to the surface, while a node appears when the ray intersects the surface at two
distinct points.

Drawing upon the properties and knowledge outlined above, D’Almeida successfully demon-
strated the existence of smooth surfaces of higher degrees from branching curves.

Theorem 2.3.2 (D’Almeida [61]). Let B be a plane curve of degree dpd ´ 1q ě 3. The necessary
and sufficient condition for the existence of a smooth surface S Ă P2 and a generic point p in P3

such that B is the branching curve of the projection of S through p is as follows: The curve B has
n “

dpd´1qpd´2qpd´3q

2 ordinary double points, k “ dpd ´ 1qpd ´ 2q cusps, and no other singularities.
There are two curves, G1 and G2, of degrees d2 ´ 3d ` 2 and d2 ´ 3d ` 3 respectively, without a
common component, passing through the singular points of B. The minimal degree of a plane
curve containing the singular points of B is d2 ´ 3d ` 2.

This result, obtained by D’Almeida, is explained and presented in a computationally convenient
manner in the paper [60]. An algorithm is introduced for determining the polynomials G1 and G2

while defining a mapping from the branching curve to the ramification curve.
The branching curve serves as a crucial tool in surface determination, providing essential infor-

mation for reconstructing the ramification curve (up to projective equivalence) as the normalization
curve. This is achieved through the property of the ramification curve being a complete intersection,
ensuring its linear normality, i.e., the ramification curve is not the projection of a non-degenerate
curve residing in a larger projective space. All of these aspects are summarized in the following
proposition.

Proposition 2.3.1. [60] The ramification curve R of a projection is linearly normal. This means
that the standard map H0pP3,OP3q Ñ H0pR,ORq is an isomorphism. In particular, H0pR,ORq is
4-dimensional.
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The normalization of singularities of the branching curve makes it possible to reconstruct the
ramification curve, which can be embedded in P3. To achieve this embedding, the analysis involves
considering the twisted invertible sheaves ORp1q, which are twists of the canonical sheaf ωR by
p´2d ` 6q [[62] Exercise II.8.4e].

On the other hand, the branching curve is the image under the projection of the ramification
curve. The projection determines an isomorphism between the global sections of the canonical
sheaves ωR and ωB. Furthermore, ωBp´2d ` 6q – ωRp´2d ` 6q – ORp1q.

From the last isomorphism, the associated complete linear series |ωBp´2d `6q| embeds the curve
B into P3, such that the image is linearly normal and coincides (up to projective transformations)
with R.

Additionally, it is proven in [60] that the sheaf ωB is isomorphic to the ideal sheaf J pd2 ´d ´3q.
This sheaf is the restriction to the curve B of the ideal sheaf K on P2, of the singularities of the
curve B. Moreover, there is the following sequence of isomorphisms:

ORp1q – ωBp´2d ` 6q – J pd2 ´ d ´ 3qp´2d ` 6q “ J pd2 ´ 3d ` 3q.

As emphasized in Proposition 2.3.1, the dimension of the global sections, H0pP3,ORp1qq, is four.
Consequently, within the defining ideal J of the ideal sheaf J , there are precisely four forms of
degree d2 ´ 3d ` 3. Furthermore, considering the following isomorphisms:

OR – ωBp´2d ` 5q – J pd2 ´ d ´ 3qp´2d ` 5q “ J pd2 ´ 3d ` 2q,

it is evident that within the invertible sheaf J pd2 ´ 3d ` 2q, there exists a single global section
denoted by G1, of degree d2 ´ 3d ` 2. Multiplying G1 by the three monomials x,y,z produces three
other linearly independent global sections: xG1, yG1, and zG1, all of degree d2 ´ 3d ` 3. Therefore,
within the defining ideal of the singularities of the branching curve J pd2 ´ 3d ` 3q, only a single
unique global section G2 can occur, up to multiples of G1 and scalar factors.

With the four forms of degree d2 ´3d `3 mentioned earlier, one can construct the rational map
as follows:

ϕ : px0 : x1 : x2q Ñ px0G1 : x1G1 : x2G1 : G2q “ px0 : x1 : x2 :
G2

G1
q

It is important to note that the map becomes degenerate at points where both G1 and G2 are
zero. To address these missing points, it becomes necessary to consider the closure of its image.
Furthermore, by composing the projection with ϕ , the resulting map is the identity.

π ˝ ϕ : px0 : x1 : x2q Ñ px0G1 : x1G1 : x2G1q “ px0 : x1 : x2q

Then, the ramification curve is obtained as the image of the map ϕ when restricted to the branching
curve. To continue with the process of reconstruction, it is necessary to search in the defining ideal
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of the ramification curve for two polynomials of degrees d and d ´ 1. Indeed, there exists a unique
polynomial T of degree d ´ 1, which is considered as the partial derivative of the surface equation
with respect to the direction of the projection. Moreover, there is another polynomial F of degree
d, which is unique up to multiples of u0T , u1T , u2T , and scalars. This polynomial is the equation
of the surface.

2.4 Reconstruction of surfaces with ordinary singularities

This section presents an extract from the construction of a surface S ĂP3 with ordinary singularities,
as discussed in [60]. The approach employed here is similar to that used for smooth surfaces, with
some minor distinctions. Surfaces with ordinary singularities are obtained by projecting a surface in
higher-dimensional space to three-dimensional space π : Σ Ñ P3. The projected surface is requested
either to be smooth or to have a finite number of double points and is defined as follows.

Definition 2.4.1. An irreducible, projective surface S Ă P3 is said to have ordinary singularities if its
singular locus Z is either empty or it is a curve Γ, called the double curve of S, with the following
properties:

(a) Γ has at most finitely many ordinary triple points, such that the germ of S there is analytically
equivalent to the one of the affine surface in C3 with equation xyz “ 0 at the origin;

(b) every non–singular point of Γ is either a nodal point, i.e., the germ of S there is analytically
equivalent to the one of the surface with equation x2 ´ y2 “ 0 at the origin, or a pinch point,
i.e. the germ of S there is analytically equivalent to the one of the surface with equation
x2 ´ zy2 “ 0 at the origin;

(c) for every irreducible component Γ1 of Γ, the general point of Γ is a nodal point of S, in
particular, there are only finitely many pinch points for S.

Consider the projection π : S Ñ P2 of the surface with ordinary singularities S from a point
p P P3zS to a plane P2. Then the contour, denoted by Y , is the union of the singular locus Z of
the surface with the ramification curve R, where the latter consists of all points where tangents to
the surface pass through the center of projection. The contour Y is determined by the surface’s
equation and the partial derivative in the direction of the projection.

The apparent contour, denoted by C, is the union of the image of the singular locus W with
the branching curve. Furthermore, the apparent contour is defined by the discriminant equation of
the surface concerning the direction of the projection.

It is crucial to emphasize that, unlike the case of smooth surfaces, the surface with ordinary
singularities cannot be obtained through the normalization process of the branching curve with the
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provided data.Indeed, as noted in [63], if ν : X Ñ S is the normalization map, one has the following
commutative diagram:

X S Ă P3

P2

ν

ψ π

In this context, the surface X projected along ψ has the same branching curve as S projected
along π. Consequently, it becomes crucial to examine the image of the singularities of the surface
and their positioning in relation to the branching curve.

It is also noteworthy that the focus will be on investigating favorable projections S ÑP2, referred
to as good projections, which satisfy the following conditions:

(a) the restriction of the projection to the contour is injective, except for at most finitely many
points;

(b) the ramification curve R is smooth, and the branching curve B has at most nodes and ordinary
cusps;

(c) the line through the center of projection and a point in the ramification curve R intersects S

with multiplicity exactly 2 at that point, except for preimages of cusps and singular points
on the surface;

(d) the singular image W has only nodes and ordinary triple points (D4 singu-larities), the latter
arising as images of spatial triple points;

(e) the singular image W and the branching curve B meet either transversally, or tangentially
with order 2 at smooth points; in particular, ensure that pinch points are mapped to transver-
sal intersections.

It is proved in [60] that a general projection π is indeed a good projection, with potential
singularities that may arise in the apparent contour C “ B YW , as detailed below:

(a) nodes or cusps of B,

(b) nodes or triple points of W,

(c) tangential intersections of B and W,

(d) transversal intersections of B and W whose preimages are distinct,

(e) transversal intersections of B and W coming from pinch points.
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The good projection is an isomorphism everywhere except at these special points. Identify-
ing the special points of the apparent contour makes it possible to continue with the process of
reconstruction. Therefore, a detailed local analysis at these special points is necessary, and the
application of sheaf theory becomes crucial to achieve a comprehensive global solution.

Global reconstruction

Referring to the paper [60], the task is to determine a rational map that sends C to Y , which is equiv-
alent to computing the space of homogeneous forms that satisfy particular vanishing conditions at
the special points of C. This necessitates establishing a connection between the global sections of
OY p1q and those of a sheaf in C. As proven in [60], there exists an isomorphism between the global
sections H0pP3,OP3q and H0pY,OY q, indicating that the space of global sections is four-dimensional.
On the other hand there there exist the isomorphism

H0pY,OY p1qq – H0pC,H omOC pπ˚OY ,OCqpd2 ´ 3d ` 3qq.

The latter, H omOC pπ˚OY ,OCq, is an ideal sheaf and is supported at the special points of the curve
C. Indeed, this sheaf is an ideal sheaf because the map Φ : H omOC pπOY ,OCq Ñ OC is injective,
induced by the injectivity on the stalks for every point of the apparent contour. The map Φ is an
isomorphism for smooth points, but for the special points, it is necessary to consider computing
the conductor ideal between the localizations of the completions as shown below.

Let c P C be a closed point on C that is a special point. Define E “ ÔC,c and F “
À

yi:πpyiq“c
ÔY,yi .

Then the homomorphism ϕ : E Ñ F induced by projection is injective, and its image is equal to
the conductor ideal tw P E : wF Ă Eu. The map ϕ becomes an isomorphism when localized by the
non-zero elements of E, concluding that H omOC pπ˚OY ,OCq is an ideal sheaf.

The final step involves taking the completions of the stalks of the ideal sheaf for every point
c P C and considering the following map:

Φ : H omOC pπ˚OY ,OCqc b ÔC,c Ñ ÔC,c

whose image is the ideal sheaf I . The four independent global sections of the ideal sheaf I of
degree d2 ´ 3d ` 3 define a map from the apparent contour C to the contour Y.

All these arguments are well-explained in the algorithm ReconstructionGeneralSurfaces pre-
sented in [60]. Various results for different surfaces are summarized in the following table.
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d B W n(B) c(B) n(W) t(W) t p o time type
4 8 2 8 12 1 0 0 8 4 12s ruled(elliptic base)
4 8 2 4 12 0 0 4 4 4 6s Del Pezzo
4 6 3 4 6 1 0 2 4 6 4s ruled
4 12 0 12 24 0 0 0 0 0 5s smooth
4 6 3 0 9 0 1 6 6 3 3s Veronese
5 20 0 60 60 0 0 0 0 0 180s smooth
5 10 5 12 18 3 1 18 8 12 400s DelPezzo
5 8 6 12 9 6 1 12 6 15 130s ruled

Table 2.1: The table shows the degree of the surface S, of the ramification curve B, and of the singular
image W ; then the number of nodes and cusps of B, the number of nodes and triple points of W ,
the number of tangential intersections, pinch points, and other transversal intersection points, and the
computing time in CPU seconds.
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Chapter 3

Shahroz Khan: IDEAS@MI: Intelligent
Data-driven systEms for digitAl deSign in
Maritime Industry

Executive Abstract

The maritime industry (Mar-I) is currently facing unprecedented pressure from environmental
regulatory bodies to radically redesign its assets for decarbonisation. This necessitates intelligent
design approaches and efficient simulation tools to revolutionise and reconfigure existing maritime
systems. The drive for new systems is propelled by significant regulatory alterations such as the
IMO 2020, which mandates a reduction in emissions [64], and the advent of disruptive technologies
within the frameworks of Industry 4.0 and 5.0.

Currently, for design tasks in the Mar-I, designers and engineers use extensively off-the-shelf
parametric modellers and computational tools. These tools are characterised by conservatism,
for they are built to generate shapes lying in the neighbourhood of a successful baseline/parent
shape. Next, these modellers are coupled with optimisers for improving the baseline shape against
performance criteria (e.g., ship wave resistance, sea-keeping, structural strength, etc.), which involve
time-consuming simulations, e.g., computational fluid dynamics (CFD). At the end of the process,
the new design is likely a local optimum whose shape is a minor variation of the existing one.
Conclusively, the coexistence of conservative parametric modellers with high-cost simulations and
a large number of design parameters needed for shape optimisation of complex shapes leads to non-
efficient simulation-driven design pipeline that suffers from the curse of high-dimensionality and a
limited capability to explore design spaces efficiently for delivering variant, innovative, user-centred
and truly optimal designs.
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Therefore, aligning maritime design schemes with Industry-4.0 and -5.0 trends, this PhD thesis
aims to propel initiatives for the transfer and customisation of a range of novel AI technologies
that cover the full spectrum of simulation-driven shape optimisation activities of maritime assets.
These include state-of-the-art data-driven approaches such as deep learning (generative adversarial
networks), dimension-reduction (DR), parametric sensitivity analysis (PSA) and generative-design
techniques coupled with disruptive hydrodynamic simulation paradigms to: i) improve the efficiency
of design space exploration, ii) reduce the overall computational cost, iii) develop versatile design
parameterisation, and iv) integrate human intelligence in the design process. The objectives of
efficient design space exploration and reduction of computational cost are achieved by lowering the
design space’s dimensionality and creating high-fidelity surrogate models, which is achieved via i)
eliminating the parameters which are less sensitive/significant towards the physical QoI (Quantity
of Interest) using PSA and ii) extracting the latent feature with feature extraction/embedding
approaches to form a subspace of reduced dimensionality. Figure 3.1 shows the overview of the
layout of the approaches proposed to achieve the aforementioned objectives.

First, a novel intra-sensitivity concept is proposed to study the local behaviour of parametric
sensitivities and eliminate instabilities - a parameter can be sensitive in certain local areas of the
design space but become insensitive in others. Therefore, the outcome of intra-sensitivity allows
designers to construct viable design spaces for the reliable execution of PSA. Afterwards, implemen-
tation of PSA or intra-sensitivity is expedited with a new geometric-moment dependent PSA that
harnesses the geometric variation in a design space using geometric moments to measure paramet-
ric sensitivities. A shape-supervised dimension reduction approach is also developed. It extracts a
high-level geometry description as a shape signature vector and uses it as a substitute for physics
to construct a physics-informed design subspace. A feature-to-feature learning strategy is also pro-
posed to create a functionally-active subspace for expediting the construction of surrogate models
at an off-line stage. For the versatile parameterisation of ship hulls, we developed ShipGAN using
deep convolutional generative adversarial networks, so the resulting parametric modeller is generic
with the ability to perform feasible and plausible design modifications for a large variety of hulls.
Finally, we propose a generative and interactive design tool which aids users during optimisation by
guiding the design exploration towards user-centred and physically optimised designs. A detailed
overview of each of the proposed approaches is provided below:

Intra-sensitivity. In the proposed pipeline, the first approach is a novel intra-sensitivity [65] con-
cept to study the local behaviour of parametric sensitivities and eliminate instabilities - a parameter
can be sensitive in some local regions of the design space but become insensitive in others. Such
behaviour makes PSA vulnerable to fluctuations even with slight perturbation in the parametric
ranges of the design space. For this purpose, we first appeal to the Active Subspace Method (ASM)
and develop an ASM-based regional sensitivity analysis, which investigates parametric sensitivity in
local regions of the design space and aids in extracting parameters’ intra-sensitivity. This regional
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analysis is applied in conjunction with a Dynamic Propagation Sampling approach for tackling the
computational complexity arising when high-dimensional problems are concerned. Once sensitive
and intra-sensitive parameters are identified, then free-form features correlated to these parame-
ters are evaluated using a feature saliency map built with the aid of Hausdorff distance. Therefore,
the outcome of intra-sensitivity allows designers to construct viable design spaces for the reliable
execution of PSA.

Figure 3.1: Layout of the proposed approaches within
IDEAS@MI pipeline.

Geometric moment-dependent PSA. To
leverage the computational burden that is likely
to occur from implementing PSA or intra-
sensitivity, a new geometric-moment dependent
PSA (GMDPSA) [66] is proposed that har-
nesses the geometric variation of designs in a
design space using geometric moments as a ge-
ometrical QoI to measure parametric sensitiv-
ities. We construct a Shape-Signature-Vector
(SSV) and propose to use it as a substitute for
physics. SSV is composed of shapes’ integral
properties, in our case geometric moments and
their invariants of varying order, and is used
as quantity-of-interest (QoI) for prior estima-
tion of parametric sensitivities. Opting for ge-
ometric moments is motivated by the fact that
they are intrinsic properties of shapes’ underly-
ing geometry, and their evaluation is essential
in many physical computations as they act as a
medium for interoperability between geometry
and physics.

The proposed GMDPSA has been validated with regard to the capability of global- and
composite-SSV to reveal parametric sensitivities of different ship hulls for the wave-making re-
sistance coefficient (Cw), which is a critical QoI towards improving the ship’s efficiency and thus
decreasing emissions. More importantly, the longitudinal distribution of the volume below the ship’s
floating waterline, which is measurable via geometric moments, has an impact on Cw. Through ex-
tensive experimentation, we show a strong correlation between the sensitive parameters obtained
with respect to SSV and those based on Cw. Consequently, we can estimate parameters’ sensitivity
with considerably reduced computational cost compared to when sensitivity analysis is performed
with respect to Cw. Finally, two design spaces are constructed with sensitive parameters evaluated
from SSV and Cw, and spaces’ quality and richness are analysed in terms of their capability to
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provide an optimised solution.

Shape supervised dimension reduction. In shape optimisation problems, subspaces generated
with conventional feature extraction-based dimension reduction approaches often fail to extract
the intrinsic geometric features of the shape that would allow the exploration of diverse but valid
candidate solutions. More importantly, they also lack incorporation of any notion of physics
against which shape is optimised. To simultaneously tackle these deficiencies, the proposed shape-
supervised dimension reduction (SSDR) [67] uses higher-level information about the shape in terms
of its geometric integral properties, such as geometric moments and their invariants. Their usage is
based on the fact that moments of a shape are intrinsic features of its geometry, providing a unify-
ing medium between geometry and physics. To enrich the subspace with latent features associated
with the shape’s geometrical features and physics, we also evaluate a set of composite geometric
moments, using the divergence theorem, for appropriate shape decomposition. These moments are
combined with the shape modification function to form a decomposed SSV uniquely representing
a shape. Afterwards, the generalised Karhunen–Loève expansion is applied to SSV, embedded in
a generalised (disjoint) Hilbert space, which results in a basis of the shape-supervised subspace
retaining the highest geometric and physical variance.

Feature-to-feature learning. A feature-to-feature learning strategy [68] is also proposed to create
a functionally-active subspace for expediting the construction of physcis-informed surrogate models.
To achieve this, we adopted a two-step feature-to-feature learning approach to discover a lower-
dimensional latent space based on the combination of geometry- and physics-informed principal
component analysis and the active subspace method. In the first step, statistical dependencies
implicit in the design parameters encode important geometric features of the underlying shape.
During the second step, functional features of designs are extracted in terms of previously learned
geometric features. Afterwards, geometric and functional features are augmented together to create
a functionally-active subspace whose basis captures the geometric variance of designs and induces
variability in the designs’ physics. As the new subspace accumulates both the functional and
geometric variance, it can be exploited for efficient design exploration and the construction of
improved surrogate models for designs’ physics prediction.

ShipGAN. For the versatile parameterisation of ship hulls, we introduce ShipGAN [69], a generic
parametric modeller built using deep convolutional generative adversarial networks (GANs) for the
versatile representation and generation of ship hulls. At a high level, the new model intends
to address the current conservatism in the parametric ship design paradigm, where parametric
modellers can only handle a particular ship type. We trained ShipGAN on a large dataset of 52,591
physically validated designs from a wide range of existing ship types, including container ships,
tankers, bulk carriers, tugboats, and crew supply vessels. We developed a new shape extraction
and representation strategy to convert all training designs into a common geometric representation
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of the same resolution, as typically GANs can only accept vectors of fixed dimension as input. A
space-filling layer is placed right after the generator component to ensure that the trained generator
can cover all design classes. During training, designs are provided in the form of a shape-signature
tensor (SST) which harnesses the compact geometric representation using geometric moments that
further enable the inexpensive incorporation of physics-informed elements in ship design. We have
shown through extensive comparative studies and optimisation cases that ShipGAN can generate
designs with augmented features resulting in versatile design spaces that produce traditional and
novel designs with geometrically valid and practically feasible shapes.

GenYacht. Finally, we proposed a generative and interactive design tool, GenYacht [70] to
empower experienced and novice designers to create various design alternatives. Among them, a
user can select a hull design with desirable characteristics based on its appearance and hydrostat-
ics/hydrodynamic performance. GenYacht first explores a given design space using a generative
design technique (GDT), which creates uniformly distributed designs satisfying the given design
constraints. These designs are then presented to a user, and single or multiple designs are selected
based on the user’s requirements. Afterwards, based on the selections, the design space is refined
using a novel space-shrinking technique (SST). In each interaction, SST shrinks the design space,
which is then fed into GDT to create new designs in the shrank space for the next interaction.
This shrinkage of design space guides the exploration process and focuses the computational efforts
on user-preferred regions. The interactive and generative design steps are repeated until the user
reaches a satisfactory design(s). The efficiency of GenYacht is demonstrated via experimental and
user studies, and its performance is compared with interactive genetic algorithms.

31



Shahroz Khan

32



GRAPES Book

Chapter 4

Andriamahenina Ramanantoanina:
Barycentric rational interpolation

The barycentric form can be traced back to [71] where it was referred to as normalized Lagrangian
interpolation. We consider a set of values f0, . . . , fn, and a set of scalars a0, . . . ,an. A barycentric
formula is of the form

řn
i“0 ai fi

řn
i“0 ai

. (4.1)

We recall several rational barycentric interpolation techniques in various context.

4.1 Barycentric rational interpolation

We consider a set of interpolation data f0, . . . , fn, a set of real numbers x0, . . . ,xn that we call nodes,
and a set of real numbers w0, . . . ,wn that we call weights. A barycentric rational interpolant rpxq

that interpolates fi at xi, that is rpxiq “ fi, is given by

rpxq “

n
ÿ

i“0

n
ź

j“0, j‰i

x ´ x j

xi ´ x j
fi. (4.1)

One can verify, by multiplying the numerator and the denominator by ℓpxq “ px ´ x0q ¨ ¨ ¨ px ´ xnq,
that rpxq is a general rational interpolant such that we have the interpolation property rpxiq “ fi.
[72] observe that the interpolation property is satisfied if and only if the weights wk are non-zero
for all k.

As a general rational function, it might occur that rpxq has poles. In the context of curve design,
however, it is more desirable to have a curve that is continuous everywhere in rx0,xns. Hence, it
would be ideal to find some constraints on the weights wk so that rpxq has no poles. [72] show that it
is necessary that the weights wk have alternating signs. [73] states that the interpolation problem is
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well-conditioned if the weights have the same absolute values. By combining these two conditions,
[73] deduced that a barycentric interpolant with the particular set of weights wk “ p´1qk for all k,
called Berrut weights, is well-conditioned and has no poles.

There is another specific way to describe a set of weights, called Lagrange weights, that implies
a barycentric rational interpolation (4.1) to have no poles. Indeed, since the Lagrange polynomial
interpolant, after [74], of degree n is

ppxq “

n
ÿ

i“0

px ´ x0q . . .px ´ xi´1q9px ´ xi`1q . . .px ´ xnq

pxi ´ x0q . . .pxi ´ xi´1q9pxi ´ xi`1q . . .pxi ´ xnq
fi, (4.2)

then we can define the Lagrange weights wk as

wk “

n
ź

i“0,i‰k

1
xk ´ xi

. (4.3)

The Lagrange interpolant (4.2) can be written in first barycentric form, a term that first appeared
in [75], as

ppxq “ ℓpxq

n
ÿ

i“0

wi

x ´ xi
fi, (4.4)

where ℓpxq “ px´x0q ¨ ¨ ¨ px´xnq, and wk as in (4.3). The alternative, second barycentric form (4.1) is
obtained by dividing (4.4) by the interpolant of the constant function 1 written in first barycentric
form as 1 “ ℓpxq

řn
i“0

wi
x´xi

. In general, [76] show that every rational function can be written in
barycentric form. Consider a rational function Rptq “

Nptq
Dptq . We first express Dptq and Nptq “ DptqRptq

in the first barycentric form (4.4) with respect to the same sequence of nodes. Then we recover the
barycentric form (4.1) by writing the fraction Nptq

Dptq and canceling out some factors.
For some particular set of nodes, the barycentric weights are given by explicit formulas, and

can be deduced from the Lagrange weights [77]. For uniform nodes, tk “ t0 ` kh for some positive
scalar h, the weights are given by wk “

p´1qk

hnn!

`n
k

˘

[78], which after canceling the common factor hnn!

becomes
wk “ p´1qk

ˆ

n
k

˙

.

We note that the weights wk can also be defined as wk “ 1
ℓ1pxkq

[79, 80]. This induces a formula for
the weights with respect to the Chebyshev nodes of the first kind tk “ cos p2k`1qπ

2n`2 and the Chebyshev
nodes of the second kind tk “ cos kπ

n , respectively as [81]

wk “ p´1qk sin
p2k ` 1qπ

2n ` 2
, wk “ p´1qkδk, δk “

$

&

%

1{2 k “ 0 or k “ n

1 otherwise.

An advantage of the barycentric form is that the form of its derivatives are very simple formulas.
Indeed, consider a barycentric rational interpolant (4.1) with arbitrary weights wk ‰ 0 that have
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alternating signs. [72] show the following formulas:

• if x ‰ xi

rpkqpxq

k!
“

řn
i“0

wi
x´xi

rrpxqk,xis
řn

i“0
wi

x´xi

,

• and
rpkqpx jq

k!
“ ´

řn
i“0 wirrpx jq

k,xis

w j
. (4.5)

where rrpxqk,xis “ rrx, . . . ,x,xis is a divided difference of order k ` 1. From these derivatives, we
observe that barycentric rational functions, with the restrictions cited before, are C8. This is very
important in design and approximation since, for example, we are able to reproduce circular arcs
perfectly as opposed to other methods such as splines.

4.2 Trigonometric barycentric rational interpolation

Analogously, we recall the definition of trigonometric barycentric interpolation. In the trigonometric
setting, we assume 0 ď x0 ă ¨¨ ¨ ă xn ă 2π. A trigonometric barycentric rational interpolant rpxq that
interpolates fi at xi is given by

rpxq “

řn
i“0 cst x´xi

2 wi fi
řn

i“0 cst x´xi
2 wi

, (4.1)

where

cstpxq “

$

&

%

cscpxq ifn is even,

cotpxq ifn is odd,
cscpxq “ 1{sinpxq.

As for the classical case, the continuity of rpxq is also crucial when it comes to curve design.
Hence, some conditions on the weights should be satisfied so that the denominator of rpxq does not
vanish in r0,2πq. For a given equidistant set of nodes, setting wk “ p´1qk implies the non-existence
of poles [82, 73]. Another particular set of weights that induces the non-existence of poles can
be extracted from the so-called Gauss’s formula for trigonometric interpolation. [83] shows that
a trigonometric polynomial rpxq “ a0 `

řN
k“1pak cospkxq ` bk sinpkxqq of order N for some coefficients

a0, . . . ,aN ,b1, . . . ,bN can be written in the form

rpxq “

n
ÿ

i“0

n
ź

j“0, j‰i

sin x´x j
2

sin xi´x j
2

fi. (4.2)

We note that in this case, n “ 2N. By factoring out ℓpxq “
śn

j“0 sin x´x j
2 , we can write rpxq in the
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first barycentric form [84, 85] as

rpxq “ ℓpxq

n
ÿ

i“0

wi csc
x ´ xi

2
fi (4.3)

where
wi “

n
ź

j“0, j‰i

csc
xi ´ x j

2
, i “ 0, . . . ,n.

It follows that we can write any trigonometric rational function Rpxq “
Npxq

Dpxq
in barycentric form

(4.2), by expressing both the denominator Dpxq and the numerator Npxq “ DpxqRpxq in the first
barycentric form (4.3). Then by writing the ratio Npxq{Dpxq, and canceling out the common factor
ℓpxq, we get the trigonometric barycentric form (4.2) of the rational function Rpxq. A common
property that both of these set of weights admits is that sgnpwkq “ p´1qk. In fact, [86] show that
the alternating sign of the weight is necessary in order to avoid poles.

4.3 Application in open curve design

The interpolation property of a barycentric interpolant can be exploited in the context of curve
design. By writing the expression of a curve in barycentric form, we can force a curve to pass
through a given point. We explore the idea of creating a curve using its expression written in
barycentric form by comparing it with the classical methods.

The classical way to generate and manipulate a curve is by means of Bézier curves. We recall
that a rational Bézier curve, defined by the control points P0, . . . ,Pn, and the weights α0, . . . ,αn, is
given by

Pptq “

řn
i“0 αiBn

i ptqPi
řn

i“0 αiBn
i ptq

, (4.1)

where Bn
i ptq “

`n
i

˘

p1 ´ tqn´it i are the Bernstein polynomials of degree n. There are several ways
to manipulate a Bézier curve: either by tweaking the Bézier control points, the weights [87], the
so-called Farin points [88], or the shoulder points [89]. Although in order to reproduce a shape
with a Bézier curve, we need to have a good intuition on where to place the control points.

On the other hand, the barycentric form can be useful since we can force a curve to pass through
specific n ` 1 point thanks to the interpolation property. Consider a set of points Qi, a set of nodes
ti, and a set of real number βi ą 0. Consider a curve given by

Pptq “

řn
i“0

p´1qiβi
t´ti

Qi
řn

i“0
p´1qiβi

t´ti

. (4.2)

There are several ways to edit a curve given in barycentric form (4.2). The most direct control
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Figure 4.1: This show the normalised basis functions (left) pBn
i ptqwiq{

řn
j“0 Bn

jptqw j, (right)
pp´1qiwi{pt ´ tiqq{

řn
j“0p´1q jw j{pt ´ t jq such that w0 “ ¨¨ ¨ “ wn “ 1.

is by displacing an interpolation point Qi. Unlike the case for Bézier curves, the basis functions
p´1qiβi

t´ti
{

řn
i“0

p´1qiβi
t´ti

are not nicely shaped like a bell (see Figure 4.1). Hence large displacements
might induce an unpredictable effect on the curve. Therefore, to this point, it is only advised for
micro-displacement.

A workflow where we can combine these two methods would be ideal. That is, we use the
Bézier control points to design the general shape of the curve, and we use the interpolation points
to enhance precision. A correspondence between the rational Bézier expression and its barycentric
form would help us to achieve this goal. To describe the correspondence between the rational
Bézier expression and its barycentric form, we first write the Bézier expression in barycentric form.
One way to achieve that is to write the rational Bézier expression as a polynomial in homogeneous
form [90], write this latter in first barycentric form, and finally, project using central projection.
Another way is described in Section 4 following the fact that every rational function can be written
in barycentric form [76]. These processes result in an equation relating the rational Bézier expression
and its barycentric form. We let P̂i “ pαiPi,αiq and Q̂i “ pziQi,ziq where zi “ p´1q

n`iβi{wi, and wi

are the Lagrange weights (4.3). We have a relation Q̂QQ “ BBBP̂PP, where

BBB “

¨

˚

˚

˝

Bn
0pt0q ¨ ¨ ¨ Bn

npt0q

... . . . ...
Bn

0ptnq ¨ ¨ ¨ Bn
nptnq

˛

‹

‹

‚

, P̂PP “

¨

˚

˚

˝

P̂0
...

P̂n

˛

‹

‹

‚

, Q̂QQ “

¨

˚

˚

˝

Q̂0
...

Q̂n

˛

‹

‹

‚

. (4.3)

The Bernstein–Vandermonde matrix BBB in (4.3) is non-singular, because the Bernstein basis is a
Chebyshev system. This guarantees that we can convert back and forth between the rational Bézier
expression and its barycentric form, and so be able to exploit the advantages offered by them.

In the context of comparison of the rational Bézier expression and its barycentric form, it is
known that a rational Bézier function can be written in standard form [91, 92], that is α0 “ αn “ 1.
Similarly, we can write a barycentric interpolation in standard form, that is β0 “ βn “ 1. In fact, if
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Figure 4.2: a) shows a Bézier curve defined by 5 interpolation points. b) shows the effect of displacing
an interpolation point, while c) shows the effect of changing its weight. In d) we slide the black point
and in e) we insert an additional point. Notice that the shape of the curve does not change under the
last two operations.

we consider the function φptq, defined as

φptq “
p1 ´ λ qt

λ p1 ´ tq ` p1 ´ λ qt
,

where
λ “

βnt0 ´ β0tn
β0p2tn ´ 1q ´ βnp2t0 ´ 1q

,

then it is stated in [93] that under the linear rational reparametrization φptq, a barycentric rational
interpolation (4.1) can be written in standard form.

The barycentric form offers more possibilities of manipulating a curve. The most natural
manipulation is by modifying the interpolation points. By modifying Qk, we can recover the Bézier
points as PPP “ BBB´1QQQ (see Figure 4.2.b). It can happen that P̂k “ pP̄k,αkq where αk “ 0 for some
k. In this case, we can introduce the so-called infinite control points [94], or we can apply degree
elevation to the control polygon PPP before applying the central projection. The manipulation of
the interpolation points are recommended only for micro-editing since large tweaking may induce
undesired effects (see Figure 4.1).

One way to manipulate a curve given in barycentric form (4.2) is by modifying the parameters
ti. Modifying a single parameter tk can also induce an unpredictable effect on the curve. By
constraining tk P ptk´1, tk`1q for 0 ă k ă n, and by automatically updating Qk and the weights βi in
[93], we present a method to modify a single tk that results in sliding the interpolation point Qk

along the curve (see Figure 4.2.d). Each time we assign tk to a new value t̄k, Qk will be updated to
Qk “ Ppt̄kq, and the weights will be updated as

βk “

n
ÿ

i“0

p´1q
n`k`i t̄k ´ tk

t̄k ´ ti
βi, βi “

ti ´ tk
ti ´ t̄k

βi, i ‰ k.
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Figure 4.3: Effect of changing the central weight.

Another way to manipulate a curve given in barycentric form (4.2) is by modifying the weights.
We deduce from (4.5) that the tangent at Qk is given by

P1ptkq “

řn
i“0, i‰k p´1q

k`i`1 βi
tk´ti

pQk ´ Qiq

βk
.

We observe that only the denominator depends on βk. It follows that modifying βk adjusts the
length of the tangent vector at Qk. Geometrically, it means that modifying βk adjusts the local
flatness of the curve around Qk (see Figure 4.3, Figure 4.2.c).

It is important to preserve the non-singularity of the curve. In order to conserve this non-
singularity, we recall that it is necessary for all weights βi to be strictly positive. In [93], we present
a stronger restriction for the new value of βk. It is shown that the curve remains non-singular as
long as there is no t‹ such that βk “ Skpt‹q where (see Figure 4.4)

Skptq “

n
ÿ

i“0 i‰k

p´1q
k`i`1 t ´ tk

t ´ ti
βi.

This reduces the new possible value of βk to be in the range βk P pM‹,M‹q, where

M‹ “ maxt. . . ,Mk´2,Mk,Mk`2, . . .u, M‹ “ mint. . . ,Mk´3,Mk´1,Mk`1,Mk`3, . . .u,

with

Mk`i “

$

&

%

maxtSkptq : t P ptk`i`i‹ , tk`i`i‹qu, i even,

mintSkptq : t P ptk`i`i‹ , tk`i`i‹qu, i odd,
i‹ “

$

&

%

´1, i ď 0,

0, i ą 0,
i‹ “

$

&

%

0, i ă 0,

1, i ě 0.

To this point, we have explored some methods to manipulate a curve by tweaking the existing
data of an interpolation point. One situation that might occur, however, is that a user wants to
tweak a part of a curve where there is no control point. It would be advantageous if we can just
insert a point on the curve without changing its shape (see Figure 4.2.e). In [93], we present a
method to update all the data simultaneously to achieve this goal. Consider that we want to add
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Figure 4.4: An example of the plot of the function Skptq for k “ 3. The horizontal lines represent M˚

and M˚.

a new point Q‹ at t‹, that is Q‹ “ Ppt‹q. Suppose that t‹ P ptk´1, tkq, our new data is then given by

t̆i “

$

’

’

’

’

&

’

’

’

’

%

ti,

t‹,

ti´1,

Q̆i “

$

’

’

’

’

&

’

’

’

’

%

Qi,

Q‹ “ Ppt‹q,

Qi´1,

β̆i “

$

’

’

’

’

&

’

’

’

’

%

βi
t‹´ti

,

řn
i“0 p´1q

n`k`i βi
ti´t‹

,

βi´1
ti´1´t‹

,

if

$

’

’

’

’

&

’

’

’

’

%

i ă k,

i “ k,

i ą k.

We also observe an advantage of using the barycentric form for the evaluation of a rational
Bézier curve (4.1). The classical de Casteljau algorithm would evaluate (4.1) in Opn2q [95]. [96]
developed a linear-time algorithm to evaluate (4.1). We also propose to convert it into a linear
form, in this case, linear barycentric form. In the first studies of the barycentric form, [71], [97],
and [98] studied the efficiency of the evaluation of the barycentric form (4.1). They described
the form (4.1) as rapid as it only involves a “cumulative” multiplication and a division. Thus we
propose to convert the rational Bézier expression to barycentric form and evaluate this later. This
conversion can be done efficiently and accurately in Opn2q [99]. We compared the evaluation time
using the classical de Casteljau algorithm, the linear-time algorithm, and our proposed method by
implementing them in C (see Figure 4.5).

4.4 Application in periodic curve design

In this chapter we follow the same idea as in the open curve design. A trigonometric rational Bézier
form is introduced and studied in a sequel [100, 101, 102, 103, 104]. We consider the shape control
tool given by the rational Bézier setting, and we create complementary tools to have more intuitive
and direct control over a curve.

We recall that a periodic Bézier curve is defined by an odd number of points P0, . . . ,Pn such that
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and αi “ i mod 2 ` 1. (left) We first consider M “ 2500 evaluation points for n “ 3,5,7, . . . ,19. (right)
we fix the degree at n “ 20 and vary the number of evaluation points M “ 1,50,100.

n “ 2N for some positive integer N, and is given by

Pptq “

n
ÿ

i“0

Bnpt ´ ϕiqPi

where Bnptq “ Kn cosn t
2 , Kn “ 2n

n`1

`n
N

˘´1, ϕi “ 2iπ
n`1 for i “ 0, . . . ,n. Furthermore, by associating scalars

α0, . . . ,αn to the points respectively, we define a rational periodic Bézier curve as

Pptq “

řn
i“0 Bnpt ´ ϕiqαiPi

řn
i“0 Bnpt ´ ϕiqαi

. (4.1)

Given this restriction on the number of control points, the corresponding barycentric interpo-
lating form that we investigate needs to have the same restriction. Hence the analogue of (4.2), for
a given sequence of control points Q0, . . . ,Qn and their associated weights β0, . . . ,βn, is given by

Pptq “

řn
i“0p´1qi csc t´ti

2 βiQi
řn

i“0p´1qi csc t´ti
2 βi

, (4.2)

where cscptq “ 1{sinptq. The shape controls arise from the manipulation of the degrees of freedom
of this formula (the control points Qk, the weights βk, and the nodes tk). As for the classical case,
the basis of the trigonometric barycentric rational interpolation is not nicely shaped as the basis
of the periodic Bézier form, hence, the recommended manipulation is only for micro-editing.

To achieve the combination of the two methods, we explore the relation between the periodic
Bézier form (4.1) and trigonometric interpolating form (4.2). We can write (4.1) in barycentric
form (4.2), by writing its numerator and its denominator in the first barycentric form, by writing
the ration between the resulting expression and canceling some common factors. These steps can
be written more compactly as follow. Denote by zptq the denominator of (4.1). We let zi “ zptiq,
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Figure 4.6: a) shows a periodic Bézier curve defined by 5 interpolation points. b) shows the effect of
displacing an interpolation point, while c) shows the effect of changing its weight. In d) we slide the
black point and in e) we insert additional points. Notice that the shape of the curve does not change
under the last two operations.

P̂i “ pαiPi,αiq and Q̂i “ pziQi,ziq for i “ 0, . . . ,n. And we have the relation Q̂QQ “ BBBP̂PP, where

BBB “

¨

˚

˚

˝

Bnpt0 ´ ϕ0q ¨ ¨ ¨ Bnpt0 ´ ϕnq

... . . . ...
Bnptn ´ ϕ0q ¨ ¨ ¨ Bnptn ´ ϕnq

˛

‹

‹

‚

, P̂PP “

¨

˚

˚

˝

P̂0
...

P̂n

˛

‹

‹

‚

, Q̂QQ “

¨

˚

˚

˝

Q̂0
...

Q̂n

˛

‹

‹

‚

.

Since the radial basis tBnpt ´ ϕkquk forms a Chebyshev system, the matrix BBB is non-singular. This
guarantees us that we can convert back-and-forth between the Bézier form (4.1) and the barycentric
form (4.2). The weight βk is then given by βk “ p´1qkwkzk. Hence we can analyse the effect of
manipulating the control points, the weights, and the nodes.

The interpolatory property of the form (4.2) induces a snapping tool, which means we can force
a curve to pass through a certain set of points. However, the trigonometric basis is not as nicely
shaped as the trigonometric Bernstein-like basis. Hence large displacement are not advised. We
can see the effect of displacing an interpolation point in Figure 4.6.b).

In addition, [86] show that the tangent of a curve at a point Qk is given by

P1ptkq “
1

2βk

n
ÿ

i“0, i‰k

p´1qk`i`1 csc
tk ´ ti

2
βipQk ´ Qiq.

We observe that the term in the summation, which determines the direction of the tangent, does
not depend on βk. Since βk only appear in the denominator, it influences naturally the strength
of the tangent at Qk. Geometrically, by decreasing the value of βk, the curve is flatten, while by
increasing the value of βk, the curve bends more tightly around Qk.

The advantage of the interpolation method is that we can manipulate the curve by manipulating
the interpolation points. It is possible that we want to rectify a part where there is no interpolation
point. [86] devise some formula to update the data of the barycentric form such that we can slide
an interpolation point Qk, that is change tk to a new value t̃k P ptk´1, tk`1q. We have Q̃k “ Qpt̃kq
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β̃k “ sin
t̃k ´ tk

2

n
ÿ

j“0

p´1q j`k csc
t̃k ´ t j

2
β j, β̃i “ csc

ti ´ t̃k
2

sin
ti ´ tk

2
βi, i ‰ k.

Alternatively, we also develop some formulas that update the data of the barycentric form,
so that we can insert additional interpolation points leaving the shape of the curve unchanged.
Assume that we insert two new parameters t̃k, t̃k`1 P ptk´1, tkq. We have

t̃i “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ti,

t̃k,

t̃k`1,

ti´2,

Q̃i “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Qi,

Qpt̃kq,

Qpt̃k`1q,

Qi´2,

β̃i “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

csc ti´t̃k
2 csc ti´t̃k`1

2 βi,

csc t̃k´t̃k`1
2

řn
j“0p´1q j`k csc t̃k´t j

2 β j,

csc t̃k`1´t̃k
2

řn
j“0p´1q j`k`1 csc t̃k`1´t j

2 β j,

csc ti´2´t̃k
2 csc ti´2´t̃k`1

2 βi´2

if

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

i ă k,

i “ k,

i “ k ` 1,

i ą k ` 1.

Lastly, since we are now able to slide points, that is, we change the parameter values. [86] analyse
the limit case where two interpolation points collapse into one interpolation point. Fortunately, the
shape of the curve is preserved. Assume that we have double node at tk`1, the formula (4.2) turns
into the form of a Hermite rational interpolation as

Qptq “

n
ÿ

i“0,i‰k

p´1qi csc
t ´ ti

2
β̂iQi ` p´1qk`1 csc

t ´ tk`1

2
cot

t ´ tk`1

2
β̂ 1

k`1

ˆ

Qk`1 ` 2tan
t ´ tk`1

2
Q1

k`1

˙

n
ÿ

i“0,i‰k

p´1qi csc
t ´ ti

2
β̂i ` p´1qk`1 csc

t ´ tk`1

2
cot

t ´ tk`1

2
β̂ 1

k`1

,

where
β̂i “ csc

ti ´ tk`1

2
sin

ti ´ tk
2

βi, i ‰ k,k ` 1,

β̂k`1 “ sin
tk`1 ´ tk

2

n
ÿ

i“0,i‰k`1

p´1qk`1`i csc
tk`1 ´ ti

2
βi ` cos

tk`1 ´ tk
2

βk`1, β̂ 1
k`1 “ sin

tk`1 ´ tk
2

βk`1,

and Q1
k`1 “ Q1ptk`1q.

For consistency, it is preferable that the number of interpolation points and the number of
Bézier points are the same. To this end, [86] devise a framework that increase the number of Bézier
control points by 2 while preserving the shape of the curve. Indeed, as for the classical counterpart
[87], a periodic rational Bézier curve can be considered as a central projection Π of a spatial periodic
Bézier curve defined by P̂0, . . . , P̂n. The control points of the degree-raised spatial periodic Bézier
curve are given by P̂PPN`1 “ CCC´1DDDP̂PPN where CCC P Rpn`3qˆpn`3q and DDD P Rpn`3qˆpn`1q are

CCCi, j “ Bn`2pψi ´ ψ jq, DDD j,k “ Bnpψ j ´ ϕkq, i, j “ 0, . . . ,n ` 2, k “ 0, . . . ,n,

with ψi “ 2iπ
n`3 , i “ 0, . . . ,n ` 2 and ϕi “ 2iπ

n`1 , i “ 0, . . . ,n. The degree of (4.1) can be raised from N to
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Figure 4.7: Raising the degree (from left to right) of a periodic rational Bézier curve.

N ` 1 (see Figure 4.7) in three steps

PNptq

Π´1

��

PN`1ptq

P̂Nptq
multiply with

CCC´1DDD
// P̂N`1ptq

Π

OO
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Chapter 5

Krunal Raval: Non-uniform degree and
Tchebycheffian spline technologies for adaptive
isogeometric analysis

Isogeometric Analysis (IgA) [105] emerged about two decades ago as a methodology aimed at
streamlining the interactions between geometric modeling and numerical simulation. It sought to
address significant discrepancies between Computer-Aided Design (CAD) packages, used for model-
ing geometries, and Finite Element Analysis (FEA) software developed in a complete independent
way for numerical simulation. Indeed, traditionally geometric modeling relied on highly smooth
piecewise polynomial functions known as splines, whereas numerical simulations utilized C0 finite
elements. By bringing FEA and CAD together, IgA enhanced efficiency in solving complex engi-
neering problems, providing a truly integrated design-through-analysis process. The idea behind
IgA revolves around employing an isoparametric approach, utilizing the same kind of functions
both to represent the geometry of the domain and to approximate the solution of the differential
problem defined on it. This approach yields several advantages over classical FEA:

• Enhanced accuracy in describing the geometry: It provides a better approximation of complex
geometries, and even achieves exact representation in the case of conic sections; leading to
increased precision in analysis.

• Streamlined refinement process: With IgA, the description of geometry is exact (or well
approximated) at the coarsest mesh level and it does not change with refinement; eliminating
the necessity of communication with CAD systems during refinement.

• Higher accuracy per degree of freedom: For a given degree, spline functions of high and low
smoothness provide spaces with the same approximation order but of different dimensions:
with a clear gain for the former ones, [106]. This rejuvenated the study of higher order
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methods, proving to be a superior alternative in various applications; see [107], and references
therein.

These advantages have attracted significant interest in the isogeometric paradigm across various
applications, see [108], validating the claim that IgA is a viable alternative to standard, polynomial
based finite element analysis, [107].

The initial classical formulation of IgA is based on tensor-product B-splines and their rational
extension (NURBS), [109]. As a consequence, it inherited some drawbacks and limitations of these
tools. For instance, NURBS are a legacy of CAD industry where they are of main interest because
they allow for exact representation of conic sections. Still NURBS lack an exact description of
transcendental curves of interest in application, and their parametrization of conic sections does
not correspond to –and it is often far from– the arc length. In addition, they are defined in a
rational form along with “weights”, resulting into a very poor behavior under differentiation and
integration, which are key operations in analysis.

However, the properties of B-splines and NURBS which are crucial for design (positivity, parti-
tion of unity, compact support,... ) are not confined to the polynomial setting, and can be extended
in an elegant way beyond piecewise polynomial and/or rational functions.

In this thesis, we explore the use in IgA of a generalization of the polynomial splines, called
Tchebycheffian splines, both to overcome the drawbacks of the rational model and to exploit their
superior description of the fundamental solutions of some differential operators.

Another limitation in the primitive formulation of IgA pertains to local refinement in the general
multivariate setting and it is due to the tensor-product structures, typically adopted to generate
multivariate splines from univariate spline basis functions. Tensor-product spline spaces can be
refined through knot insertion and/or degree elevation in each coordinate direction separately.
However, this often results in excessive refinement in areas that do not require it due to the global
nature of the refinement process. This lack of locality in refinement of tensor-product splines is
visualized in Figure 5.1.

Initial mesh Tensor-product refinement Local refinement

Figure 5.1: Lack of local refinement in tensor-product splines.
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To address the limitations associated with local refinement, various strategies have been de-
vised. Here we focus on local tensor-product structures and, in particular, on Locally Refined
(LR) meshes and on the construction of different spline spaces over such meshes. Leveraging the
structural similarities between standard polynomial B-splines and Tchebycheffian B-splines, we can
construct Tchebycheffian spline spaces over LR meshes, combining the benefits inherent to Tcheby-
cheffian spline setting and to local tensor-product structures. This is the second line of investigation
presented in this thesis.

Furthermore, when tackling higher-order problems with localized features, integrating higher
degree B-splines into the solution space can be advantageous. However, incorporating local degree
elevation in B-splines presents a challenge, as uniformly higher degree splines throughout the domain
may be unnecessary. In such scenarios, LR meshes with non-uniform degree B-splines, constructed
through a combination of local h- and p-refinement, could offer a more efficient solution. This is a
third line of investigation carried out in this thesis.

We shortly summarize the state of the art in the fields of (1) Tchebycheffian (B-)splines as a
generalization of the standard polynomial (B-)splines and (2) spline constructions on unstructured
meshes with local tensor-product structure for adaptive refinement, and we sum up our contri-
butions on the use of Tchebycheffian B-splines and non-uniform degree splines in isogeometric
(adaptive) Galerkin methods.

Tchebycheffian B-splines

Spline functions are ubiquitous in numerical methods. Besides their theoretical interest, they have
application in several branches of the sciences including geometric modeling, signal processing,
data analysis, visualization and numerical simulation just to mention a few. Splines, in the broad
sense of the term, are functions consisting of pieces of smooth functions glued together in a certain
smooth way. There is a large variety of spline species, often referred to as the zoo of splines. The
most popular species is the one where the pieces are algebraic polynomials of a given degree p

and inter-smoothness is imposed by means of equality of derivatives up to a certain order. Their
popularity can be mainly attributed to their representation in terms of the so-called B-splines. B-
splines enjoy properties such as local linear independence, minimal support, non-negativity, and
partition of unity; they can be computed through a stable recurrence relation and can even be seen
as the geometrically optimal basis for piecewise polynomial spaces.

Tchebycheffian splines are smooth piecewise functions whose pieces are drawn from (possibly
different) Extended Tchebycheff (ET-) spaces which are natural generalizations of algebraic poly-
nomial spaces [110, 111]. Any non-trivial element of an ET-space of dimension p ` 1 has at most p

zeros counting multiplicity. We will refer to p as the degree, in analogy with the polynomial case.
Extended Complete Tchebycheff (ECT-) spaces are an important subclass that can be generated
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through a set of positive weight functions [112, 113] and are spanned by generalized power functions
[111]; the latter are the natural extension of the monomial basis functions for algebraic polynomials;
see [114, Section 2.1]. Relevant examples are null-spaces of linear differential operators on suitable
intervals [113]; see [114, Section 2.2]. On bounded and closed intervals the concepts of ET-space
and ECT-space coincide [115], so from now on we will focus on ECT-spaces.

Most of the results known for splines in the polynomial case extend in a natural way to the
Tchebycheffian setting. In particular, under suitable assumptions on the involved ECT-spaces,
Tchebycheffian splines admit a representation in terms of basis functions, called Tchebycheffian B-
splines (TB-splines), with similar properties to polynomial B-splines. TB-splines were introduced
in 1968 by Karlin [116] using generalized divided differences. There are several other ways to
define them, including Hermite interpolation [117], de Boor-like recurrence relations [118], integral
recurrence relations [119], and blossoming [120]; see also the historical notes in [113, Chapters 9
and 11] for further details. Each of these definitions has advantages according to the properties to
be proved and lead to the same functions, up to a proper scaling.

Multivariate extensions of Tchebycheffian splines can be easily obtained by means of tensor-
product structures.

Due to the richness of ECT-spaces, Tchebycheffian splines can find applications in several con-
texts including data approximation/interpolation, geometric modeling and numerical simulation;
see [111] and references therein. Thanks to their structural similarities, TB-splines are theoreti-
cally plug-to-plug compatible with classical polynomial B-splines, so they can be potentially easily
incorporated in any software library supporting polynomial B-splines to enrich its capability.

Unfortunately, despite their theoretical interest and applicative potential, TB-splines have not
gained much attention in practice so far. The reason behind this is that TB-splines are gener-
ally difficult to compute. The classical approaches mentioned above, based on generalized divided
differences, Hermite interpolation, or repeated integration, are computationally expensive and/or
numerically unstable. An important step forward was recently made in [121] where the authors pro-
posed a strategy that represents TB-splines as linear combinations of local Tchebycheffian Bernstein
functions through a suitable extraction operator. The local Tchebycheffian Bernstein functions form
a basis of the local ECT-spaces involved in the definition of the TB-splines. In the polynomial case,
these are nothing but the classical Bernstein polynomial basis functions. Following the approach
in [121], an object-oriented Matlab toolbox has been developed in [122] for the construction and
manipulation of TB-splines whenever they exist. The toolbox supports TB-splines whose pieces
belong to ECT-spaces that are null-spaces of constant-coefficient linear differential operators, and is
publicly available. Note that both [121] and [122] address the more general setting of Multi-Degree
TB-splines (MDTB-splines) where the local ECT-spaces of the Tchebycheffian spline space are not
required to be of the same dimension. Having at our disposal a publicly available implementation
for such a large class of TB-splines paves the path for their effective use in practical applications.
An alternative strategy has been proposed in [123] but no implementation is available.
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As mentioned before, the advantages of the isogeometric paradigm are not a distinguishing
property of B-splines/NURBS, and B-splines/NURBS are not a requisite ingredient in IgA. An
interesting subclass of TB-splines, the so-called Generalized B-splines (GB-splines), has been pro-
posed as an alternative to classical polynomial and rational splines in the context of IgA; see [124]
and references therein. GB-splines can be seen as the minimal extension of polynomial B-splines
towards the wide variety of TB-splines: their pieces belong to ECT-spaces obtained by enriching an
algebraic polynomial space with a pair of functions, typically hyperbolic or trigonometric functions
identified by a single shape parameter. GB-splines overcome two issues of the rational NURBS
model: they allow for an (almost) exact arc-length parameterization of conic sections and behave
with respect to differentiation and integration as nicely as polynomial B-splines (for instance, the
derivative of a trigonometric generalized spline with a given phase parameter β and degree p is
again a trigonometric generalized spline with the same shape parameter β and degree p´1). These
properties make GB-splines an interesting tool to face both geometrical and analytical hurdles in
IgA. The effectiveness of hyperbolic or trigonometric GB-splines in isogeometric Galerkin and col-
location methods has been illustrated in a sequence of papers, where their properties have been
exploited to obtain exact representations of common geometries [125] or to beneficially deal with
advection-dominated problems [126]; see also [127] for the related spectral properties.

Being a so minimal extension of the polynomial setting, however, GB-splines are not always
flexible enough for practical applications. In particular, in a tensor-product GB-spline space only
two hyperbolic or trigonometric functions identified by the same shape parameter are added to
polynomials along each parametric direction. Therefore, a given tensor-product GB-spline space
does not allow for:

• an exact representation of different arcs of conic sections at opposite sides;

• a proper treatment of different analytic features (like sharp layers) along a given parametric
direction;

• a simultaneous treatment of geometrical and analytical features along the same parametric
direction.

Tchebycheffian splines with pieces belonging to ECT-spaces that are null-spaces of constant-
coefficient linear differential operators are an extension of hyperbolic and trigonometric generalized
polynomial splines. They enjoy all the geometrical and analytical features that motivate the interest
in GB-splines without suffering from the above mentioned restrictions. They grant the freedom of
combining polynomials with exponential and trigonometric functions with any number of individual
shape parameters. For this class of Tchebycheffian splines, when the various pieces are drawn
from a single ECT-space which contains constants, the existence of TB-splines is always ensured,
possibly with some restriction on the partition; see [114] for more details. Furthermore, they are
supported by the Matlab toolbox available in [122]. In summary, TB-splines with pieces belonging
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to ECT-spaces that are null-spaces of constant-coefficient linear differential operators offer a suitable
balance between the immense variety of ECT-spaces and the practical needs of a problem-driven
space selection and efficient evaluation procedures for the space elements.

In the first part of this thesis we investigate the use of tensor-product TB-splines, whose pieces
belong to ECT-spaces that are null-spaces of constant-coefficient linear differential operators, in
Galerkin isogeometric methods. It turns out that such a class of TB-splines provides a powerful
and flexible environment for the IgA paradigm, beyond the limits of the rational NURBS model.

Splines over T-meshes

Tensor-product B-splines are probably the most well-known multivariate spline basis functions.
They have been profitably applied in different contexts including geometric modeling, approxima-
tion theory, and numerical simulation. Their popularity roots in their simple, elegant and efficient
construction: they are nothing but tensor-products of univariate B-splines; see, e.g., [128] and
references therein.

The tensor structure of the underlying mesh, however, is the major weakness of tensor-product
B-splines as it hinders adequate local refinement, forcing the use of unnecessarily large discrete
spaces and leading to a significant loss in efficiency. This has been seen as a severe limitation in
the context of isogeometric analysis.

To overcome this limitation, in the last decades many alternative spline technologies have been
developed for so-called T-meshes. Such meshes are still axis-aligned but T-vertices are allowed in the
interior of the domain, in order to support local refinement, while preserving locally the simplicity
of the tensor approach; see [129] and references therein. T-splines [130], (truncated) hierarchical
B-splines [131], and locally refined B-splines [132] are popular examples of such spline technologies.
All these approaches have their own strengths (and weaknesses) depending on the context they are
intended to be used. T-splines were introduced by Sederberg [133, 130] to enable local refinement
of spline surfaces and handle complex topology, by treatment of so called extraordinary points
in the context of CAD. Initially, T-splines were limited to bi-cubic polynomial degree and C2

continuity between elements. However, the technology has since been extended to arbitrary uniform
polynomial degrees [134] and supports mixed continuity [135]. Various applications of T-splines
in isogeometric analysis have been reported [136]. To ensure nested spaces and maintain linear
independence, a restricted class of analysis-suitable T-splines was introduced [137]. Subsequently,
these were characterized as dual-compatible T-splines [138]. Several local refinement algorithms
for analysis-suitable T-splines with optimal convergence have been proposed in [139].

Hierarchical B-splines were introduced in 1988 for local h-refinement in geometric modeling [140].
The construction of the hierarchical B-splines guarantees nested spaces and linear independence of
the basis functions [141]. The application of hierarchical constructions in isogeometric analysis has
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been very promising [142]. However, the standard hierarchical construction does not preserve the
partition of unity property. To address this limitation, a new set of hierarchical basis functions,
called Truncated Hierarchical B-splines (THB-splines), were introduced [131]. THB-splines, defined
as a linear combinations of refined B-splines, form a convex partition of unity, exhibit good stability
and approximation properties [143]. By providing a way to define an adaptive extension of the B-
spline framework which is also suitable for geometric modeling applications, THB-splines satisfy
both the demands of adaptive numerical simulation and geometric design, making them well suited
for isogeometric analysis; see [144]. A comprehensive study has been conducted to develop a
posteriori error estimators for devising optimal refinement strategies with hierarchical B-splines;
see [145].

The definition of LR B-splines is inspired by the knot insertion refinement process of univari-
ate (and tensor-product) B-splines. Their formulation bears a large similarity to classical tensor-
product B-splines and this makes them one of the most elegant extensions of univariate B-splines
towards T-meshes. Since their introduction in [132], LR B-splines have found interesting applica-
tions in several contexts ranging from data approximation [146] to numerical simulations [147], also
considering their rational version [148]. More theoretical aspects, mainly related to the issue of lin-
ear and local linear independence and related adaptive refinement strategies, have been investigated
in [149]. A comparison between LR B-splines, hierarchical, and truncated hierarchical B-splines can
be found in [150], while combinations of the LR B-spline framework with the hierarchical approach
have been explored in [151].

LR B-spline refinement starts from a multivariate tensor-product spline space spanned by tensor-
product B-splines. The refinement is performed successively by splitting individual tensor-product
B-splines in one parameter direction at a time. In the bivariate case the splitting is done by
introducing an axis parallel line segment with multiplicity. The line segment must split the support
of at least one tensor-product B-spline into two disjoint parts. Very often the line segment also
splits the support of other tensor-product B-splines. The refinement process is continued until all
remaining B-splines have a certain minimal support property as defined in [149, 132].

Figure 5.2 depicts examples of a tensor-mesh, a T-mesh that is not an LR-mesh, a T-mesh that
is also an LR-mesh, and a mesh that is neither a T-mesh nor an LR-mesh. While T-splines have
a straightforward construction only for odd degrees, hierarchical B-splines and LR B-splines offer
independence from the polynomial degree. Moreover, both the definition and implementation of
hierarchical B-splines and LR B-splines can be made dimension-independent.

The notion of mixing multiple degrees in (univariate) spline constructions was introduced first
in the context of approximation [152] and later rejuvenated in geometric modelling [153]. Such
an extension of uniform degree B-splines, allowing for spaces of different dimensions in different
intervals glued together with certain smoothness, are called Multi-Degree B-splines (MDB-splines).
More recently, an efficient algorithm for the computation of MDB-splines was proposed in [154]
and further developed in [155]. The potential of the multi-degree spline spaces was also actualized
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(a) Tensor mesh (b) T-mesh, but not an LR-
mesh

(c) T-mesh and LR-mesh (d) Not a T-mesh nor an LR-
mesh

Figure 5.2: The T-mesh in (b) can not be created from single line insertions starting from a tensor mesh.
The T-mesh in (c) can, and is therefore also a valid LR-mesh.

in applications [156]. Some alternative constructions to the multi-degree B-splines can be found in
[157].

The construction of multivariate spline generalizations combining locally different degrees, with
the same flexibility as MDB-splines, is a hard and ambitious task. Already in the early work on
hierarchical splines it was noted that different degrees could be mixed in the (truncated) hierarchical
framework; see [158, Remark 4]. A full extension of the (truncated) hierarchical setting towards
local mesh refinement and degree elevation is described in [159]. Even though not supported by
the standard definition of T-splines, there has also been some significant progress in that field,
with their applications in collocation [134] and thin shell analysis [160]. Additionally, the study of
the effectiveness of k-refinement [161] and its comparison with p-refinement [162] in isogeometric
analysis has garnered considerable attention for its capability to address high-order differential
problems accompanied by hp-refined meshes.

In the context of LR splines, the construction of non-uniform degrees utilizes the degree el-
evation operation or p-refinement, in which the degree of a spline is increased, while preserving
its smoothness [163]. With the local tensor-product structure of LR B-splines, it becomes feasible
to perform degree elevation on an individual B-spline without introducing new degrees of free-
dom along an entire hyper-plane in the parameter domain. This capability allows for local degree
elevation, enabling the construction of a solution space with non-uniform degrees, which proves
advantageous in addressing higher-order isogeometric methods involving local features. Moreover,
due to the two-scale relation, low degree functions are consistently replaced with new higher degree
ones, ensuring the nestedness of the space.

In the second part of this thesis, we introduce non-uniform degree LR-splines that allow local
adaptive h-refinement as well as local p- and hp-refinement, by combining local knot insertion with
local degree elevation, and we discuss their application in isogeometric analysis.
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Tchebycheffian splines over T-meshes

As already mentioned, most of the results known for univariate polynomial splines extend in a
natural way to the Tchebycheffian setting.

As illustrated in the analysis presented in [114], tensor-product TB-splines are able to outper-
form tensor-product polynomial B-splines in isogeometric Galerkin methods whenever appropri-
ate problem-driven selection strategies for the underlying ECT-spaces are applied. Nevertheless,
tensor-product TB-splines present the same drawbacks of any tensor-product structure when local
refinement is of need.

The structural similarity between ECT-spaces and algebraic polynomial spaces enables us to
extend popular local refinement technologies, based on local tensor products, towards the Tcheby-
cheffian setting. Tchebycheffian spline spaces over T-meshes have been introduced in their full
generality in [164]. The structure of ECT-spaces has been exploited in [165] to fully extend the
dimension study carried out in the polynomial case in [166]. Some earlier generalizations of the
polynomial setting towards particular Tchebycheffian spline spaces or peculiar T-meshes have been
considered in [167]. In particular, [168] outlines the construction of GB-splines on LR-meshes while
hierarchical GB-splines have been presented in [169].

In the third line of investigation in this thesis, we define LR TB-splines as a generalization of
LR B-splines and we analyze their performance in the context of adaptive isogeometric Galerkin
methods.

The definition of LR TB-splines is driven by the knot insertion refinement process of tensor-
product TB-splines, in complete analogy to the polynomial setting. In the bivariate tensor case,
inserting a new knot in a pair of (global) knot vectors results in inserting a line segment in the
mesh crossing the entire domain, thus refining all the TB-splines whose supports are crossed. On
the contrary, LR TB-splines are defined on local knot vectors, and consequently the insertion of
a new knot is always performed with respect to a particular LR TB-spline and results in refining
only few basis functions.

The theoretical construction of LR TB-splines is independent of the particular ECT-spaces
where the various pieces are drawn from. However, in the applicative context we confine ourselves
to Tchebycheffian splines identified by ECT-spaces that are null-spaces of constant-coefficient linear
differential operators containing constants because, as already mentioned:

• they already grant the freedom of combining algebraic polynomials with exponential and
trigonometric functions with any number of individual shape parameters;

• when the various pieces are drawn from a single ECT-space, the existence of TB-splines is
always ensured, possibly with some restriction on the partition; see [114, Section 2.4];

• the corresponding TB-splines are supported by the Matlab toolbox available in [122].
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Contributions
To summarize, this dissertation has explored a diverse set of extensions of the theory and application
of isogeometric analysis.

• The idea of Tchebycheffian splines as a generalization of classical algebraic polynomial splines
was investigated and a problem dependent strategy for solving differential problems through
isogeometric analysis was devised to design a better suited solution space based on the
problem at hand.

• The idea of splines on unstructured meshes, and in particular on LR-meshes, has been inves-
tigated in two directions: non-uniform degrees and Tchebycheffian spline spaces.

As for the generalization of splines beyond the polynomial setting, we have extensively considered
the subclass of Tchebycheffian splines whose pieces are drawn from a single ECT-space which is the
null space of a differential operator with real constant coefficients, and includes constants. This
subclass of Tchebycheffian splines already provides a large variety of combinations of polynomial,
exponential, and trigonometric functions equipped with a wide spectrum of shape parameters
and can be represented in terms of a B-spline like basis (TB-splines) at least for sufficiently fine
partitions. It turns out that, such TB-splines can outperform polynomial B-splines whenever
appropriate problem-driven selection strategies for the underlying ECT-spaces are applied. In
particular, they can be beneficial both from the geometrical and the analytical point of view offering
a perfect fit to the isogeometric approach; see [114].

Furthermore, the TB-splines on LR-meshes are a viable spline technology on unstructured
meshes and offer a valid alternative to classical LR B-splines in adaptive isogeometric analysis. We
have shown that the adaptive strategy combined with problem-oriented approximation spaces may
create a synergistic effect and may produce results of similar quality with less levels of refinement,
and so fewer degrees of freedom, compared to the polynomial setting; see [170].

Finally, the potential of non-uniform degrees in LR B-splines was realized using local h-, p-,
and hp-adaptive refinement, and was investigated in a variety of isogeometric applications. We
introduced h-refinement and p-refinement algorithms for LR splines. Depending on the order
of operations, combinations of these allow for hp-refinement. We then introduced a set of data
structures to manage the increased complexity due to the presence of non-uniform degrees. We
investigated the efficacy of this approach for problems with smooth solutions as well as for problems
with sharp local features. As anticipated, the local combinations of h- and p-refinement restored
faster rates of convergence compared to the uniform degree h-refined LR meshes; see [171].

The outcomes of this thesis are documented in the following articles: [171, 114, 170]. These
publications provide comprehensive details on the methodologies, algorithms, and applications
discussed in this work.
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Chapter 6

Jean Michel Menjanahary: Dupin Cyclidic
Splines of Arbitrary Topology

Dupin cyclides are algebraic surfaces of degree at most 4 in Euclidean space, discovered by Charles
Dupin [172] in the early 1820s. They are initially defined as the envelope of a one parameter family
of spheres touching three fixed spheres (in two ways); see Figure 6.1. They are remarkable in the
sense that their curvature lines are either circles or straight lines.

Figure 6.1: A Dupin cyclide as the envelope surface of a variable sphere in blue (resp. in red) touching
three fixed spheres in red (resp. in blue).

One of the useful properties of Dupin cyclides is their closure under offsets, a feature that
significantly enhances their utility in geometric modeling by allowing for the creation of parallel
surfaces that maintain the elegant properties of the original cyclide and thus simplifying the de-
sign process. The well-known methods for designing free-form surfaces with Dupin cyclides was
introduced by Martin in [173] with the use of quad patches, known as principal patches, bounded
by 4 curvature lines that are circles. Dupin cyclide principal patches admit rational bidegree (2,2)
parametrization along the curvature lines. It is well-known that the 4 corner points of a principal
are always co-circular, and that a principal patch is uniquely determined by the 4 corner points
and a frame at one corner point; see Figure 6.2. The frames at the other 3 corner points can be
obtained by reflection across the underlying edges. A closed formula in the quaternionic framework,
which will be more convenient for our approach, has been given in [174] and [175] to compute the
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parametric representation of a principal patch. It has been reported in [176] that cyclidic splines
based on principal patches are not flexible enough for the needs of modeling applications such as
surface approximation. Our goal is to increase this flexibility by studying all possible blending of
Dupin cyclides. The motivation comes from [177] that certain attempts to extended regular cyclidic
splines to surfaces of arbitrary topology find empirical justification in architecture.

Figure 6.2: Left – a single quad patch mesh suitable for a Dupin cyclide principal patch. Right – a
principal patch together with their control points and quaternionic weights associated with the initial
data.

From the Laguerre geometry approaches in [178], it was known that there is a certain duality
between parabolic Dupin cyclides (deg 3) and quadratic splines. The use of quadratic splines allows
the well known Powell–Sabin subdivision procedure, which brings a subdivision procedure on the
cyclidic spline construction. The thesis will investigate the generalization of this spline construction
by allowing foldings and branchings of the Gaussian map to the unit sphere. This is illustrated in
Figure 6.3, where the Monkey saddle is approximated with parabolic Dupin cyclides. Note that
this subdivision allows the use of triangular patches bounded by algebraic curves of degree 3. It
was proved later in [179] that Dupin cyclides can be blended with G1 smoothness along algebraic
curves of degree 3 or 4, and this is the only possible blending apart from the basic smooth blending
along circles. There is a one parameter family of Dupin cyclides satisfying the smooth blending
along those curves of degree 3 or 4.

Figure 6.3: Left – foldings of quadratic splines. Middle – the Monkey saddle composed of triangular
patches of parabolic cyclides as dual of the quadratic splines. Right – a filling construction of a hexagonal
hole using principal patches of Dupin cyclides and a spherical patch in the middle.
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In the quaternionic representation approach [175], the blending curves of degree 3 or 4 are
nothing else than the diagonal curves Ppt, tq of principal patches Pps, tq. This approach allows filling
in with Dupin cyclides a 4-sided circular boundary hole with two opposite right and supplementary
angles. We shall call such a patch a hybrid patch; see Figure 6.4. The quaternionic representation
of hybrid patches will be investigated together with their applications in the 2n-sided hole filling
problem advertised in [177]; see the rightmost Figure 6.3 for the case n “ 3.

Figure 6.4: Left – a principal patch is trimmed along a principal diagonal curve of degree 4. Right –
another half of a principal patch is blended smoothly along the same diagonal curve, resulting into a
new shape of cyclidic spline constructions.

With the use of all possible blending of Dupin cyclides, cyclidic splines still have the following
topological restrictions. Let S be a G1 surface composed of Dupin cyclide patches. If S is closed
without boundary, then it has to be of torus topology, i.e., χpSq “ 0. Besides, if S is simply
connected and bounded by principal circles, then the sum of its angles is the same as for a polygon
on a plane. This clarifies that some spherical or planar patches have to be used to fulfil certain
surface constructions. A good example, where a spherical patch has to be used, is to fill a 2n-
sided hole, n ě 4. This suggests that improving the existing algorithm on the hole filling problem,
possibly with the use of hybrid patches, is unavoidable for the generalization for the multi-sided
patch construction. As an infinite filling procedure was used in [177], we will improve this by only
finitely many procedure and insert a multi-sided spherical patch in the middle, as illustrated by
the rightmost Figure 6.3.

As a generalization of Dupin cyclidic splines into volume objects, we will also explore the
quaternionic representation of 3D generalizations of principal patches called Dupin cyclidic (DC)
cubes; see the leftmost Figure 6.5. A general proceduce of building DC cubes was studied in [174].
DC cubes have unique extension to DC systems, i.e., triply orthogonal coordinate systems with
Dupin cyclides as coordinate surfaces. It turned out that singularities of DC systems can be reduced
up to Möbius transformations to focal 1-oval or 2-oval bicircular quartic curves on orthogonal
planes, see Figure 6.5. This generalizes the notion of focal conics appearing as singularity of a DC
system obtained by offsetting a Dupin cyclide. Each branch of the singular curves are lying on a
sphere or a plane that is a single degeneration of coordinate surfaces in one family. Those spheres
and/or planes are necessarily spheres and/or planes of symmetry of the coordinate system. The
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full classification of DC systems via the quaternionic Möbius geometry approach of DC cubes will
be studied. Preliminary results are available in [174].

Figure 6.5: Left – a Dupin cyclidic cube. Middle – three focal 1-oval bicircular quartics on mutually
orthogonal planes. Right – two focal 2-oval bicircular quartics on orthogonal planes and an empty curve
on the third plane.

From the Laguerre geometry approach, more theories on Dupin cyclides and their spherical
or planar sections were derived in [180]. First, a formula suggested by Gaston Darboux [181] to
compute the implicit equation for a Dupin cyclide with given 3 generating spheres was successfully
generalized. An unexpected relation between slices of Dupin cyclidic systems and families of Dupin
cyclides with fixed planar sections was revealed. Also, it turned out that with a given planar or
spherical sectional curve, there are at most 3 one parameter families of Dupin cyclides sharing the
same sectional curve. Each of those families can be considered as coordinate surfaces of certain
Dupin cyclidic systems with particular singularity on the sectional curve. This approach will be
helpful for the investigation of 2D and 3D cyclidic spline constructions.

A chapter in the thesis will also explore Dupin cyclides via their implicit equations, particularly
about the problem of recognition of Dupin cyclides from more general cyclides called Darboux
cyclides as studied in [182]. In particular, the implementation and efficiency of the recognition
algorithm will be highlighted. This includes a new proof of the Darboux formula for a Dupin
cyclide, and formulation of a proof of equivalent definitions of Dupin cyclides in literature. This
theory is also helpful to avoid singularities because a Möbius invariant of the Dupin cyclide can be
computed right from the implicit equation as addressed in the same paper. The recognition results
were first applied to the basic problem of smooth blending of Dupin cyclides along circles in [183].
The practicability of this approach will also be investigated together with the combination of the
quaternionic representation approach.

In the last chapter of the thesis, I will report two (3 months) secondment works at Johannes
Kepler University (JKU), Linz and at ModuleWorks, Aachen. At JKU, the problem of reconstruc-
tion of Darboux cyclides from their single view on the plane was considered. It was known that
this problem is solved already for special cases of surfaces such as those smooth ones or those with
ordinary singularities. An extended algorithm reconstruction has been addressed in [184] particu-
larly for cyclide surfaces. At ModuleWorks, the quaternionic representation of Dupin cyclides was
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implemented in the design tool Rihnoceros 3D with Grasshopper. A Grasshopper plugin has been
developed to handle cyclidic splines. The examples demonstrating the efficiency of this plugin are
Figure 6.4 and Figure 6.6 about offset of a principal patch, automated fair triangulation, and the
ability to design free-form cyclide splines.

Figure 6.6
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Chapter 7

Rao FU: Shape Reconstruction from 3D Point
Clouds

Shape reconstruction from raw 3D point clouds is a core challenge in the field of computer graphics
and computer vision. This thesis explores new approaches to tackle this multifaceted problem, with
a specific focus on two aspects: primitive segmentation and mesh-based surface reconstruction.

For primitive segmentation, we introduce BPNet, a deep-learning framework designed to seg-
ment 3D point clouds according to Bézier primitives. Unlike conventional methods that address
different primitive types in isolation, BPNet offers a more general and adaptive approach. In-
spired by Bézier decomposition techniques commonly employed for Non-Uniform Rational B-Spline
(NURBS) models, we employ Bézier decomposition to guide the segmentation of point clouds, re-
moving the constraints posed by specific categories of primitives. More specifically, we contribute
a joint optimization framework via a soft voting regularizer that enhances primitive segmentation,
an auto-weight embedding module that streamlines the clustering of point features, and a recon-
struction module that refines the segmented primitives. We validate the proposed approach on the
ABC and AIM@Shape datasets. The experiments show superior segmentation performance and
shorter inference time compared to baseline methods.

On surface reconstruction, we contribute a method designed to generate isotropic surface tri-
angle meshes directly from unoriented 3D point clouds. The benefits of this approach lie in its
adaptability to local feature size (LFS). Our method consists of three steps: LFS estimation, im-
plicit function reconstruction and LFS-aware mesh sizing. The LFS estimation process computes
the minimum of two geometric properties: local curvature radius and shape diameter, determined
via jet-fitting and a Lipschitz-guided dichotomic search. The implicit function reconstruction step
proceeds in three sub-steps: constructing a tetrahedron multi-domain from an unsigned distance
function, signing the multi-domain via data fitting, and generating a signed robust distance function.
Finally, the mesh sizing function, derived from the locally estimated LFS, controls the Delaunay
refinement process used to mesh the zero-level set of the implicit function. This approach yields
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isotropic meshes directly from 3D point clouds while offering an LFS-aware mesh density. Our
experiments demonstrate the robustness of this approach, showcasing its ability to handle noise,
outliers or missing data.

7.1 Context

In recent years, there has been a growing demand from practitioners to reconstruct shapes from 3D
point clouds. This demand spans various fields, including manufacturing, video games and special-
ized applications like autonomous driving and digital twinning. This increasing demand signifies
a substantial commercial market with promising investment prospects, capturing the attention of
both industry and academia.

In manufacturing, shape reconstruction is a crucial functionality for computer-aided design
(CAD) software, which is widely employed in mechanical prototyping, aerospace analysis and urban
planning. In this context, shape reconstruction techniques transform raw 3D point cloud data,
often acquired through 3D scanning or other measurement methods, into CAD models. This
process facilitates shape reconstruction, converting real-world objects into digital copies. Figure
7.1 presents an example of a CAD software that utilizes shape reconstruction to design mechanical
components.

Figure 7.1: Shape reconstruction in CAD. Applying FreeCAD to design mechanical parts. Image taken
from FreeCAD documentation [2].

In geography, shape reconstruction plays a pivotal role in geographic information systems (GIS)
software for analyzing and visualizing geographical data. GIS applications depend on precise shape
representations for terrain modeling and environmental simulations. In this scenario, raw point
cloud data, often obtained through LiDAR, serves as the source for shape reconstruction. These
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reconstructed shapes assist in downstream GIS-based flood modeling, land-use planning and disas-
ter management analysis. Figure 7.2 shows an example of applying a GIS software for geological
map analysis.

Figure 7.2: Shape reconstruction in GIS. Applying QGIS to generate a geological map. Image taken
from the QGIS documentation [3].

The task of shape reconstruction from 3D point clouds is a challenging problem and remains
a rapidly evolving area of research. It is an inherently ill-posed problem by nature. The illness
arises because a point cloud represents a discrete sampling of an original surface, which means
some information about the original surface is inevitably lost. In contrast, shape reconstruction
seeks to infer the original continuous surface from this limited and discrete point cloud data. This
mismatch between the discrete nature of the point cloud data and the objective of reconstruction
of a continuous surface makes the shape reconstruction a complex scientific problem.

Existing solutions for shape reconstruction often follow two primary directions. The first direc-
tion involves fitting multiple Non-Uniform Rational B-Spline (NURBS) surface patches to approxi-
mate the original shape using point cloud data. NURBS surfaces are defined by control points and
blending functions, offering a smooth and precise representation of shapes. However, this direc-
tion can be challenging when dealing with complex shapes that contain rich details, requiring the
segmentation of point clouds before fitting. Nevertheless, combining segmentation with NURBS
fitting remains a complex problem, and no mature packages or algorithms are currently readily
available for industrial applications.
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The second direction in shape reconstruction involves constructing a surface triangle mesh to
approximate the original shape, a widely employed approach supported by mature packages that
offer algorithms for mesh generation. For instance, the CGAL library [185] provides various surface
reconstruction algorithms built upon the half-edge data structure [186] for mesh representation.
However, challenges persist when dealing with real-world 3D point cloud data, which may be
imperfect due to limitations in scanning equipment. Additionally, achieving high-fidelity mesh
reconstructions while maintaining simplicity and well-shaped triangles remains an open and active
area of research.

Before delving into the detailed scientific challenges associated with shape reconstruction, we
first discuss how to obtain 3D point clouds, which serve as the direct input source for our shape
reconstruction task. These 3D point clouds are assemblies of three-dimensional coordinates, often
complemented by additional attributes like normals or RGB colors. To provide context, we explore
popular techniques for acquiring 3D point clouds. Examining the principles and technologies behind
these data-acquisition techniques offers valuable insights into the scientific challenges that arise for
the shape reconstruction task.

Laser Scanning. Laser scanning (Figure 7.3) can capture precise 3D point clouds of the original
shape. This process involves emitting laser beams toward the target and measuring the time it
takes for the laser pulses to bounce back to a sensor. Laser scanners generate dense point cloud
data representing the original shape by analyzing these measurements. However, certain challenges
arise with laser scanning. High-reflection materials like glass can pose difficulties, leading to missing
data in the point clouds. Additionally, occlusions caused by objects obstructing the scanner’s line
of sight can result in gaps in the acquired data, requiring additional processing to address these
issues. The sampling density, often measured in points per square meter, and accuracy, usually
in millimeters, are critical factors in the quality of data acquired through laser scanning. They
influence the success of subsequent shape reconstruction efforts.

Structured Light Scanning. Structured light scanning (Figure 7.4) utilizes a projector to cast a
known pattern onto the surface of the target and a camera to capture how that pattern deforms,
resulting in a structured point cloud representing the original shape. Unlike laser scanning, which
is employed to capture large-scale scenes, structured light scanning is suitable for small to medium-
sized shapes. However, structured light scanning still struggles with highly reflective or transparent
materials. The accuracy and density of the generated point cloud depend on factors such as the
projector, camera quality and the complexity of the projected pattern.

Photogrammetry. Photogrammetry (Figure 7.5) relies on capturing and analyzing multiple 2D
images of a shape taken from different viewpoints. It leverages image feature matching and stereo
principles to reconstruct the 3D point coordinates from multiple images. However, 3D point clouds
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Figure 7.3: Laser scanning. A laser scanner is used to scan point clouds from a construction field. Image
taken from [4].

Figure 7.4: Structured Light Scanning. Standard projector–camera configuration used in structured
light profilometry techniques. Image taken from [187].
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obtained by photogrammetry are usually noisy, as the lighting conditions and reflections can affect
the quality of the images and, consequently, the accuracy of the reconstruction. Calibration and
synchronization of multiple cameras are also critical for precise results. In addition, the 3D point
clouds suffer from extensive missing data because parts of the shape are occluded or not captured
clearly in some images. This results in gaps or discontinuities in the point cloud data, challenging
the shape reconstruction task. Despite these defects, photogrammetry remains a valuable tool,
particularly when dealing with scenarios that are more amenable to image-based data capture.

Figure 7.5: Photogrammetry. A schematic of the stereophotogrammetry technique showing the two
cameras and how the location of a point is identified. Image taken from [5].

Depth Sensors. Depth sensors (Figure 7.6), like Laser scanners, also operate by emitting infrared
light pulses and measuring their time-of-flight (ToF) to calculate distances. It then generates depth
maps containing the shape structure based on the ToF, where we can obtain the 3D point cloud from
the depth image. However, noise is a notable concern in depth sensors. Noise levels typically vary
with distance, with greater distances resulting in less accurate depth measurements. Environmental
factors like ambient light can also introduce noise, particularly in outdoor settings. Despite these
limitations, depth sensors are favored for their cost-effectiveness and have found widespread usage
in various applications, especially for scenarios where real-time depth perception is indispensable.

Simulation. Simulation generates raw point clouds digitally, emulating real-world scanning sce-
narios. It allows for controlled experiments and preserves the raw essence of intended environments
or objects. However, simulations rely upon accurate modeling and assumptions, which can intro-
duce errors. They may also lack the richness and defects of real-world data, limiting their real-world
applicability.

Different acquisition methods yield raw 3D point clouds, which are crucial in various applica-
tions. Laser scanning excels in high-precision data capture, making it suitable for metrology and
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Figure 7.6: Depth Sensor: The Azure Kinect DK depth camera. Image taken from Microsoft [6].

Figure 7.7: Simulation: point clouds with synthesized cameras. Image taken from VisualSFM [7].
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large-scale scanning. Structured light offers real-time capabilities, making it valuable in interactive
scenarios like gaming and virtual reality. Photogrammetry, while sometimes noisy, can handle
city-scale outdoor environments, making it important for geographic information systems. Depth
sensors are cost-effective and find applications in consumer devices like gaming consoles. However,
the raw point clouds obtained from the aforementioned scanning technologies often come with im-
perfections due to inherent limitations. These imperfections motivate the design of robust shape
reconstruction algorithms.

7.2 Scientific Challenges

Shape reconstruction refers to reconstruct a surface S from a given point cloud P “ tp P R3u. The
problem lies in developing robust and efficient algorithms capable of transforming these unprocessed
point clouds into accurate and complete 3D representations of objects. Addressing this problem
involves tackling issues such as noise reduction, surface reconstruction, hole filling and ensuring
geometric fidelity. The problem is multifaceted, marked by intricate challenges in those pivotal
aspects: sampling conditions, reconstruction priors, geometric fidelity, topology, memory usage
and computation, automation, generalization and evaluation criteria. Within the scope of this
thesis, the focus is exclusively on unstructured 3D point clouds.

Sampling conditions. In the context of sampling conditions, the complexities arise from the di-
verse nature of data acquisition methods, each imparting specific characteristics to the raw point
clouds. Challenges include variations in point density, presence of non-uniform sampling, the inher-
ent noise in the acquired datasets, outliers from data inaccuracies or sensor errors, misalignment
from multiple scans and missing data from occlusions. Figure 7.8 illustrates those challenges in 2D.

Reconstruction priors. These varied reconstruction priors correspond to different methodologies
into the shape reconstruction problem, reflecting the assumption of priors about the nature of
the unknown surface. Some methods assume global smoothness, expecting the surface to have a
continuous and smooth variation. Others consider piecewise smoothness, where the surface can
exhibit distinct regions of smoothness separated by discontinuities. There are also approaches
assuming piecewise linearity, where a set of triangles directly interpolates the unknown surface
from the input points. However, in the presence of noise in the point data, global smooth priors
may lead to over-smoothing by approximation, piecewise smooth priors may struggle to identify
the distinct regions, while piecewise linear priors often fail to smooth the noise. These trade-offs
and considerations in choosing priors highlight the challenges of shape reconstruction, especially
when dealing with real-world data characterized by imperfections and complexities. Please refer to
Figure 7.9.
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Figure 7.8: Different sampling conditions. The point cloud artifacts include non-uniform sampling, noisy
data, outliers, misaligned scans and missing data. Image taken from [8].

Figure 7.9: Priors for reconstruction methodologies. We identify three main priors: global smoothness,
piecewise smoothness and linear interpolation.
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Geometric fidelity. Geometric fidelity reflects how the reconstructed shape is close to the origi-
nal shape or the input point cloud data. It pertains to the accuracy with which the reconstructed
shape approximates the true geometry of the original shape. Achieving high geometric fidelity is
crucial, especially in applications where precision is paramount, such as aerospace, medical imaging,
and manufacturing. The challenge in assessing geometric fidelity arises from the fact that the true
original shape is often unknown, and the input point cloud itself may contain imperfections and un-
certainties. Therefore, measuring the geometric fidelity of the reconstruction becomes challenging,
as there may be no reference shape for direct comparison.

Topology. Topology defines the connectivity and relationships within a shape, reflecting the
number of connected components, boundaries, handles, and voids. In 3D shape reconstruction,
maintaining the accurate preservation of these topological features is challenging, especially when
the input point cloud is defect-laden. Some methods prioritize preserving the watertightness of
the reconstructed shape, ensuring that there are no gaps or holes. Others focus on preserving non-
manifold properties, which describe singular structures such as objects with multiple connected
components or complex boundaries. Figure 7.10 depicts an example of a reconstructed hand with
wrong topologies.

Figure 7.10: Topology issue for shape reconstruction reconstruction. Left: two fingers are connected
with wrong topology. Right: two are fingers are separated with correct topology. Image taken from [9].

Memory usage and computation. Memory usage and computational demands present significant
challenges in shape reconstruction. Handling extensive 3D point clouds can quickly deplete available
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memory resources, potentially leading to inefficiencies. Moreover, the computational requirements
for processing large point clouds can result in extended processing times, reducing overall efficiency.
Achieving a balance between efficient memory management and computational speed is crucial.
While machine learning-based methods have gained popularity, they often struggle with memory
and computation issues, making them less practical for industrial applications. Figure 7.11 provides
a visual example of memory-intensive shape reconstruction, with the primary source of high memory
usage being the 3D convolution operations on voxels.
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Figure 7.11: Memory-consuming reconstruction. Convolution on a voxel grid consumes large amounts
of memory, thus lacking scalability for large-scale point clouds. Image taken from [10].

Automation. Making shape reconstruction automatic is a fundamental goal. While some meth-
ods can handle challenging topology cases with human intervention, such an interactive approach
is labor-intensive and can produce results that vary based on different individuals’ input, making it
less reliable for large-scale or standardized applications. Figure 7.12 presents an example of inter-
active surface reconstruction, which requires users to provide hints to improve the reconstruction
quality.

Generalization. Generalization in shape reconstruction refers to an algorithm’s capacity to ex-
tend its reconstructive abilities beyond specific, limited examples and datasets. This is particularly
significant in the context of learning-based methods. In essence, a well-generalized shape recon-
struction algorithm should exhibit proficiency in accurately reconstructing surfaces that extend
beyond the scope of its training data. However, many learning-based approaches are trained on
specific object categories, such as chairs or couches. While they may perform well within these pre-
defined categories, they can fail when faced with shapes significantly differing from their training
data. Figure 7.13 highlights an example of the limitation of generalization using DeepSDF [11].
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Figure 7.12: Interactive reconstruction. This approach requires users to provide scribbles for ambiguous
areas. Image taken from [9].

This specific method is trained and tested on particular models, which restricts its applicability in
industrial scenarios where shapes can vary significantly.
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Figure 7.13: Non-general reconstruction. The learned SDF is constrained to specific shapes. Image
taken from [11].

Other evaluation criteria. In addition to geometric fidelity and topological correctness, various
other evaluation criteria are also crucial for shape reconstruction. These criteria encompass aspects
such as visual fidelity, which assesses how closely the reconstructed shape resembles the original from
a visual standpoint. Additionally, some evaluations consider view-dependent variants, accounting
for how the reconstructed shape appears from different viewpoints. These diverse evaluation criteria
provide a comprehensive assessment of the reconstructed shapes, ensuring their suitability for
various applications.
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7.3 Contributions

We first provide a summary of our contributions to shape reconstruction. Specifically, we explored
both explicit and implicit shape reconstruction. In terms of explicit reconstruction, we have con-
centrated on primitive segmentation. Our proposed method involves segmenting point clouds with
guidance from Bézier decomposition, enhancing the genericity of shape recognition. In terms of im-
plicit reconstruction, we have introduced a new mesh reconstruction technique designed to extract
LFS-aware (local-feature-size-aware) triangle surface meshes directly from 3D point clouds.

7.3.1 Primitive Segmentation

Existing primitive segmentation methods commonly approach the task by identifying individual
primitives from point clouds in a separate manner. These approaches imply that a distinct optimiza-
tion process is required for each primitive type. Consequently, these methods lack the generality
required to handle a wide range of primitive shapes efficiently. Recognizing this limitation, our
work aims to overcome the constraints of common approaches by introducing a more general and
adaptive solution. We provide a detailed discussion of those existing methods in Chapter 2 of the
Thesis.

Our first contribution is to define a general primitive type for the primitive segmentation task.
We introduce BPNet, a new end-to-end deep learning framework designed to facilitate Bézier prim-
itive segmentation on 3D point clouds. Unlike existing approaches constrained to finite shape
categories because of distinct optimization, BPNet is inspired by the operation of Bézier decom-
position techniques applied to NURBS models, which decompose different primitives into rational
Bézier patches. We adapt and extend these principles to guide point cloud segmentation, making
the Bézier decomposition learnable for point clouds and casting off the constraints of primitive
types.

Specifically, our approach employs a joint optimization framework, enabling the concurrent
learning of Bézier primitive segmentation and geometric fitting within a cascaded deep learning
architecture. Notably, we introduce a soft voting regularizer to enhance primitive segmentation
and propose an auto-weight embedding module to cluster point features, augmenting the network’s
robustness and generality. Additionally, we introduce a reconstruction module that effectively
processes multiple CAD models, each featuring different primitives, simultaneously.

To evaluate the efficacy of BPNet, we conducted extensive experiments on both synthetic
ABC datasets and real-scan datasets. The results demonstrate superior segmentation performance
compared to previous methods, accompanied by an improvement in inference speed. Furthermore,
we demonstrate the generalizability of our method by training the model on the synthetic ABC
datasets but testing with free-form points. Our model also yields reasonable segmentations on
free-form 3D point sets with smoother boundaries compared to other baseline methods.
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7.3.2 Surface Reconstruction

The primary goal in surface reconstruction is to ensure fidelity in reconstructing shapes. Many
modern surface reconstruction algorithms place a strong emphasis on achieving high fidelity by
closely fitting the reconstructed mesh to the input data. However, this main focus on fidelity
can sometimes result in poor-quality meshes, particularly when contouring implicit surfaces using
contouring methods like marching cubes or marching tetrahedrons, leading to non-isotropic and
dense triangular meshes. Consequently, post-processing steps, such as remeshing, become necessary
to convert these non-isotropic and dense meshes into isotropic ones with simplified complexity.
Additionally, it is important for the mesh itself to be adaptive, meaning that it should use small
triangles in regions with rich details. While post-processing can undoubtedly enhance mesh quality,
it also introduces the potential risk of compromising the overall reconstruction quality. This gives
rise to another objective in surface reconstruction: Is it possible to obtain an isotropic and adaptive
mesh directly from surface reconstruction without the need for post-processing?

Our second contribution addresses the two above objectives altogether by contributing a method
for reconstructing an isotropic surface triangle mesh directly from an unoriented 3D point cloud,
without remeshing. The key novelty of our approach lies into its adaptability to the local feature
size (LFS), resulting in a density that aligns with the local details of the underlying data. Instead
of following the conventional path of dense reconstruction followed by remeshing, our method
simultaneously reconstructs both an implicit function and an LFS-aware mesh sizing function.
These two components cooperate to produce the final LFS-aware reconstructed mesh, which is
isotropic with adaptive sizes.

Determining the LFS is a critical step for our surface reconstruction method. We achieve LFS
estimation by considering the minimum of two geometric properties: the local curvature radius
and half of the shape diameter. We derive the local curvature from a polynomial surface adjusted
via least squares fitting (also referred to as jet fitting), while we estimate the shape diameter by
our proposed Lipschitz-guided dichotomic search. We then construct the implicit function in three
main steps: creating a tetrahedron multi-domain mesh from an unsigned distance function, refining
the multi-domain with data fitting, and generating a robust signed distance function.

Finally, we utilize the Delaunay refinement meshing approach to obtain the final LFS-aware
mesh. Specifically, we derive a mesh sizing function, which controls the density of the final mesh,
from the estimated LFS. We then employ the sizing function with the implicit function to mesh
the zero-level set of the implicit function using Delaunay refinement. The distinctive feature of
our approach is its ability to generate isotropic meshes from 3D point clouds while maintaining
an LFS-aware density. Our experiments demonstrate the method’s robustness in handling defects
such as noise, outliers, or missing data. Furthermore, we provide experiments to show that our
method can reconstruct shapes with complicated topologies, such as high genus.
This thesis is supported by the following publications:
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• Rao Fu, Cheng Wen, Qian Li, Xiao Xiao, Pierre Alliez. BPNet: Bézier Primitive Segmenta-
tion on 3D Point Clouds. In Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence, 2023.

• Rao Fu, Kai Hormann, Pierre Alliez. Submitted to IEEE Transactions on Visualization and
Computer Graphics.

7.4 Outline
This thesis contributes to the shape reconstruction problem by approaching it from the perspectives
of primitive segmentation and surface mesh reconstruction. The thesis is structured as follows:

(a) Chapter 1 provides an overview of shape reconstruction with its applications and challenges.
It also discusses 3D point cloud acquisition that will challenge the shape reconstruction task.
Finally, this chapter outlines our contributions.

(b) Chapter 2 presents a thorough survey of the existing literature and related work in the
field of shape reconstruction, with a primary focus on primitive segmentation and surface
reconstruction.

(c) Chapter 3 delves into our contributions and methodologies concerning primitive segmentation,
accompanied by extensive experiments and comparisons in this domain.

(d) Chapter 4 investigates our contributions and methodologies related to surface reconstruction,
providing an in-depth analysis of the experiments conducted in this area.

(e) Chapter 5 summarizes the key findings and contributions of the thesis and outlines potential
directions for future research.
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